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1. Introduction

To this day, sepsis exhibits a high mortality [1–3]. The multi-
factorial characteristic of the disease makes early diagnosis a challen-
ging task for physicians. Additionally, the definition of sepsis exhibits a
low specificity resulting in many patients that are wrongly identified as
manifesting sepsis. In 1991, the first definition of sepsis and its different
severity levels - severe sepsis and septic shock - was developed [4]. This
definition was extended in 2001 to facilitate the bedside diagnosis of
sepsis [5]. Finally, in 2016 the whole definition was renewed in order to
clarify the state of sepsis and therefore to facilitate earlier recognition
of sepsis [6]. Nevertheless, the definition of 2016 is criticized for its
potential of leading to higher mortality due to the downgrading of the
sepsis definition to infection and severe sepsis to sepsis [7,8]. In our
opinion, this definition could actually lead to delayed identification of
health deterioration as the new definition of the term sepsis defines a

more critical physiological status than before. With respect to this, we
assume predicting sepsis with the first definition to be more challenging
than with the latest one. Therefore, we use the first definition within
this work, defining sepsis as the presence of the systemic inflammatory
response syndrome (SIRS) and an infection at the same time (see Fig. 1).
The database we use for our retrospective analysis, the Medical In-
formation Mart for Intensive Care (MIMIC) III database [9], was re-
corded between 2001 and 2012.

Sepsis prediction is highly relevant though complicated, mostly due
to a low specificity of usable physiological parameters. Several machine
learning approaches were proposed in the literature which use vital
signs to identify characteristic patterns leading to sepsis. Once identi-
fied, these patterns can then be used to predict sepsis onset. In 2016,
Calvert et al. introduced the so called InSight algorithm. InSight uses 9
parameters - 8 routine vital signs and patient age [10]. InSight was
evaluated with 1394 extracted admissions from the MIMIC II database
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[11]. A deep learning approach was applied by Kam et al. [12] for a
similar data set as proposed by Calvert et al. [10]. Desautels et al. ap-
plied a modified version of InSight to the MIMIC III database [13]. In
this case, 22853 admissions were extracted from the database. Again, in
2018 Mao et al. introduced a revised version of InSight [14]. Nemati
et al. [15] and Shashikumar et al. [16] as well used a machine learning
approach to predict sepsis onset using the sepsis definition from 2016.
Table 1 summarizes the results from previous works.

Previous works in most cases do not account particularly for tem-
poral developments. In this contribution we propose a recurrent neural
network to exploit such information and compare it to the Insight al-
gorithm. InSight is one of the first developed machine learning algo-
rithms for the prediction of sepsis onset. It is well described and uses the
first sepsis definition. We evaluate the machine learning approach using
roughly 30000 admissions extracted from the MIMIC III database.
Hence, the underlying population is considered to be more re-
presentative than the one used by Calvert et al. We measure the per-
formance by the area under the receiver operating characteristic
(AUROC) and calculate the specificity and sensitivity for chosen values.
Additionally, we investigate the impact of the length of the look back,
i.e. the length of the sequence of values used for sepsis onset prediction.
We also investigate the implementation of the gold standard proposed
by Calvert et al.

2. Methodology

We propose a recurrent neural network based approach for the
prediction of sepsis onset. As the goal is to distinguish patients who
obtained sepsis at any point in time during their stay in the intensive
care unit from those who did not, we defined two classes: the sepsis-class
and non-sepsis-class. The point in time from where sepsis is to be pre-
dicted is defined by the difference of sepsis onset and the prediction time
(see Fig. 2).

2.1. Gold standard and definition of sepsis onset

We defined the gold standard as proposed by Calvert et al. [10]. A
graphical illustration is shown in Fig. 3. The gold standard consists of
two criteria. The first one determines if the patient manifested sepsis.
This is identified by the international classification of disease (ICD)
codes, delivered by the MIMIC III database. Additionally, a second
criterion is necessary to determine the point in time of the sepsis di-
agnoses, as the aim is to predict the sepsis onset. Hence, in this work we
determine the sepsis onset by the related ICD-Codes and the 5-h-SIRS-
interval. We provide a descriptive example in Fig. 2 where the SIRS can
be confirmed for at least 5 h, as more than 1 parameter is higher than
the threshold (see Fig. 1). Therefore, sepsis onset occurs at the 119th
hour. Here, a difficulty can be observed: the sepsis onset depends on the
used quantity of interpolations. This fact is not mentioned in previous
papers. Here, we investigate the different quantities of accepted inter-
polations as they have a large impact on the point in time of the de-
tection of sepsis onset (see section 4).

2.2. Data collections and inclusion criteria

The MIMIC III database was recorded between 2001 and 2012, in
the Beth Israel Deaconess Medical Center in Boston, Massachusetts. We
use the most recent Version (v1.4) for this work. The database contains
58976 admissions of 46520 patients. The criteria shown in Fig. 4 were
applied to filter out patients showing a sufficient minimum amount of
collected data. The composition of the final data collections are pre-
sented in Table 2. As we evaluated 6 different quantities of interpola-
tions (0/1/2/3/4/5) for the detection of sepsis onset and 3 different
prediction times (3/6/12 h) we created 18 different data collections.
The associated quantities of admissions are encoded with Y2/X2.

2.3. Extracted parameters from the MIMIC III database and data
preprocessing

The parameters that we extracted from the database were chosen
based on the paper of Calvert et al. [10] and the SIRS parameters (see
Fig. 1). For the purpose of reproducibility, we provide the ITEMIDs,
which indicate the underlying measurement from the MIMIC III data-
base in Table 3.

We calculated the mean value for every 1-h-interval for each ex-
tracted parameter. We use two different strategies for the imputation of
missing values. For the implementation of the gold standard linear in-
terpolation and “carry forward/backward” extrapolation is used - ex-
trapolating the last or first available value forward or backwards, re-
spectively. Only "carry forward" interpolation and extrapolation was
performed for the classification task.

2.4. Evaluation strategy

We used 4-fold-stratified-cross-validation to evaluate the im-
plemented method. The stratified validation method was implemented

Fig. 1. Definition of sepsis from Bone et al. [4] which is used in this paper.

Table 1
Summary of the results from related works on the prediction of sepsis onset; for explanation of the prediction time see Fig. 2; the sepsis definitions from 1991, 2001
and 2016 are indicated as I, II and III, respectively; the first two definitions are considered to be essentially equivalent (see section 1); abbreviations: Sensitivity
(sens.), specificity (spec.).

Author(s) Number of subjects (name of database/) Sepsis definition Length of look back in hours Prediction time in hours AUROC Sens. Spec.

Calvert et al. [10] 1394 (MIMIC II) I/II 5 h. 3 h. 0.92 0.90 0.81
Mao et al. [14] 90353 (Dataset from University of San Francisco

(UCSF))
I/II 3 h. 0 h. 0.84 0.80 0.75

Kam et al. [12] approx. 6362 (MIMIC II) I/II 5 h. 3 h. 0.93 0.91 0.94
Desautels et al. [13] 22853 (MIMIC III) III 2 h. 4 h. 0.74 0.80 0.54
Nemati et al. [15] approx. 69000 (Emory Cohort and MIMIC III) III 6 h. 4 h. 0.85 0.85 0.67
Shashikumar et al. [16] 242 (Emory affiliated hospital) III N.a. 4 h. 0.78 0.85 0.55
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to take the different class proportions into account. For the training
procedure of the RNN, the training data was additionally split into
training and validation data resulting in 9

16
training data, 3

16
validation

data and 1
4
test data for each of the four cross-validation runs.

As we evaluate the quantity of interpolations for the detection of

sepsis onset (0/1/2/3/4/5), the prediction time (3/6/12 h) and the
length of the look back (5/10/15/20 h) 72 cycles of 4-fold-cross-vali-
dation were performed.

The extraction of the look back for the sepsis-class is shown in Fig. 2.
For the non-sepsis-class a sequence with the length according to the look

Fig. 2. Patient with sepsis onset at the 119th hour of his/her ICU stay; The look back is the sequence of values that is used to predict if there will occur a sepsis onset
or not - hence, if a specific look back is classified as belonging to the sepsis-class or non-sepsis-class; we used 5/10/15/20 h of look back; the prediction time represents
the duration between sepsis onset and the latest values of the look back - here 3 h; we evaluated 3/6/12 h for the prediction time.
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back is randomly picked from the whole duration of the admission. We
do this random selection once for each non-sepsis-class admission.

2.5. Implementation of the InSight algorithm

To rank the results of the developed classifier in this paper, we
implemented the InSight algorithm introduced by Calvert et al. [10].
This algorithm extracts 101 features from the look back.

For the extracted look back of each admission, the mean (Mi) and
the difference (Di), between the first and the last value of each para-
meter of the look back, is extracted. The features then consist of the
conditional probabilities =P s M( 1| )M ii , =P s D( 1| )D ii , =P s D D( 1| , )D i jij

and =P s D D D( 1| , , )D i j kijk , whereby the indices i j k, , represent the
parameters and =s 1 expresses the fact that the observation leads to
sepsis. Hence, the features are probabilities to suffer from sepsis ac-
cording to the found value of a parameter or parameter combination.
PMi is calculated for all the 9 parameters (see Table 3), whereas PDi, PDij
and PDijk are calculated for all parameters except the patient age. PDij
and PDijk take combinations of different parameters, and therefore
correlations between each of them, into account. Thus, P9 Mi values, P8 Di

values, P28 Dij values and P56 Dijk values exist.
For each look back, a score is calculated by

∑ ∑ ∑ ∑= + + +
∈ ∈ ∈ ∈

Score a P b P c P d P .
i A

M
i B

D
i j C

D
i j k D

D
( , ) ( , , )

i i ij ijk
(1)

−A D allow the sums to be compactly written by representing the
several sets of features. The variables −a d are used as calibration
constants in terms of the maximization of the area under the receiver
operating characteristic (AUROC) for the training set.

To allow for the implementation of the InSight algorithm despite the
occurrence of missing values, they were replaced by the mean of the
look back of the corresponding parameter.

2.6. Implementation of the recurrent neural network

In this paper we propose a recurrent neural network (RNN) for the
prediction of sepsis onset. The aim is to better exploit time-dependent
patterns within the data that finally are followed by sepsis onset, and
thus to show that the implementation of the neural network as a sup-
port system for the clinicians is a promising approach. Although the
network exhibits a black box character, its implementation still remains
reasonable as it serves as a support system and the final decision is
made by the attending physician. Consequently, such a system is
alerting the physician if there is a remarkable deterioration of the

Fig. 3. Gold standard used by Calvert et al. [10]; In brackets: ICD-9-Codes.

Fig. 4. Admission inclusion chart; for the explanation of Y1/X1 and Y2/X2 see
sec. 2.2; for the concrete quantities of Y1/X1 and Y2/X2 see Table 2.

Table 2
Admissions according to the admission inclusion chart (see Fig. 4), the eval-
uated quantities of interpolations (Ints.) for the 5h-SIRS-interval and the pre-
diction time (PT).

Ints. Y1 X1 3hrs. PT 6hrs. PT 12hrs. PT

Y2 X2 Y2 X2 Y2 X2

0 32790 2724 31575 1509 31444 1378 31238 1172
1 33143 3077 31498 1432 31356 1290 31151 1085
2 33424 3358 31375 1309 31241 1175 31058 992
3 33708 3642 31293 1227 31136 1070 30946 880
4 33903 3837 31179 1113 31032 966 30831 765
5 33985 3919 31116 1050 30967 901 30754 688

Table 3
Extracted parameters from the MIMIC III database. The parameters marked in
green represent SIRS parameters and those marked in blue represent para-
meters used for prediction. The ITEMID represents the identification number of
a measurement in the MIMIC III database.
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patient's health condition that indicates a beginning of sepsis.
The RNN consists of 2 hidden layers with 40 neurons each. We use a

gated recurrent unit (GRU) [17,23] as the hidden layer architecture.
The network is optimized on binary cross-entropy cost function, which
represents a standard approach for dichotomous classification tasks. As
optimizer we use the so called Adam algorithm, which typically yields
solid results [18,19].

The features that we use for the RNN consist of the normalized
parameter values of each hour of the look back. The normalization is
necessary, as the activations of the neurons in the network should lie
between 0 and 1 [20], whereby an activation of 0 implies that there is
no information.

As previously mentioned, the data sets contain missing parameter
values. For the InSight algorithm, these were replaced by the mean of
each parameter. This is not necessary for the RNN, as the input data is
normalized and missing data can be padded by 0.

3. Results

Fig. 5 shows the results for the AUROC with 95% confidence in-
tervals (CI) when the detection of sepsis onset is based on no accepted
interpolations. The RNN shows an overall higher performance than the
InSight algorithm with a maximum AUROC of 0.81 (95%: 0.79–0.83)
and 0.72 (95%: 0.69–0.75), respectively. In contrast to the InSight al-
gorithm, the RNN benefits from the elongated look back. The perfor-
mance decreases with increasing prediction time for both methods.

We also computed the results for 1 to 5 accepted interpolations. In
Fig. 6 we provide the results for 5 accepted interpolations for the 5h-
SIRS-interval as the discrepancy between 0 and 5 accepted interpola-
tions is the most significant. For this setup, the InSight algorithm also
benefits from the elongated look back whereas it must be said that the
confidence intervals of the InSight results have enlarged. In addition,
the increase of the AUROC for the RNN, induced by the elongation of
the look back, is greater than for the previous case with no accepted
interpolations.

In Table 4 the results for a look back of 20 h are summarized. We

also indicate the specificity for a fixed 90% sensitivity for a better as-
sessment of the results. The specificities of the RNN are significantly
higher than for the InSight algorithm. This finding is consistent with the
computed AUROCs as the AUROC relates to sensitivity and specificity.

4. Discussion

4.1. Results evaluation and comparison

The RNN exhibits a higher AUROC compared to InSight in all
computed scenarios. This demonstrates that the application of such
networks can improve the prediction of sepsis in intensive care, and
thus potentially further reduce sepsis mortality.

We show that the performance of the RNN can be significantly in-
creased for the underlying problem if the sequences of vital signs given
to the machine learning algorithm is enlarged. We observed this effect
especially for the RNN but also for InSight.

The AUROC, sensitivity and specificity is lower compared to related
works using the same sepsis definition [10,12]. However, the amount of
data used to train, validate and test the RNN is greater and therefore we
believe our classifier to have an increased generalizability. In compar-
ison with works using a comparable amount of data but the latest sepsis
definition, our machine learning approach shows superior performance
(see Table 1 - [13,16]). Nemati et al. [15] achieved better results, al-
though it can be said that they worked with a database twice as large.
Concerning Mao et al. [14] we compare to the results for classification
of sepsis onset without the features used for the gold standard definition
as we assume these results to be more meaningful. Their method also
achieves higher performance. However, it must be said that they were
classifying sepsis onset which we assume to be an easier task compared
to a prediction as in the latter case less information is available.

Our finding of an improved prediction based on a longer look back
might strengthen the knowledge about sepsis. It seems that the symp-
toms and related vital sign patterns of sepsis appear quite early.
Machine learning algorithms are capable of detecting such complex
interdependencies between different physiological parameters.

Fig. 5. AUROC for 5/10/15/20 h of look back and 3/6/12 h prediction time and 0 accepted interpolations for the 5h-SIRS-interval.
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Further investigation on the detection of sepsis onset is a necessity.
This applies for the definition of sepsis onset used in this work but also
to the new definition from 2016. Both are partly based on physiological
parameters acquired in the laboratory at time intervals far greater than
1 h. It remains unclear how to handle missing values for the hourly
detection of sepsis onset. We suggest a linear interpolation and “carry
forward/backward” extrapolation whereas it is not exactly clear how to
determine the best amount of accepted interpolations. An additional
variation of the length of the SIRS-interval could also be investigated.

4.2. Limitations

Apart from the classifier, the data basis itself and the related im-
plementation of the gold standard affect the performance of the im-
plemented machine learning method. Here, we define the gold standard
by the two criteria shown in Fig. 3. Especially the second criterion af-
fects the detection of sepsis onset and therefore the prediction perfor-
mance. In certain cases, patients might be in a sepsis-like state over
longer periods, but “borderline” parameters violate the criterion 2 in-
termittently. Consequently, the look back itself will hold sepsis-like
parameters which will ease the prediction. This problem raises the
question if we detect the sepsis onset correctly. In Fig. 7 the proportion
of sepsis admissions with manifested sepsis onsets depending on the
point in time when they occur after admission can be observed. Ap-
parently, the discrepancy between 0 and 5 accepted interpolated SIRS-
hours (INT 0/INT 5) for the 5h-SIRS-interval is high. That means when,
for example, accepting 0 interpolated SIRS-hours, about 50% of the
sepsis cases manifested sepsis between 0 and 10 h after admission - in
contrast to about 78% when accepting 5 interpolated SIRS-hours. The
question concerning the correct sepsis onset detection is difficult to
answer, as several factors are relevant. For example, Werdan et al. [1]
state that significant discrepancies between Germany and the USA can
be observed when analyzing epidemiological data for sepsis, although
the population characteristics should be comparable. Possible reasons
could be a different quality of documentation and/or a financial in-
centive by the cost units. The MIMIC III database is recorded in one
hospital in a 11 years period. Therefore, the database itself is possibly
biased as it consists of people mostly from a specific country and region.
One general advantage of neural networks to mention in this context is
the possibility of fine-tuning them to slightly different data belonging to
the same problem. This seems to be an appropriate method to counter
such a bias but is rarely used in combination with recurrent neural
networks so far [20].

Apart from that, the black box character of the RNN can be pro-
blematic, but as we intend its implementation strictly as a support or
early warning system and not as a decision system this deficit seems

Fig. 6. AUROC for 5/10/15/20 h of look back and 3/6/12 h prediction time and 5 accepted interpolations for the 5h-SIRS-interval.

Table 4
Results for 20 h of look back for the RNN and InSight; for the calculation of the
specificity the sensitivity was fixed to 90%; 95% confidence interval (CI) with
lower and upper bound in brackets; prediction time (PT) is indicated in hours.

Computed AUROCs

PT RNN (CI) InSight (CI)

0 accepted interpolations
3 0.81 (0.79, 0.83) 0.72 (0.71, 0.74)
6 0.79 (0.77, 0.82) 0.71 (0.70, 0.71)
12 0.76 (0.73, 0.79) 0.68 (0.66, 0.69)
5 accepted interpolations
3 0.81 (0.78, 0.84) 0.72 (0.69, 0.75)
6 0.80 (0.79, 0.83) 0.72 (0.67, 0.76)
12 0.79 (0.76, 0.82) 0.71 (0.64, 0.77)

Computed Specificities in %

PT RNN (CI) InSight (CI)

0 accepted interpolations
3 46.9 (39.9, 53.9) 31.4 (30.4, 32.4)
6 45.3 (38.1, 52.6) 29.1 (26.6, 31.5)
12 38.8 (31.7, 45.8) 23.9 (21.6, 26.2)
5 accepted interpolations
3 47.0 (43.1, 50.8) 31.1 (24.8, 37.5)
6 44.9 (35.3, 54.6) 32.5 (24.4, 40.6)
12 46.3 (40.5, 52.1) 34.1 (27.4, 40.7)
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reasonable. The classification performance may not be good enough for
an implementation in clinical practice yet, because with a specificity of
47% the classifier would issue a false-alarm for roughly every second
patient in the ICU although identifying nearly all sepsis cases correctly.
This high rate of false-positive alarms potentially leads to increasing
alert fatigue what will negatively influence the acceptance of such a
classifier as a support system [21].

As we developed the proposed classifier based on the sepsis defi-
nition from Bone et al. [4] future efforts will be made for a comparison
with the latest sepsis definition from 2016 [6]. Overall, the objective of
sepsis prediction will surely benefit from the Physionet challenge in
2019 which addresses sepsis prediction based on the latest sepsis de-
finition [22].

We use the InSight algorithm proposed by Calvert et al. from 2016
[10] and therefore we do not compare our classifier to the most recent
version of InSight which is based on gradient-boosted decision trees.
We will address this lack of comparability in future works.

As the classifier is specifically trained with mostly dynamic data
acquired from the ICU, its implementation in an non-ICU environment
remains problematic. Less timely data would be available, potentially
having a negative influence on the classification performance and
leading to an increased rate of false alarms. Most importantly, the
classifier would likely alert later as a re-evaluation for the risk of sepsis
can only be done at each time when there is new data presented to the
classifier. This is a general problem in the practical implementation of
machine learning methods with dynamic data from the electronic
health record [21].

5. Conclusion

Within this study we demonstrated that a recurrent neural network

can reliably predict sepsis onset. This machine learning approach out-
performs the InSight algorithm developed by Calvert et al. [10]. Our
findings emphasize the value of temporal information and a gradual
development of sepsis. They also show that further research is necessary
to determine the correct sepsis onset detection as it varies depending on
the amount of accepted interpolations. This does not only count for the
definition of Calvert et al. related to the sepsis definition from Bone
et al. [4] but also for the definition of 2016 from Singer et al. [6] as it
also relies on laboratory measurements.
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