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Abstract: This work targets the development of a
neighborhood-based Collaborative Filtering therapy recom-
mender system for clinical decision support. The proposed
algorithm estimates outcome of pharmaceutical therapy op-
tions in order to derive recommendations. Two approaches,
namely a Relief-based algorithm and a metric learning ap-
proach are investigated. Both adapt similarity functions to
the underlying data in order to determine the neighborhood
incorporated into the filtering process. The implemented ap-
proaches are evaluated regarding the accuracy of the outcome
estimations. The metric learning approach can outperform the
Relief-based algorithms. It is, however, inferior regarding ex-
plainability of the generated recommendations.

Keywords: Clinical Decision Support System, CDSS, Ther-
apy Recommender System, Neighborhood Optimization.

1 Introduction

Clinical decision support systems (CDSS) are intended to
provide assistance for personalized diagnosis and treatment
decisions [1]. Suchlike systems are expected to play an in-
creasingly important role in future healthcare. Especially data-
driven approaches, employing data mining and machine learn-
ing techniques to exploit the large volume of daily captured
and widely unused clinical data, promise to open up new per-
spectives. In contrast to expert systems, which derive recom-
mendations or suggestions using knowledge stored in rule sets
(if-then rules), data-driven approaches are supposed to be ca-
pable of extracting knowledge automatically from the avail-
able data [1]. However, in order to facilitate a high degree
of acceptance among medical practitioners, such approaches
are required to provide reliable and interpretable decision sup-
port. This work aims at developing a CDSS which supplies the
attending physician with individualized and patient-specific
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treatment recommendations. To that end, this work transfers
methodologies from the field of Recommender Systems (RS)
research to the CDSS domain. RS are widely applied in other
domains such as e-commerce or music and movie streaming
services. In those applications, sophisticated and specialized
approaches were developed over the recent years to provide
a target user with personalized product recommendations [2].
Such methods can be capable of meeting both the stated relia-
bility and interpretability requirements. Specifically, this work
deals with finding a similarity function optimized for the data
at hand, which is fundamental for the widely used class of
neighborhood-based RS algorithms.

2 Materials and Methods

2.1 Psoriasis Data

The CDSS algorithms proposed in this work are evaluated on
the basis of a clinical dataset consisting of 1242 consultation
representations 𝑋 from 239 patients suffering from various
types of the skin disease Psoriasis [3]. Each consultation rep-
resentation 𝑥 incorporates the individual therapy history, as
well as demographic and condition related data, adding up
to a total of 125 attributes. The level of measurement of the
present data ranges from binary and nominal qualitative at-
tributes to ordinal and ratio scaled quantitative attributes. The
overall objective of the therapy RS is to predict the numerically
decoded outcomes 𝑦 of 7 systemic pharmaceutical therapy op-
tions based on 𝑥 in order to provide the treating physician with
a ranked list of therapies.

2.2 Collaborative Filtering for Therapy
Decision Support

Deriving recommendations based on the local neighborhood
of a target user is a straightforward and efficient approach de-
noted as Collaborative Filtering (CF) [2]. CF identifies users
with similar taste by comparing purchase histories or product
ratings and derives potentially most preferred products. This
approach was transferred to therapy recommendation in our
previous work [3]. Here, consultations where compared using
representations as introduced above in order to derive treat-
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Fig. 1: Outcomes 𝑦𝑡𝑒𝑠𝑡𝑛 of treatment options 𝑡 are estimated for a
test consultation 𝑛 based on all outcomes observed in the treat-
ment history of the 𝐾 most similar training data consultations.
𝐴𝑡𝑟𝑎𝑖𝑛 accumulates the numerically encoded outcomes of all pre-
viously applied treatment options, i.e. the treatment history of the
training consultations. In 𝐴𝑡𝑟𝑎𝑖𝑛 rows represent treatment options
and columns training data consultations.

ment recommendations with potentially good outcome.
Therefore, the numerically decoded outcomes 𝑦𝑡𝑒𝑠𝑡𝑛 ∈ [0, 1]

of potential treatment options, ranging from bad to good re-
sponse, are estimated for a test patient and consultation 𝑛. To
do so, outcomes observed in the treatment history of the 𝐾

most similar consultations to 𝑛 are averaged for each therapy
option as pictured in figure 1. The outcome-consultation ma-
trix 𝐴𝑡𝑟𝑎𝑖𝑛 accumulates outcomes of ever applied treatments,
i.e. the treatment history for each training consultation. Fi-
nally, the Root Mean Squared Error (RMSE) can be computed
between outcome estimate 𝑦𝑡𝑒𝑠𝑡𝑛 and actually observed out-
come 𝑦𝑡𝑒𝑠𝑡𝑛 to evaluate the estimation accuracy.

Both, the local neighbourhood of 𝑛 included into the esti-
mation and the coefficients, for calculating the weighted av-
erage of the observed outcomes are defined by a similarity
measure 𝑠𝑛𝑘 for each training consultation 𝑘. Here, a similarity
function 𝑠(𝑥𝑡𝑒𝑠𝑡𝑛 , 𝑥𝑡𝑟𝑎𝑖𝑛𝑘 ) defines 𝑠𝑛𝑘 for test and training con-
sultation representations 𝑥𝑡𝑒𝑠𝑡𝑛 and 𝑥𝑡𝑟𝑎𝑖𝑛𝑘 .

3 Neighborhood Optimization

3.1 Similarity Assumptions

The similarity function 𝑠(𝑥𝑡𝑒𝑠𝑡𝑛 , 𝑥𝑡𝑟𝑎𝑖𝑛𝑘 ) itself and the impact
of attributes incorporated into the similarity computation de-
termine the computed outcome estimate in the CF setting. In
this work we compare two methods that both automatically
adapt 𝑠(𝑥𝑡𝑒𝑠𝑡𝑛 , 𝑥𝑡𝑟𝑎𝑖𝑛𝑘 ) to the data at hand in order to find an
appropriate neighborhood and averaging coefficients. Both in-
vestigated approaches assume a supervised classification prob-

lem where each instance is associated with a distinct class. In
the present setting this corresponds to a priori assumptions re-
garding similarity or dissimilarity. Each consultation is charac-
terized by a numeric outcome indicator associated with the ap-
plied treatment option and unknown outcome for all other op-
tions which have not been applied (unobserved ground truth).
Consequently, assumptions regarding similarity or dissimilar-
ity between a pair of consultations can only be derived from
those consultations which applied therapies in common and
for which in both cases outcome is known. Figure 2 assumes
a training consultation representation 𝑥𝑡𝑟𝑎𝑖𝑛𝑛 which is associ-
ated with a treatment which showed good response (> 0.5).
Thus, neighboring consultations 𝑥𝑡𝑟𝑎𝑖𝑛𝑘 are labeled as simi-
lar to 𝑥𝑡𝑟𝑎𝑖𝑛𝑛 if the same treatment is present in the outcome-
consultation vector 𝑎𝑡𝑟𝑎𝑖𝑛𝑘 holding the treatment history of
𝑥𝑡𝑟𝑎𝑖𝑛𝑘 and if this treatment also has shown good outcome.
Conversely, neighboring consultations are labeled as dissim-
ilar to consultation 𝑛 if the same treatment is present in 𝑎𝑡𝑟𝑎𝑖𝑛𝑘

but this treatment has shown bad response (≤ 0.5). Regarding
neighboring consultation representations 𝑥𝑡𝑟𝑎𝑖𝑛𝑘 for which is
true that the in 𝑛 applied therapy was never applied, no infor-
mation regarding the similarity label is available.

3.2 Attribute Weighting

We assume that individual attributes are of varying importance
concerning the similarity between consultations or even are
entirely irrelevant. The baseline metric for computing similar-
ity is the Gower coefficient as already successfully applied in
[3]. The Gower coefficient differentiates between data types
and facilitates attribute weighting when quantifying similarity.
A widely and successfully used class of feature weighting and
selection algorithms which exploit the concept of similarity
are Relief-based algorithms (RBAs) [4]. In this work, the RBA
approach is adapted to the aforementioned similarity assump-
tions. Within an iterative process, a random target consultation
representation 𝑥𝑡𝑟𝑎𝑖𝑛𝑖 is drawn from the training data 𝑋𝑡𝑟𝑎𝑖𝑛

and, based on this sample, each dimension 𝑤𝑑 of an attribute
weight vector 𝑤 is updated according to equation 1.

𝑤𝑑 = 𝑤𝑑 + 𝑠𝑑𝐻𝑖𝑡𝑠 − 𝑠𝑑𝑀𝑖𝑠𝑠𝑒𝑠 (1)

Here, in accordance with figure 2, 𝑠𝐻𝑖𝑡𝑠 is the average simi-
larity between target 𝑖 and the 𝐾 closest consultations which
are also labeled as similar according to the definitions from
above. 𝑠𝑀𝑖𝑠𝑠𝑒𝑠 is the average similarity between target 𝑖 and
the 𝐾 closest consultations which are labeled as dissimi-
lar. As the attribute weight vector is initialized with 0, at-
tributes whose weights become negative are assumed to be
irrelevant or unfavourable and are neglected when comput-
ing 𝑠(𝑥𝑡𝑒𝑠𝑡𝑛 , 𝑥𝑡𝑟𝑎𝑖𝑛𝑘 ). The optimal free parameters, namely the
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Fig. 2: Neighboring consultation representations 𝑥𝑡𝑟𝑎𝑖𝑛
𝑘 of 𝑥𝑡𝑟𝑎𝑖𝑛

𝑛

with same treatment applied and same outcome (> 0.5) are con-
sidered as similar (grey) and vice versa (white). For consultations
associated with differing treatment no information about similarity
is available (𝑎54). LMNN intents to cause the target sample 𝑥𝑡𝑟𝑎𝑖𝑛

𝑖

to be surrounded by samples of the same class while being sepa-
rated from samples of different classes.

neighborhood size 𝐾 and the number of iterations are deter-
mined with cross validation.

3.3 Metric Learning

Metric learning based algorithms assume that not only im-
portance of the individual attributes but also the multivari-
ate distribution of the data as well as correlations among at-
tributes have crucial impact on the similarity computation and
hence impact the outcome estimation. Here, as baseline met-
ric the Euclidean distance is employed to derive similarity be-
tween the rescaled consultation representations. Mahalanobis
distance additionally considers the distribution of the data by
measuring distance in standard deviations along the principal
components of the data when computing Euclidean distance.

𝑑(𝑥𝑡𝑟𝑎𝑖𝑛𝑛 , 𝑥𝑡𝑟𝑎𝑖𝑛𝑘 ) = (𝑥𝑡𝑟𝑎𝑖𝑛𝑛 − 𝑥𝑡𝑟𝑎𝑖𝑛𝑘 )⊤M(𝑥𝑡𝑟𝑎𝑖𝑛𝑛 − 𝑥𝑡𝑟𝑎𝑖𝑛𝑘 )

(2)
However, instead of employing the inverse covariance matrix
as global transformation M, generalized Mahalanobis met-
rics can incorporate additional constraints. The Large Margin
Nearest Neighbor (LMNN) algorithm proposed by [5] learns
such a generalized Mahalanobis metric and is especially in-
tended for neighborhood-based classification algorithms. The
overall intention of the LMNN approach is to learn M such-
like that it causes the target sample 𝑖 to be surrounded by
samples 𝑘 of the same class while being separated from sam-
ples of different classes as pictured in figure 2. The loss func-
tion, which is optimized to learn M, consists of two compet-
ing objectives 𝜖𝑝𝑢𝑙𝑙 and 𝜖𝑝𝑢𝑠ℎ whose relative impact is con-

trolled using a meta parameter 𝜈. Firstly, large average dis-
tances 𝑑(𝑥𝑡𝑟𝑎𝑖𝑛𝑖 , 𝑥𝑡𝑟𝑎𝑖𝑛𝑘 ) between 𝑥𝑡𝑟𝑎𝑖𝑛𝑖 and the 𝐾 closest
consultation representations 𝑥𝑡𝑟𝑎𝑖𝑛𝑘 labeled as similar, i.e. the
target neighbors, are penalized according to equation 3.

𝜖𝑝𝑢𝑙𝑙(M) =
∑︁
𝑖,𝑘

𝑑(𝑥𝑡𝑟𝑎𝑖𝑛𝑖 , 𝑥𝑡𝑟𝑎𝑖𝑛𝑘 ) (3)

Secondly, small distances between 𝑖 and consultations which
are labeled as dissimilar and which invade the perimeter (plus
a unit margin) established by the target neighbors, are penal-
ized according to equation 4. The hinge loss [𝑧]+ = 𝑚𝑎𝑥(𝑧, 0)

ensures that only invading consultations contribute to the loss
function.

𝜖𝑝𝑢𝑠ℎ(M) =
∑︁
𝑖,𝑘,𝑙

[𝑑(𝑥𝑡𝑟𝑎𝑖𝑛𝑖 , 𝑥𝑡𝑟𝑎𝑖𝑛𝑘 ) + 1− 𝑑(𝑥𝑡𝑟𝑎𝑖𝑛𝑖 , 𝑥𝑡𝑟𝑎𝑖𝑛𝑙 )]+

(4)
Analogously to the RBA, free parameters such as the neigh-
borhood size 𝐾, impact ratio of the two competing objectives
𝜈, and the learning rate 𝜇 need to be determined.

4 Evaluation and Results

4.1 Nested Cross Validation

As the consultations of the individual patients cannot be re-
garded to be independent (i.i.d.), a patient-wise evaluation
scheme is applied in this work. Hence, to make most of the
available data and to ideally provide an unbiased estimate
of the true generalization error a nested cross-validation ap-
proach is applied for model selection and evaluation. The outer
loop (outer cv) implements a leave-one-patient-out cross val-
idation which in each iteration holds out all consultation of
one test patient 𝑝 for evaluation. The inner loop implements a
5-fold cross-validation (inner cv) including the remaining pa-
tients’ consultations for model selection. To avoid bias due to
sample dependencies, also within the inner loop consultations
from the same patient never enter different folds. Within this
inner loop, the cv performance is calculated for all possible
model variants (grid search) and the best performing model
parameters are selected. Finally, the RMSE is computed be-
tween predicted and actually observed outcome for the hold
out consultations of 𝑝 using all the remaining patients’ consul-
tations to compute the outcome estimates.

4.2 Outcome Estimate Accuracy

Figure 3 shows the two baseline metrics Gower coefficient
and Euclidean distance as well as the best performing vari-



4 F. Gräßer et al., Neighborhood Optimization for Therapy Decision Support

0 20 40 60 80 100
0.1

0.15

0.2

0.25

k

R
M

SE

Fig. 3: Mean and value range of the cross-validation RMSE be-
tween estimated and observed outcome comparing the two base-
line metrics Gower coefficient ( ) and Euclidean distance
( ) and the two optimization strategies RBA ( ) and LMNN
( ), respectively. RMSE is computed for a neighborhood size
range 𝐾 ∈ [1, 100].

ant of each of the proposed neighborhood optimization ap-
proaches, respectively. Regarding attribute weighting (RBA),
the best performance was obtained at a local neighborhood
𝐾𝑅𝐵𝐴 = 15 and iterating once over each training consul-
tation. Regarding the metric learning approach (LMNN), the
best performance was obtained with a local neighborhood size
𝐾𝐿𝑀𝑁𝑁 = 10. Furthermore, the inner cv yields best results
for setting the impact ratio of the two competing objectives as
𝜈 = 0.5, and the learning rate 𝜇 = 0.001. For each method,
the average inner cv results for all test patients 𝑝 and over a
range of included nearest neighbors 𝐾 = [1, 100] is shown.
As can be seen, the RMSEs vary among test partitions. When
choosing the neighborhood size 𝐾 it must be considered that
RMSE can only be computed if there is any overlap of ther-
apies applied in the test consultation and in the therapy his-
tory of incorporated neighbors which is not always given for
small 𝐾. Therefore, a lower boundary for the selected neigh-
borhood size 𝐾 ≥ 10 is defined which none of the found
𝐾 fall below. The outer cv results (table 1), however, do not
show the same performance. Two opposing phenomena can be
observed. Firstly, in comparison with the inner cv, within the
outer loop there is a larger training data set to select the most
similar consultations from, which results in overall better per-
forming baseline models. Secondly, as the optimized similarity
functions are learned on the entire training folds, the functions
are subject to overfitting and the inner cv results may be bi-
ased.

Tab. 1: Mean and standard deviation of the outer cv results eval-
uating each test patient 𝑝 by applying the best performing model
parameters determined in the inner cv.

Method RMSE Method RMSE

Gower 0.1379 (0.1069) Euclidean 0.1347 (0.1083)
RBA 0.1336 (0.1112) LMNN 0.1410 (0.1209)

5 Conclusion

Generally, the neighborhood-based CF approach for therapy
recommendation allows to estimate therapy outcome which
can be utilized to provide decision support. Inspection of this
neighbourhood can serve as a basis for explaining and inter-
preting recommendations. The inner cross validation results
show that the estimation of the outcome score varies depend-
ing on the method employed. Utilizing data type dependent
functions for computing distance or similarity as done by the
Gower coefficient proves to be beneficial in comparison with
Euclidean distance. This approach can be further improved by
assigning appropriate weights to attributes. Learning a trans-
formation matrix 𝑀 which, besides only scaling individual at-
tributes is also capable of rotating the basis of the consultation
representations outperforms the attribute weighting approach.
However, attribute weighting bears, in contrast to the LMNN
algorithm, the additional potential to reveal insights into de-
termining factors regarding outcome and, equally to the Gower
coefficient, is applicable to representations with missing values
which is a pervasive challenge in the medical domain. Never-
theless, the differences in the inner and outer cv results show
that the limited data set in combination with the applied eval-
uation strategy causes the inner evaluation loop to be biased
and doesn’t provide a reliable indicator for model selection.
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