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Abstract
Objective: Photoplethysmography imaging (PPGI) has gained immense attention over the last few
years but only a few works have addressed morphological analysis so far. Pulse wave decomposition
(PWD), i.e. the decomposition of a pulse wave by a varying number of kernels, allows for such
analyses. This work investigates the applicability of PWD algorithms in the context of PPGI.
Approach: We used simulated and experimental data to compare various PWD algorithms from the
literature regarding their robustness against noise and motion artifacts while preserving
morphological information as well as regarding their ability to reveal physiological changes by
PPGI.Main results: Our experiments prove that algorithms that combine Gamma and Gaussian
distributions outperform other choices. Further, algorithms with two kernels exhibit the highest
robustness against noise and motion artifacts (improvement in NRMSE of 14.09 %) while
preserving the morphology similarly to algorithms using more kernels. Lastly, we showed that
PWD can reveal physiological changes upon distal stimuli by PPGI. Significance: This work proves
the feasibility of pulse decomposition analysis in PPGI, particularly for algorithms with a low
number of kernels, and opens up novel applications for PPGI. Not only for PPGI but for future
research on PWD in general, our findings have importance as they elucidate differences between
PWD algorithms and emphasize the importance of using initial values. To support such future
research, we have released the algorithms and simulated data to the public.

1. Introduction

Photoplethysmography (PPG) captures blood volume changes in the microvascular bed of tissue. The
technique allows one to capture heart rate and respiration and, most importantly, provides a non-invasive
means to determine the arterial oxygen saturation (pulse oximetry), which makes it clinically
indispensable (Allen 2007). However, even beyond such measures, PPG signals hold valuable information as
the photoplethysmographic waveform reflects the cardiac ejection and the vascular state (Lopez-Beltran et al
1998). Various works have related the PPG waveform and its variations to the vasculature in general (vascular
age) (Takazawa et al 1998, Bortolotto et al 2000, Baek et al 2007, Chellappan et al 2008, Huotari et al 2011,
Sorelli et al 2018), to dynamic cardiovascular parameters (e.g. cardiac output (Wang et al 2009) and blood
pressure (Padilla et al 2009, Wang et al 2009, Goswami et al 2010)), and to the activity of the autonomous
nervous system (ANS) (e.g. ANS activation upon cold stress (Jaryal et al 2009, Njoum and Kyriacou 2013,
Budidha and Kyriacou 2019)). To analyze the PPG waveform, three approaches are commonly used:

(1) Direct analysis of the PPG waveform (e.g. the alternating component (AC)) (Awad et al 2001, Jaryal et al
2009, Njoum and Kyriacou 2013, Budidha and Kyriacou 2019).

(2) Analysis of the second derivative of the PPG signal, the so-called acceleration photoplethysmogram
(aPPG) (Imanaga et al 1998, Takazawa et al 1998, Bortolotto et al 2000, Iketani et al 2000, Miyai et al
2001, Hashimoto et al 2002, Otsuka et al 2006, Baek et al 2007, Elgendi et al 2010, Huotari et al 2011,
Elgendi 2012, Inuma et al 2012, Xing et al 2019) (see figure 1).
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Figure 1. Depiction of a typical PPG waveform and its first and second derivative. Marked in the aPPG are the characteristic
waves, a to f.

(3) Analysis by pulse wave decomposition (PWD), i.e. the fitting of distributions to the PPG waveform and
subsequent analysis of fitted distributions (Rubins 2008,Goswami et al 2010,Huotari et al 2011, Couceiro
et al 2012, Wang et al 2013, Couceiro et al 2015, Huang et al 2015, Tigges et al 2017a, Tigges et al 2017b,
Sorelli et al 2018, Wang et al 2018) (see figure 2).

Over the last few years, PPG imaging (PPGI) has gained immense attention. As in conventional PPG,
PPGI exploits blood volume changes to derive a pulsatile signal. Instead of using a sensor attached to the
skin, PPGI works remotely and uses a camera as sensor (Huelsbusch and Blazek 2002). Most works on PPGI
focus on the extraction of the heart rate (HR) and heart rate variability (HRV) (Wang et al 2017, Zaunseder
et al 2018b). However, similar to the conventional PPG waveform, the PPGI waveform can be assumed to
feature more information. Only a few works have used morphological analysis to capture this information so
far (Trumpp et al 2016, Kamshilin et al 2017, Trumpp et al 2017, Fleischhauer et al 2019, Djeldjli et al 2019,
Nishidate et al 2019, Paul et al 2019). These works mostly analyzed the amplitude of single pulses, with the
exception of the works of Paul et al (2019) and Djeldjli et al (2019), which employed more complex pulse
wave analysis features. As stated before, the second derivative and PWD allow for a much more detailed
analysis. However, to the best of our knowledge only Sorelli et al (2019) have employed PWD in the context of
PPGI. In fact, the application of PWD algorithms to PPGI recordings is troublesome because such recordings
typically show a much lower signal-to-noise ratio than conventional signals subject to PWD analyses.

This work investigates the applicability of PWD algorithms in the context of PPGI. Thereto, the aim of
the work is twofold. Firstly, we aim to compare various PWD algorithms from the literature. Other than
previous works, we not only assess the algorithms’ ability to preserve pulse shapes but analyze their
robustness to various noise types. Secondly, we apply PWD algorithms to PPGI recordings in order to reveal
the benefit of PWD analysis of PPGI recordings.

The remainder of the work is structured as follows. Section 2 gives an overview on existing PWD
algorithms and their usage. Section 3 introduces the used data (simulated and real data) and applied
methods. Methods cover the general processing of PPGI waveforms, details on used PWD algorithms as well
as the applied statistics. Section 4 presents the results on the simulated and experimental data. Section 5
discusses the results and relates them to works from the literature. Finally, in section 6 we provide an outlook
for future works.
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Figure 2. Example for a PWD of the PPG waveform into five Gaussian kernels. Tsysdia, as an example of a parameter of the
temporal differences of PWD kernels, marks the time interval between the systolic and diastolic components.

2. Background onmorphological PPG signal analysis by PWD

PWD assumes that the left ventricular ejection travels through the vascular tree and is reflected at sites where
the arterial resistance changes significantly. The pulse waveform, thus, consists of the forward-travelling
pulse and several reflections and re-reflections. Pulse decomposition analysis (PDA) is based on the fitting of
distributions (so-called basis functions) to the pulse waveform in order to decompose the signal into its basic
components (Baruch et al 2011, Couceiro et al 2015).

PWD is a technique that has been used to decompose pulse waves into a varying number of basic
components (kernels). From the relationship between these kernels several PWD parameters can be derived
(see table 1 for a list of works regarding PWD algorithms and their usage). The derived parameters comprise
mainly temporal differences and amplitude ratios of the kernels. They have been associated with aging and
arterial stiffening, pulse wave velocity, blood pressure and sympathetic activation (Rubins 2008, Goswami
et al 2010, Baruch et al 2011, Couceiro et al 2012, Baruch et al 2014, Liu et al 2014, Couceiro et al 2015, Wang
et al 2018, Sorelli et al 2018, Sorelli et al 2019).

Besides analyzing parameters of the decomposition, PWD can be used to preprocess distorted data.
Couceiro et al (2012, 2015) and Lazaro et al (2018) have used PWD to reduce the noise in PPG recordings.
This opens up the possibility to analyze the derivatives of noisy PPG signals. This is an interesting approach
as PPGI signals usually show a bad signal-to-noise ratio (SNR) in comparison to conventional PPG.

As can be seen in table 1, there is a wide variety of suggested PWD algorithms in the literature that differ
in the number and type of used kernels. Tigges et al (2017a) conducted a comparison of accuracy between
several PWD algorithms and found an algorithm based on three Gamma kernels to achieve the best results.
Huang et al (2015) examined the benefit of the usage of a mixture of Gamma and Gaussian kernels over pure
Gaussian kernel-based algorithms and showed that the algorithm consisting of a Gamma kernel and three
Gaussian kernels exhibited the best results in residual analysis. Liu et al (2013) showed that models with three
Gaussian kernels achieve a better modeling accuracy than models with fewer kernels. A quantitative analysis
of the suitability of algorithms is difficult as only a few works have evaluated the differences between such
algorithms extensively and the results differ (Liu et al 2013, Huang et al 2015, Tigges et al 2017a).

3. Methods andmaterials

3.1. Data
3.1.1. Simulated data
In order to compare the implemented PWD algorithms in terms of robustness, we used simulated PPG data.
For each class of the PPG according to Dawber et al (1973) we modeled a single beat of a PPG (see figure
3(a)–(d)). To that end, we decomposed real PPG beats of the respective class by each decomposition
algorithm. We inspected the decompositions visually to make sure that the reconstructed beats matched the
original real PPG beat. We then added noise to these templates (see figure 3(e)–(h)). We used white and pink
noise as well as motion artifacts with the SNR ranging from 10 dB to 100 dB. While modeling white and pink
noise is straightforward, there is no standard procedure to model motion artifacts. Appendix B contains the
details on such modeling. The SNR is defined as the quotient of the signal energy and the noise power
spectral density. Notably, the modeling made use of the respective algorithm under consideration, i.e. an
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Figure 3. Depiction of the Dawber classes of the PPG waveform. While class 1 exhibits a clearly visible incisura, which separates
the systolic and diastolic components, the incisura becomes less pronounced with increasing class. In class 4, systole and diastole
cannot be distinguished (Dawber et al 1973). Also depicted is this set of templates superimposed with white noise. The SNR of
these signals is 10 dB.

algorithm that uses three kernels is evaluated by beats simulated by three kernels as well. This procedure
ensures that the simulated data allow assessment of the robustness against noise.

3.1.2. Experimental data
On the one hand, we used experimental data, namely finger PPG, to assess the model quality, i.e. the ability
to preserve the morphology by various algorithms. On the other hand, we used experimental data, namely
PPGI recordings, for physiological considerations. The dataset used in this analysis originates from a
so-called cold pressure test (CPT). The CPT provokes cold pain and thus elicits a sympathetic
response (Skoluda et al 2015). We used an RGB camera (UI-3370CP-C-HQ, IDS) with a color depth of 12
bits, a frame rate of 100 fps and a resolution of 420× 320 pixels for video recordings of the face. The
experimental setup was illuminated by ambient light and a fluorescent ceiling light. Non-invasive continuous
blood pressure (Finometer Midi, Finapres Medical Systems), PPG, electrocardiography and respiration
signals (all sensors from ADInstruments) were recorded as reference data.

The experiment overall lasted approximately 11 min and included resting phases and a CPT. Our analysis
focuses on five analysis intervals of 10 s each. At the beginning, participants executed a resting phase of 480 s.
From this phase, three baseline measurements were taken (Baseline 1 to 3). After that, the CPT started by
immersing one hand into cold water with a constant temperature of 3 ◦C. The stimulus lasted up to 3 min.
The participants were free to quit stimulation earlier. Two more analysis intervals were defined at the time
interval 10 s after the start of the stimulation (AfterCPT) and the time interval 5 s before and after the time
instant at which the systolic blood pressure reached its peak value (HighestSBP). The response to the CPT
shows an individual time course. We assessed HighestSBP as we assume the physiological impact of the CPT
to be most pronounced independently from its temporal occurrence. AfterCPT, on the other hand, shows the
immediate physiological response to the CPT.

A total of 22 healthy subjects (age 25.5± 3.73 years, 10 female) participated in the study. Each participant
took part twice, once in supine position and once in sitting position. As a consequence of the varying
recording positions and their temporal separation, different recordings of the same subject were considered
independent. One recording had to be discarded due to technical problems. The study has been approved by
the institutional review board of TU Dresden (EK119 032 016). All participants were informed about the
experimental procedure and gave written consent.
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Figure 4. Exemplifying template generation by ensemble averaging. Single beat segments are shown in light gray with their
respective beat detections ti marked with red crosses. The resulting template is shown in bold dark blue.

3.2. Preprocessing of experimental data
In our analyses, we only used the green channel of the video recordings as it provides the highest signal
quality (Verkruysse et al 2008). Each pixel of a frame within a manually defined region of interest (ROI) on
the forehead was then averaged to obtain a single pixel trace per video. Furthermore, the pixel traces were
bandpass filtered by applying a fifth-order Butterworth filter of cutoff frequency 8 Hz and a third-order
Butterworth filter of cutoff frequency 0.4 Hz, in forward and backward direction, respectively, and
subtracting their outputs to yield the filtered PPGI signal. We used the algorithm of Lazaro et al (2014) in
order to detect single pulses in the 10 s analysis intervals. Around each beat detection ti, we defined a beat
segment as

startbeat = ti − 0.45 · B̃BIPPGI

endbeat = ti + B̃BIPPGI , (1)

where B̃BIPPGI denotes the median interval of all beat-to-beat intervals in the respective analysis interval. We
discarded beat segments if startbeat or endbeat were located outside the analysis interval or if they showed a
mean correlation to all segments lower than 0.3. The remaining pulses were then ensemble averaged, thus
obtaining a single beat template for each analysis interval (see figure 4). The reference PPG was filtered and
ensemble averaged in the same way (Fleischhauer et al 2019).

3.3. Pulse decomposition algorithms
We implemented 19 PWD algorithms using Gaussian and Gamma basis functions as these are the most
common basis functions in the literature (see table 1). In the following sections, we describe the
implemented algorithms with their respective initial values, boundaries and constraints for optimization. All
algorithms use the interior point optimization method from the Matlab function fmincon due to its ability to
handle both inequality constraints and boundaries. The function uses its default settings, the only exception
being the maximum number of function evaluations, which was set to infinite.

3.3.1. Used kernel combinations
This section gives an overview of the definitions of the used kernel combinations. All kernels g(t, θ) are
functions of time t and a parameter vector to be optimized θ. Each parameter vector contains three
parameters that adjust the kernels amplitude, location and width. We implemented each kernel combination
using two to four kernels as these are typical numbers of used kernels in the literature. The pure Gaussian
algorithm was also used with five kernels in order to adapt the algorithm of Couceiro et al (2015).

Naming of algorithms indicates kernel combination (Gaussian, Gamma, GammaGaussian) followed by
the number of kernels (2, 3, 4, 5). The last part consists of the method for obtaining the initial values and
boundaries (Couceiro, Sorelli, generic).
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Gaussian
The most commonly used kernel is the Gaussian distribution (see table 1). The probability density of the
Gaussian distribution can be written as (Rubins 2008):

gGaussian,k(t,θk) = ak · e
−(t−µk)

2

2σk
2

, (2)

where θk denotes the k-th parameter vector that consists of the amplitude a, the mean µ and the standard
deviation σ. The Gaussian algorithms decompose the pulse wave into a number of N Gaussian kernels; the
reconstructed signal y can thus be defined as the sum of the N kernels:

yGaussian,N(t,θ) =
N∑

k=1

gGaussian,k(t,θk) . (3)

Gamma
The use of Gamma kernels in PWD was first introduced in the work of Huang et al (2015). Like other skewed
distributions (e.g. Rayleigh or log-normal) it is used to model the steep slope of the systolic part of the PPG
waveform. Moreover, Couceiro et al (2012) stated that the central volume pulse is not symmetric. It is thus
likely that the peripheral volume pulse is asymmetric as well, and should, therefore, be represented by an
asymmetric kernel. The Gamma probability density function in its α/β-parametrization is (Tigges et al
2017a):

gGamma,k(t,θk) =
βαk
k

sk ·Γ(αk)
tαk−1e−βkt . (4)

Tigges et al also made use of Gamma kernels in their works (Tigges et al 2017a, Tigges et al 2017b). They
expressed the shape parameter α and the rate parameter β through the modem and standard deviation σ for
a more convenient and meaningful definition of boundaries for the parameter vector as it is quite difficult to
interpret α and β. In equation (4) they also added the parameter s to the regular definition of the Gamma
distribution in order to scale the amplitude of the kernel. Appendix C explains the expression used in this
work. The parameter vector of the Gamma kernel is thus θ= [σ,m, a]. The modeled signal

yGamma,N(t,θ) =
N∑

k=1

gGamma,k(t,θk) (5)

is expressed as a the sum of N Gamma kernels.

Gamma Gaussian
We also implemented a combination of a Gamma kernel and a number of Gaussian kernels as proposed by
Huang et al (2015), who showed that this combination leads to a better fit than a pure Gaussian model. The
kernels are defined as in equation (2) and equation (4). Therefore, the reconstructed signal y from N kernels
is defined as

yGammaGaussian,N(t,θ) = gGamma,1(t,θ1)+
N∑

k=2

gGaussian,k(t,θk) . (6)

3.3.2. Boundaries and initial values
Some works take a priori knowledge into account to define the initial values and boundaries for their
optimization algorithms (Couceiro et al 2015, Banerjee et al 2017, Sorelli et al 2018). From these algorithms,
we implemented the method of Couceiro et al (2015), which is the most commonly adapted algorithm, and
the method of Sorelli et al (2018), which was previously used on PPGI signals. Both methods make use of the
signal’s derivatives, which might cause problems due to the comparatively low SNR of PPGI recordings and
distortions of the morphology due to movement artifacts. We thus also implemented an approach that uses
generic initial values and does not restrict the kernels. Appendix D lists the boundaries and initial values of
each algorithm in detail.
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Method of Couceiro
Couceiro et al (2012, 2015) proposed an algorithm that extends the method of Rubins (2008) of analyzing
the second derivative of the pulse wave in order to separate the systolic and diastolic components. This
extended method also makes use of the third and fourth derivatives. A similar method, which is also based
on the second derivative but uses optimization parameters depending on the extended Dawber class 4 of the
waveform, is introduced in the work of Wang et al (2013). Table D1 shows the initial boundaries and values
of the method of Couceiro et al (2015). Equation (7) defines the four constraints for their algorithm
regarding the amplitude a and the position µ:

a1 − a2 ≤ 0∧ a1 − a3 ≤ 0

a3 − a2 ≤ 0∧ a4 − a2 ≤ 0∧ a5 − a2 ≤ 0

a5 − a4 ≤ 0

µ1 ≤ µ2 < µ3 ≤ µ4 ≤ µ5 . (7)

We implemented the algorithm of Couceiro et al in its original version from the literature consisting of
five Gaussian kernels.

Method of Sorelli
The algorithm of Sorelli et al (2018, 2019) is based on the windowing of the pulse into a systolic and a
diastolic part. For this purpose, the algorithm assesses the first derivative of the signal. The initial values and
boundaries that are derived from the length and the signal amplitude of the systolic and diastolic phase,
respectively, are listed in table D2. The algorithm applies the following constraints to the optimization of the
position µ:

µk−1 < µk k ∈ {3, . . . ,N} . (8)

We implemented the algorithm of Sorelli et al (2018, 2019) for all used kernel combinations using two to
four kernels except the Gamma4sorelli algorithm (see section 5.1 for an explanation).

Generic values
In this method, the initial parameters and boundary conditions are not determined based on the pulse wave,
but follow a generic and simple concept, which distributes the basis functions over the waveform. Table D3
details the used values. These values were applied regardless of the types of kernels. We also defined the
following constraints to the amplitude a and the position µ:

a1 > ak

µk−1 < µk k ∈ {2, . . . ,N} . (9)

We implemented algorithms with generic values for all used kernel combinations using two to four
kernels. For the Gaussian basis functions we also implemented a model consisting of five kernels in order to
compare this method to the algorithm of Couceiro et al (2015).

3.4. Assessment of model quality
For the comparison, the implemented PWD algorithms decompose the noisy simulated signals and
reconstruct the signal by adding the optimized basis functions. The normalized root mean square error
(NRMSE) (Liu et al 2013, Sorelli et al 2018) of the second derivative of the reconstructed signal,

aPPGrec =
d2PPGrec(n)

dn2 , with regard to the second derivative of the undistorted simulated reference template,

aPPGref =
d2PPGref(n)

dn2 , is then calculated to assess the goodness of fit:

NRMSE= 1−

√∑N
n=1 (aPPGref(n)− aPPGrec(n))

2√∑N
n=1

(
aPPGref(n)− aPPGref(n)

2
, (10)

where N denotes the number of samples of the simulated signal. Note that though this is a measure of error,
the NRMSE attains values in the range of (− inf, 1], where NRMSE= 1 marks a perfect fit. We chose to
assess the NRMSE of the second derivative because the second derivative accentuates distortions of the

4Wang et al (2013) described an additional fifth class of the PPG waveform, thereby extending the Dawber classes.
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Figure 5. Depiction of the decomposition of a reference PPG. The NRMSE of the aPPG is 0.6993. This figure also shows the
accentuation of the distortions in the second derivative, as the NRMSE of the PPG is 0.9467.

signal, thus providing a stricter comparison than the original signal (see figure 5). In addition, we also
wanted to test the ability of the PWD algorithms to cope with noise because this is essential to successfully
evaluate the second derivative of noisy PPGI data. For each algorithm and noise level, we conducted 25
repetitions of the decomposition. In each repetition the noise was generated randomly. For the motion
artifacts, we raised the number of repetitions to 250 to account for the increased degrees of freedom.

We also decomposed the ensemble averages of the reference PPG of the baseline analysis intervals with
every algorithm. In this way, we could assess the quality of the reconstructed beats on real data in order to
evaluate the algorithms’ ability to preserve the shape.

3.5. Physiological considerations
We assessed the PPGI data with the algorithm from each kernel number that showed the overall best
goodness of fit, i.e. the highest mean NRMSE over all iterations, classes, types of artifact and SNR values.
From the decomposed PPGI recordings, we analyzed the resulting kernels as well as the second derivatives of
the reconstructed signals. Therefore, we calculated the ratio of the b wave to the a wave of the second
derivative b/a and the time between the systolic and diastolic component Tsysdia. The Tsysdia parameter takes
the amplitude amk at the modemk (i.e. the point in time at which the maximum occurs) of the k-th kernel g
as well as the number of kernels N into account:

Tsysdia =

∑N
k=2 amk ·mk∑N

k=2 amk

)
−m1 . (11)

For this parameter we assume the first kernel to model the systolic component, while the diastolic
component consists of the remaining kernels. From the reference signals, we assessed the median length of
the beat-to-beat intervals (BBI) derived from the reference PPG as well as the pulse pressure (PP) as these
parameters have been shown to correlate with the T13 parameter (Baruch et al 2011).

3.6. Statistical analysis of PPGI recordings
We excluded 10 of the 43 recordings because they contained missing values. For four subjects, the placement
of analysis intervals failed or no stable forehead region could be defined. Ensemble averaging failed due to
too few beats in the PPGI signal for six subjects. Thus, 33 recordings were analyzed.

The results for each algorithm were assessed independently. We compared three analysis intervals against
one another (Baseline 3, AfterCPT and HighestSBP), thereby creating non-orthogonal contrasts. As our CPT
dataset consists of 33 subjects, we assumed a normal distribution (WeiB 2013). In order to account for
multiple testing, we used a repeated measures ANOVA as an omnibus test and the t-test for paired data as the

9



                                            

Figure 6. Results of the comparison of the PWD algorithms on the simulated data for white (left column) and pink (right
column) noise. Each row shows the results of a set of algorithms: two kernels (top row), three kernels (middle row), four and five
kernels (bottom row).

post-hoc test. Furthermore, we used the Holm–Bonferroni correction to counteract multiple comparisons by
conducting one Friedman test per dependent variable (Holm 1979). The Holm–Bonferroni correction was
also applied to adjust the p values of the post-hoc tests to account for the non-orthogonal contrasts.

4. Results

4.1. Shape preservation
Figure 6 depicts the results of the comparison on the simulated noise data. We found the results regarding
white and pink noise to be similar. As is to be expected, the NRMSE generally decreases for lower SNR values.
The comparisons of each of the three figures show a worsening of fit with an increasing number of kernels.
The results for the simulated movement artifacts are displayed in figure 7 and generally resemble the results
on the noisy data. The five-kernel algorithms exhibited the lowest NRMSE. This is especially true for the
Gauss5couceiro algorithm, which achieved the overall lowest mean NRMSE of all algorithms
(NRMSE=−10.9393). The algorithms using fewer kernels showed relatively high NRMSE values. For these
algorithms, a rapid decrease of the NRMSE can be observed between 30 dB and 10 dB. The highest mean
NRMSE for each number of kernels is achieved by the GammaGauss2generic algorithm (NRMSE= 0.9497),
the Gamma3generic algorithm (NRMSE= 0.8324), the Gamma4generic algorithm (NRMSE= 0.7553) and
the Gauss5generic algorithm (NRMSE=−1.0810). Besides the assessment of the NRMSE, we also extracted
the parameters Tsysdia and b/a from the simulated data (not shown here). Algorithms with fewer kernels
exhibited a more consistent calculation of the parameters, thus supporting our findings from the analysis of
the NRMSE.
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Figure 7. Results of the comparison of the PWD algorithms on the simulated data for movement artifacts. Each row shows the
results of a set of algorithms: two kernels (top row), three kernels (middle row), four and five kernels (bottom row).

Figure 8. Depiction of the NRMSE of the decomposition of the reference PPG data. The reference data are considered to be
noiseless. The 75th percentile of the NRMSE of the Gauss5couceiro algorithm is less than zero and thus not depicted in this plot.

The results of the assessment of the algorithms’ shape preservation ability are depicted in figure 8. The
algorithms containing Gamma kernels exhibit generally higher mean NRMSE values than the pure Gaussian
algorithms. The GammaGauss4generic algorithm achieves the highest mean NRMSE (NRMSE= 0.6719).
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Figure 9. Results of the assessment of the CPT dataset, depicted by boxplots. If significant, post-hoc test outcomes are denoted by
∗ p< 0.05, ** p< 0.01, **∗ p< 0.001. Outliers are not shown. All values are normalized to the mean of the three baseline
analysis intervals.

4.2. Physiological considerations
This section covers the results of the assessed parameters on the CPT dataset. Due to the results in section
4.1, the algorithms achieving the highest mean NRMSE on the simulated data for each number of kernels
were applied to the PPGI data for physiological considerations. Figures 9(a) and (e) depict the parameters
derived from the GammaGauss2generic algorithm. Both Tsysdia and b/a exhibited statistically significant
changes between the analysis intervals, with Tsysdia showing a significant decrease between Baseline 3 and
AfterCPT (p= 0.0148). At HighestSBP the median Tsysdia remained at the level of AfterCPT. However, b/a
increased after the application of the stimulus, reaching its maximum at HighestSBP, where the difference to
Baseline 3 was very significantly different (p= 0.0069).

The rest of the plots in figure 9 show the results for the Gamma3generic, Gamma4generic and
Gauss5generic algorithms. A statistically significant decrease in Tsysdia for all algorithms can be noted.
Though not significant, Gamma3generic exhibited a similar trend to the GammaGauss2generic algorithm in
the b/a parameter. Gamma4generic did not show a trend, while Gauss5generic demonstrated an opposing
trend. In contrast to the GammaGauss2generic algorithm, no algorithm showed any significant difference
between the analysis intervals.

5. Discussion

5.1. Model comparison
The simulation showed that the robustness of PWD algorithms against noise and motion artifacts decreased
with an increasing number of kernels. This is to be expected, as with an increasing number of kernels, the
possibility of the kernels adapting to a distorted waveform rises. No substantial difference could be found
between the results for white and pink noise.

A very important finding concerning the algorithms’ real use is the impact of initial values and boundary
conditions. As can be seen in figure 6, the NRMSE of the algorithm of Couceiro et al (2015) suffered a
reduction even at high SNR values. This can be explained by the dependency on the second, third and fourth
derivatives of the PPG waveform as the derivatives amplify the noise. The algorithm of Sorelli et al (2018)
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relies on the first derivative, which makes it susceptible to noise as well. This algorithm, however, implements
several interceptions that stabilize the decomposition. The generic algorithms are the least affected by noise.

Algorithms containing Gamma kernels achieved overall better NRMSE values than pure Gaussian
kernels. This is in accordance with the literature (Huang et al 2015, Tigges et al 2017b), according to which
skewed kernels have been better suited to model the steep slope of the systolic phase of the PPG waveform.

This can also be seen in figure 8, which shows the NRMSE of the decomposition of the reference PPG.
The reference data is considered to be noiseless. As there were only minor differences in the shape
preservation ability of the algorithms containing Gamma kernels, the comparison showed that algorithms
consisting of two kernels were sufficient for PWD.

A drawback of the Gamma kernel is the codomain of the Gamma function. Equation (4) contains the
term Γ(αk), where αk increases with the modem. For algorithms with a high number of kernelsN, for k close
to N, Γ(αk) can attain values that exceed the range of a double precision variable, thus being treated as
infinity. Due to this, the Gamma4sorelli algorithm could not produce a template for the comparison and was
thus not included in this work. This problem could be solved by using other skewed distributions like the
Rayleigh or log-normal distribution (Tigges et al 2017b).

As table 1 shows, PWD algorithms have been compared before. In contrast to our work, these model
comparisons used continuous blood pressure (Liu et al 2013) or PPG recordings (Huang et al 2015, Tigges
et al 2017a) to evaluate the goodness of fit of the tested algorithms. As these works aimed to compare the
goodness of fit of various algorithms to real signals, while our work additionally included the robustness of
algorithms against noise, the results are not directly comparable.

Liu et al (2013) compared only pure Gaussian algorithms with one to three kernels. They found three
kernels to achieve the best fit. This is to be expected, as a higher number of kernels leads to more degrees of
freedom, thus improving the goodness of fit. In our comparison, the NRMSE decreases with the number of
kernels as we measure the goodness of fit of the decomposition of the noisy signal to the undistorted signal. It
can thus be assumed that algorithms with more than two kernels adapt to the noise.

Huang et al (2015) concluded from their comparison that the use of the GammaGaussian kernel
combination resulted in a lower mean absolute error than a pure Gaussian model. This corresponds with our
observations and can be explained as above.

A model consisting of three Gamma kernels also performed well in the comparison of Tigges et al
(2017a). As they used the corrected Akaike information criterion (AICc), the number of kernels of an
algorithm was penalized, which further complicates comparison to our results in this regard. Nonetheless,
our work also suggests that for three basis functions a combination of Gamma kernels achieves the best fit,
thus confirming the findings of Tigges et al (2017a).

The aforementioned comparisons did not take into account the physiological reasonableness. For
example, Tigges et al (2017a) used the algorithm of Couceiro et al (2015), which considers more than one
kernel to model the systolic part of the PPG waveform. Similarly, Wang et al (2013) presented a model that
used four or five kernels depending on the improvement of the goodness of fit by inserting an additional
kernel. This is physiologically questionable, as it would be possible for successive PPG beats to be modeled by
a different number of kernels.

5.2. Physiological interpretation of the results
The decomposition of the PPGI data also suffered from physiologically unreasonable results. The constraints
of the algorithms allow the amplitude of the diastolic kernels to become zero. This happens especially with
the Gauss5generic algorithm. This problem complicates the assessment of ratios of the kernels. It should be
noted, though, that the optimal number of kernels remains an issue of dispute in the literature. Some works
propose three kernels to cover the crucial reflections that contribute to the waveform (Liu et al 2013), while
other works favor a five-kernel model (Couceiro et al 2015). The algorithms consisting of two kernels used in
this work are shown to be robust against noise. The drawback is that all reflections are condensed in a single
kernel, which rules out the possibility of assessing the relationship between the systolic component and
specific reflections.

Another problem of the decomposition of the PPGI recordings is the morphology of the signals, which in
some cases differs substantially from the usual PPG waveform. Algorithms with more than two kernels tend
to adapt to these distortions. This overfitting leads to difficulties regarding the assessment of the second
derivative as its characteristic morphology is thus changed. Algorithms with two kernels exhibited the best
performance to retain this morphology. Thus, these algorithms showed the best denoising ability of the PWD
algorithms, while retaining important morphological characteristics. This ability of the PWD algorithms has
been proposed in the literature (Couceiro et al 2015, Lazaro et al 2018).
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Figure 10. Results of the assessment of the reference parameters of the CPT dataset, depicted by boxplots. If significant, post-hoc
test outcomes are denoted by ∗ p< 0.05, ** p< 0.01, **∗ p< 0.001. Outliers are not shown. All values are normalized to the
mean of the three baseline analysis intervals.

Our results showed a statistically significant increase in b/a for the GammaGauss2generic algorithm (see
figure 9(e)). A highly significant change in PP from our data could be observed (see figure 10(b)). The
increase in PP can be explained by the pain stimulus of the CPT that triggers a sympathetic response.

These results indicate a relationship between b/a and PP and thus support the findings from the
literature. The b/a ratio has been shown to be positively correlated with age (Takazawa et al 1998, Otsuka et al
2006, Baek et al 2007), systolic blood pressure and pulse pressure (Otsuka et al 2006). Some works reported a
negative correlation between the absolute of b/a and these physiological measures (Imanaga et al 1998,
Hashimoto et al 2002). As b/a is modulated by the early systolic phase, it is thought to be mainly influenced
by the peripheral vessels (Imanaga et al 1998).

The decrease in Tsysdia, which is directly derived from the decomposition, however, could be seen in each
of the four decomposition algorithms. The increased sympathetic tone is accompanied by a decrease in the
length of the beat-to-beat intervals (see figure 10(a)). This leads to the expected shortened temporal
difference between the systolic and diastolic components.

The temporal differences of kernels from PWD have been associated with blood pressure. Goswami et al
(2010) reported a lowered temporal difference between the systolic and diastolic peaks, while most other
works found a positive correlation between various blood pressure and temporal difference measures. Only
Baruch et al (2011) considered the influence of heart rate on the temporal difference of the kernels and also
showed a positive correlation to the length of the beat-to-beat intervals. We cannot rule out the possibility of
blood pressure influencing Tsysdia.

The fact that only the decomposition with two kernels showed a significant change in b/a and only the
Gamma3generic algorithm showed a similar trend further indicates the denoising ability of algorithms with a
low number of kernels.

In order to reduce motion artifacts in PPGI signals, and thus possibly enhance the performance of the
PWD algorithms, color channels can be combined. Wang et al (2017a) showed methods for channel
combination like CHROM or POS to be beneficial for heart rate estimation. However, such methods affect
the beat morphology and were not considered within this work. Instead, we analyzed the decomposition of
the difference between the green and the red channel. The difference is hoped to eliminate general artifacts
but leave the signal morphology, which is dominated by the green channel, undistorted. The results show the
same trends as in the original green channel analysis. However, there are no statistically significant
differences between the analysis intervals. The low signal quality of the red channel is likely to introduce
noise into the combined signal and thus affect the signal morphology.

5.3. Limitations
Although this work demonstrates the general feasibility of PWD in PPGI, it has some limitations. The
exclusion of 10 out of 43 recordings for the reasons explained in section 3.6 should be noted. This shows that,
because of the limitations of the measurement system, not every recording is usable for PWD. The
simulation also indicates that although PWD can be applied to denoise the PPG waveform, below a certain
SNR, no PWD algorithm can reliably decompose the signal.
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Figure 11. Results of the assessment of the CPT dataset’s finger PPG data, depicted by boxplots. If significant, post-hoc test
outcomes are denoted by ∗ p< 0.05, ** p< 0.01, **∗ p< 0.001. Outliers are not shown. All values are normalized to the mean of
the three baseline analysis intervals.

6. Conclusion and outlook

This work studied the applicability of PWD for analyzing the PPGI waveform. In summary, our
investigations confirm the applicability of PWD particularly for a low number of kernels. This finding opens
up novel possibilities for PPGI usage beyond heart rate monitoring. Our results further underline the
importance of initial values and boundary conditions of PWD algorithms, which are often neglected.

We also analyzed the decomposition parameters on the finger PPG data (see figure 11). The results for
b/a exhibit opposing trends for PPG and PPGI. The Tsysdia parameter, however, shows similar trends between
PPGI and the finger PPG with the exception of Gauss5generic, which we consider the least robust of the
PWDmethods. We reported a similar phenomenon for the AC part of the ensemble beats (Fleischhauer et al
2019). Future work will explore the differences between finger PPG and PPGI in more detail.

In order to allow other researchers easy comparison of their own algorithms with previously published
solutions and to foster further research on the topic, we have released the used algorithms and simulated data
under the MIT license at https://github.com/FHDO-LAMBDA/PulseDecompositionAnalysis.
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Appendix A. PWD parameters

This section lists PWD parameters and their calculation based on the pulse waves y, kernels g and parameter
vectors θ of the kernels.

15

https://github.com/FHDO-LAMBDA/PulseDecompositionAnalysis


                                            

Augmentation index (AuI). The AuI is calculated differently depending on the type of pulse (Rubins
2008):

AuI= 1− y(µ1)

ymax
typeA, (12)

AuI=
y(µ2)

ymax
− 1 typeC.

Reflection index (RI). The RI is usually calculated as the ratio of the diastolic and systolic amplitudes of
the pulse wave (Goswami et al 2010, Couceiro et al 2015):

RI=
ydias
ysys

. (13)

Sorelli et al (2018) modified the RI as the percentage of ratios of the areas A beneath the diastolic and
systolic pulse models:

RI= 100% · Adias

Asys
. (14)

Another method for obtaining the RI can be found in the work of Rubins (2008):

RI=
y(µ3)

ymax
. (15)

Crest time (CT). The CT is the duration of the pulse ascent and is measured as the time from the
beginning of the pulse to the first zero crossing of the first derivative of the pulse wave (Sorelli et al 2018).

Stiffness index (SI). The SI is the difference in time of the position of the diastolic part of the pulse wave
and the systolic part (Couceiro et al 2015, Sorelli et al 2018).

Foot-to-foot delay (D). D is the time between the onset of the forward and delayed pulses (Goswami et al
2010).

Differential pulse spread (DPS). The DPS is the difference between the standard deviations of the reflected
pulse wave σr and the forward pulse wave σf (Goswami et al 2010):

DPS= σr −σf . (16)

Time differences (T1k). The most commonly used features are the time differences between the k-th
kernel and the first kernel (Goswami et al 2010, Baruch et al 2011, Baruch et al 2014, Liu et al 2014, Couceiro
et al 2015, Banerjee et al 2017, Lazaro et al 2018, Sorelli et al 2018, Wang et al 2018, Sorelli et al 2019):

T1k= µk −µ1 . (17)

Amplitude ratios (PkP1). Another very common feature is the ratio of the amplitude of the k-th kernel to the
amplitude of the first kernel (Baruch et al 2014, Liu et al 2014, Sorelli et al 2018, Wang et al 2018):

PkP1=
gkmax

g1max
. (18)

Appendix B. Motion artifacts

The motion artifacts z consist of the sum of two components: a linear trend ztrend and an impulse zimpulse.
Such noise types have been observed experimentally in PPGI data upon slower or more abrupt movements.
The linear trend can be written as

ztrend =m · t (19)
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withm being the slope of the line and t the time. The impulse can take two possible shapes randomly. One is
a bell-shaped algebraic function:

zimpulse(t) =
a

1+
( t−µ

σ

2
) 3

2

. (20)

The other is a windowed sinc function:

zimpulse(t) =


0 t> µ+π ·σ
0 t< µ−π ·σ

a · sinc( t−µ
σ ) otherwise

, (21)

where a is the amplitude, µ is the mean and σ a width parameter of the impulse. We also assigned random
values to the orientation (positive or negative amplitude), the width parameter and the mean of the impulse.
The mean can attain values in the interval:

σ ≤ µ≤ T−σ , (22)

with T being the maximum of t. The width parameter is defined between:

T

84 ·
√
2 log2

≤ σ ≤ 4 ·T
84 ·
√
2 log2

. (23)

These factors combined with the chosen SNR determine the absolute amplitude of the impulse.

Appendix C. Gamma kernel

As previously shown in the works of Tigges et al (2017a), we describe the Gamma kernel parameters (α, β, s)
by using the modem and the standard deviation σ of the kernel. This ensures better compatibility with the
approaches that use a priori knowledge for finding the initial values and boundaries for the fitting of
Gaussian kernels (Couceiro et al 2015, Sorelli et al 2018). Our formulation of the parameters differs from
that of Tigges et al (2017a) in the dependence of α and β onm and σ. This section shows the derivation of
our formulation of the Gamma kernels.

The modem of a Gamma kernel g(t) can be calculated from its first derivative:

dg(t)

dt
=

βα

Γ(α)
e−βttα−1 · α− 1

t
−β . (24)

m is t for which dg(t)
dt

!
= 0 and can be expressed as

m=
α− 1

β
. (25)

The amplitude parameter s is then chosen in such a way that g(t=m) divided by s becomes a. In this way
we get s from equation (4):

s=
1

b

βα

Γ(α)
(
α− 1

β
)α−1e1−α . (26)

The variance σ2 of a Gamma kernel in terms of α and β is (Kroese and Chan 2014):

σ2 =
α

β2
. (27)

Equation (25) can be plugged into equation (27) to obtain our formulations of α and β:

β =
1

2σ2
m+

√
m2 + 4σ2 , (28)

α=
1

2σ2
m2 +m

√
m2 + 4σ2 + 1. (29)

Appendix D. Model optimization parameters

This sections lists the initial values and boundaries of the optimization parameters of the used algorithms
for a PPG signal in the range of [0,PPGmax] with its starting point at t = 0 s and its ending point at t=T.
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Table D1. List of the initial values and boundaries (lower boundary lb, upper boundary ub) for the k kernels of the applied PWD
algorithms that use five Gaussian kernels.

Algorithm k Parameter lb Initial value ub

Amplitude 0.5 · PPG(ta) 0.7 · PPG(ta) PPG(tb)
Mean ta

(1) ta tb
(2)

1

Standard Deviation 0 s ta/3 tb/3
Amplitude 0.5 · PPGsys

(3) 0.9 · PPGsys PPGsys

Mean ta tb tc
(4)

2

Standard Deviation ta/3 tb/3 td/3
Amplitude 0.2 · PPGsys 0.5 · PPGsys 0.8 · PPGsys

Mean tb td
(5) tdn1

(6)
3

Standard Deviation tb/3 td/3 tdn1/3
Amplitude 0 s 0.8 · PPGdia

(7) PPGdia

Mean tdn2
(8) tf

(9) T
4

Standard Deviation 0 s min(tf,(T− tf)/3) tdn2
Amplitude 0 s 0.3 · PPGdia PPGdia

Mean tf tdia
(10) T

Couceiro

5

Standard Deviation 0 s T− (T− tf) tdn2
Amplitude 0 s 0.8 · PPGmax PPGmax

Mean 0 s (2/7)·T T
1

Standard Deviation 0 s ((2/7) ·T) · (2
√

2 log2)−1 T
Amplitude 0 s 0.3 · PPGmax PPGmax

Mean 0 s (3/7)·T T
2

Standard Deviation 0 s ((1/7) ·T) · (2
√

2 log2)−1 T
Amplitude 0 s 0.3 · PPGmax PPGmax

Mean 0 s (4/7)·T T
3

Standard Deviation 0 s ((1/7) ·T) · (2
√

2 log2)−1 T
Amplitude 0 s 0.3 · PPGmax PPGmax

Mean 0 s (5/7)·T T
4

Standard Deviation 0 s ((1/7) ·T) · (2
√

2 log2)−1 T
Amplitude 0 s 0.3 · PPGmax PPGmax

Mean 0 s (6/7)·T T

Generic

5

Standard Deviation 0 s ((1/7) ·T) · (2
√

2 log2)−1 T

(1)time of the maximum of the a wave of the second derivative of the PPG
(2)time of the maximum of the b wave of the second derivative of the PPG
(3)PPGsys =max([PPG(tb),PPG(tc),PPG(td)])
(4)time of the maximum of the c wave of the second derivative of the PPG
(5)time of the maximum of the d wave of the second derivative of the PPG
(6)time of the left boundary of the dicrotic notch
(7)PPGdia =max([PPG(tdn1), . . . ,PPG(T)])
(8)time of the right boundary of the dicrotic notch
(9)time of the maximum of the f wave of the second derivative of the PPG
(10)tdia = t(PPGdia)
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