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Abstract: Push-broom HSI-cameras have a high spectral
resolution but require scanning and stitching to get a correct
The
conventional approach is to calculate a scanning velocity that

spatial and spectral representation of a scene.
matches the camera’s frame rate so that the stitching becomes
trivial. For this to work one needs to be able to apply the
velocity steadily and know the distance between camera and
subject. This contribution presents a feature-based approach
that directly determines the distance the subject was moved
between the images and uses it to correctly stitch the images.
It is used in a self-contained environment consisting of a light-
protected box with a light source inside and a linear guide unit
that moves the object under examination. The distance
between camera and object can be altered to increase the
spatial resolution for small objects. It is shown that our
stitching approach works even if the velocity changes during
scanning. If the distance of the camera is altered, e. g. to scan
a larger object, the stitching is adjusted automatically without
the need for manual intervention.
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1 Introduction

Unlike
wavelength bands (red, green and blue) to represent the

RGB-cameras, which capture only three
spectral range of visible light, hyperspectral cameras can
capture multiple visible and also non-visible parts of the
spectrum like near-infrared. They are thus able to reveal

additional information in conventional images, making them
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an interesting technology for different research areas and
applications. Hyperspectral imaging (HSI) has already been
used successfully in medical applications like cancer detection
[1], measuring haemoglobin oxygen saturation [2] or detecting
retinal diseases [3].

There are several types of HSI cameras which differ in the
way they acquire the images. Snapshot cameras take an image
of the scene by capturing spatial and spectral information for
each pixel at once. For every pixel of the resulting image, the
sensor itself needs to have as many pixels as there are
wavelength bands being captured. As the amount of pixels on
a sensor is limited, there is a trade-off between spectral and
spatial resolution. This trade-off can be resolved by using
either spectral or spatial scanning. Using spatial scanning, the
images need to be stitched afterwards. If the distance between
camera and subject is known and does not change, one can
calculate a scanning velocity that matches the cameras frame
rate in a way that the resulting images only need to be stitched
together without any overlap, so the stitching becomes trivial.
However, under real conditions, it may not be possible to apply
this velocity perfectly or the distance between the subject and
the camera may not be known exactly or change frequently.
This contribution proposes an automatic feature-based
stitching algorithm that can handle deviations in the scanning
velocity and changes in the distance between camera and
object, making it easier to acquire hyperspectral images under
non-optimal conditions in the field.

2 Methodology

We used a VRmagic HSI camera with an imec LS150 linescan
sensor which is partitioned into 192 filter zones, each of which
is 5 pixels tall and 2048 pixels wide. The bandpass filters in
front of the pixels of the sensor only let light of a specific
wavelength pass. As some of the filter zones overlap, it
captures 150 different wavelengths. An image of the camera
therefore always contains the whole scene and every
wavelength of the captured spectrum, but each wavelength is
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captured only in a 5 pixel tall “stripe” which depicts a different
part of the scene spatially. Therefore, it is necessary to either
move the camera or the subject so that every part of the scene
is captured in every wavelength.

The camera is mounted inside a light-protected box, facing
down to the subject which is placed on a board that can be
moved by a linear guide unit (LGU). The distance between
camera and subject can be varied to make it possible to get a
high resolution image from small objects by moving the
camera closer while still being able to capture bigger objects,
too. The subject is illuminated by a single halogen lamp.

2.1 Feature Detection

In every raw image from the HSI camera, which still contains
all wavelength bands, we detect SURF features (Speeded Up
Robust Feature) and match them to the previous image. SURF
features are points in the image, that can reliably be detected
as they stand out in their surroundings [4]. To be able to later
calculate the distance between the features, we need such a
feature detector that returns single points. The features also
need to have a dedicated descriptor vector, which makes it
possible to find matching points in multiple images. We
compared four popular feature detectors that fulfill the
requirements, namely SURF, ORB, FAST and BRISK, by
detecting and matching features for 600 images of a beef steak
(see 2) with default settings for each one in MATLAB. As we
intend to use our HSI-environment mainly for human tissue,
the beef steak is a reasonable substitute for this. Among the
tested feature detectors, only ORB surpassed SURF in terms
of detected matches (46332 inliers in all 600 images combined
compared to 26430). However, detecting and matching took
nearly five times as long (159.6s compared to 33.7s). While
taking only 18.6s, FAST only detected 3748 matched inliers.
BRISK was slowest and also detected the least matches
(167.9s and 2252 inliers). In this comparison, SURF therefore
provided the best trade-off of duration and matched features.

From the matches we can compute the distance the feature
points moved between the images. In the ideal case where all
points lie in a plane and there are no false matches, this is the
distance the object was moved in the image, which can then be
used to stitch the images together so that the matching points
from both images are at the same coordinate in the resulting
image. In reality, we need to perform some basic outlier
rejection based on prior knowledge to remove false matches.
As the LGU only moves the object in the v-direction of the
image, we can remove all matches where the points do not lie
at the same u-coordinate. Also, all matches with a negative
distance are removed, as there is no backward movement. The
remaining matches may still have different distances if they do

not lie in a plane. We found that choosing the median distance
of all remaining points gives the best results as it suppresses
the influence of possibly remaining outliers.

2.2 Stitching

The raw images contain each of the captured wavelengths as a
5-pixel tall stripe. The stitching process involves taking the
stripes and inserting them into new images, each of which will
then contain only the information from one single wavelength.
As we determined the distances between the images earlier, we
now know how much the stripes need to overlap so that
corresponding image features are at the same position in the
resulting image. For every filter zone, we get one resulting
stitched image (“single filter zone image”).

2.3 Stacking

Stacking the single filter zone images to a hyperspectral cube
is trivial. The stripes capturing the individual spectrums on the
sensor are always 5 pixels tall and directly adjacent to each
other. As the images have all been stitched using the same
distances, the single-spectrum images are therefore always
shifted 5 pixels relative to the previous image, meaning the
second image has an offset of 5 pixels to the first one, the third
image has an offset of 10 pixels to the first one and so forth. In
the stacking process, this offset is accounted for. Finally, the
parts of the stacked image that do not include all of the
wavelengths are cut off.

3 Verification and Results

Figure 1: Stitched image of checkerboard with changing scanning
velocity. a) Using the conventional static approach. b) Using
our dynamic stitching approach. The conventional approach
cannot compensate for the changing velocity, so some of the
boxes get stretched.
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To show the effectiveness of the method, a checkerboard
pattern is scanned. We simulate the case of a fluctuating
scanning velocity by starting the linear guide unit with the
correct velocity which matches the camera’s frame rate and
then changing it during the scanning process to first 90% and
then 80% of the initial velocity. The correct velocity is
calculated using the formula

= _hf.f

v m(z)

6]
which was taken from [5].

hs is the height of the filter zones on the sensor, f is the camera
frame rate and m(z) is a model function that calculates the
image scale dependent on the focal length f5, the pixel-size
d,;, and the distance z between camera and subject:

fe 1
dpix z—fB

m(z) =

2

We found, however, that the results using the velocity
calculated with this formula were not exact. According to [5],
the main reason for this is an increasing image distance due to
focusing when the object distance gets smaller, which the
model function does not account for. We multiplied the
calculated velocity by a factor of 1.1381 to get correct results.
The factor was found by looking at the mean height and width
of the scanned checkerboard boxes. As the mean height was
1.1381 times the mean width, the speed had to be multiplied
by this factor to make the height and width equal.

As the conventional (static) stitching approach relies on
the correct velocity being applied, the stitching fails as soon as
In the band that is
shown, the first two rows are still fine, but afterwards the

the velocity changes (see Figure 1:a).

velocity was lowered and the boxes get stretched. This only
applies to the band shown. For other bands, the stretching
happens at another point which makes the problem even more
complex. Our dynamic approach however detects the change
in velocity and adjusts the stitching accordingly by increasing
the overlap of the stripes (see Figure 1:b). We calculated the
deviation of width and height of the checkerboard squares,
which ideally should be 0, at five wavelengths (500nm,
599nm, 700nm, 800 nm, 899nm) and took the mean. In the
static case, the mean deviation is 18.1 pixels. With our
dynamic stitching approach, the mean deviation of width and
height of the checkerboard squares is only 1.0 pixels.

To show that our dynamic stitching approach can also
handle varying distances between the camera and the object,
we changed the distance from initially 315mm to 415mm
without increasing the velocity of the LGU (which is necessary
to get correct results with the static stitching approach) and
scanned the checkerboard again. With the static stitching, this,

as expected, resulted in stretched boxes (see Figure 2a) with a
mean deviation of width and height of 20.7 pixels. In contrast,
our dynamic stitching approach is able to correct for the
changed distance so the boxes stay square with a mean
deviation of width and height of 0.6 pixels (Figure 2b).

Figure 2: Stitched image of checkerboard with not matching
distance and velocity. a) Using the conventional static
approach. b) Using our dynamic stitching approach. The
dynamic stitching approach adjusts the stitching to the new
distance.

The velocity calculated using equations (1) and (2) is not only
the velocity that needs to be applied in case of the static
stitching approach, but also the upper limit for our dynamic
approach. Anything above would result in our approach also
failing, as the object then moves faster than the camera takes
images and not every part of the object will be captured in
every band. To be on the safe side, the velocity should be
adjusted slow enough to comply to this upper limit even if the
camera is placed at the nearest possible distance to the object.
In this case, the stitching process will work for greater
distances, too. In theory, there is no lower limit for the velocity
for our approach to work, but practically for very slow moving
objects very many images will be taken which will be
computationally too expensive.

As a real-world example and a first test of our HSI
environment we captured images of a beef steak to see if we
are able to distinguish muscle/flesh, bone and fat in the
spectrum after using our HSI environment and the automatic
stitching method. For each of the three we manually picked a
10x10 pixel sized patch that only contains the one specific
tissue type from an evenly lit part of the image. We then
calculated the normalized, uncorrected mean intensity values
for every wavelength. Figure 3: shows the results. The largest
difference can be seen around 770nm where the intensity of fat
is significantly higher than the intensity of flesh, which is still
slightly higher than the intensity of bone. The same can be
observed for the wavelengths around 717nm and 690nm. Fat
also shows higher intensity than flesh and bone at 650nm to
665nm. Otherwise there are not any distinctive features of
either tissue type in this case.
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Using the k-means algorithm with all bands to segment
the image into three classes showed that distinguishing fat
from flesh worked mostly well, whereas bone was often
misclassified as flesh (see Figure 4: b). This agrees with the
findings in the spectrum, where fat was distinguishable from
flesh and bone, whereas the latter were much closer together.
However, very bright parts of bone were also misclassified as
fat. The most likely reason for these misclassifications is the
non-uniform illumination by the single light we used and the
fact that the differences between flesh, fat and bone in the
spectrum our camera captures are relatively small.

Spectra

¥ ——Flesh
] Bone
+ Fat

800 700 800
Wavelength [nm]

400 500 900 1000

Figure 3: Spectra of flesh, bone and fat. The intensity is the
normalized mean value of a 10x10 pixel sized patch we
manually selected for each of the tissue types.

Figure 4: Crop of the steak. a) In one single band. b) k-means
segmentation in muscle (yellow), fat (cyan) and bone (blue).
Not every pixel was classified correctly.

4 Conclusion

By using our dynamic stitching algorithm, we were able to
achieve good results in situations where a steady velocity
cannot be applied and when changing the distance between the

camera and the subject, e. g. moving the camera farther away
to capture a bigger object completely. With the conventional
approach one would need to adjust the velocity to the new
distance, whereas our approach is able to work with the slower
velocity that was applied before and therefore simplifies the
process.

When used on a beef steak, the feature-based stitching
algorithm is able to detect enough feature matches to work
well which suggests that it should also work on human tissue.
In a future work, the illumination should be improved to be
more homogeneous and cover a wider spectrum than our
halogen lamp and a spectral correction method could also be
applied to the resulting spectra to make them more comparable
to other works [6]. Additionally, other HSI cameras with
advantages like a wider spectral coverage could be used to get
better results when used at an operational level in a
pathological institute.
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