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Abstract— Imaging photoplethysmography (iPPG) is an in-
teresting alternative to laser speckle contrast imaging for
the analysis of spatio-temporal patterns in the cutaneous
microcirculation. Recent years have witnessed the development
of sophisticated techniques for the non-invasive extraction of
vascular-related features. These techniques, referred to as pulse
decomposition algorithms (PDA), most often involve the analysis
of photoplethysmographic waves. This study validated the use
of a multi-Gaussian (PDA) for the automatic mapping of iPPG
pulse waveforms acquired with a standard camera. We show
that iPPG-based PDA can reveal differences in skin perfusion
in response to cold stimuli. The study thus proves the potential
for morphological analyses of the iPPG pulse waveform.

I. INTRODUCTION

Camera-based photoplethysmography, commonly referred
to as imaging photoplethysmography (iPPG), is a low-
cost technique which enables the contactless spatio-temporal
analysis of the cutaneous perfusion [1]. This modality is
based on the time-varying modulation of the light reflected
at the skin interface due to the blood pulsatility produced
by the activity of the cardiac pump [2], [3], [4]. The vast
majority of works in the field of iPPG mainly focuses on
heart rate extraction [1]. However, in recent years, more
sophisticated techniques able to provide a non-invasive as-
sessment of arterial stiffness [5] and distal pulse reflection [6]
have been developed for conventional PPG. The general
concept underlying these methods is that the fluid mechanics
of the vascular system exerts an observable effect on the
characteristic shape of peripheral pulse waveforms [7]. In
this regard, pulse decomposition algorithms (PDAs) have
recently emerged as a valuable method for their accurate
reconstruction and analysis [8], [9], [10], [11]. In general,
PDAs are able to model PPG or laser Doppler flowmetry
pulse waves as a linear combination of a varying number
of basic components (e.g. normal, log-normal, gamma or
Rayleigh functions), where each secondary term is theoreti-
cally meant to reproduce a reflection wave originating from
vascular impedance inhomogeneities.
The objective of the present study was to assess the ability of
a novel multi-Gaussian PDA [12] to accurately reconstruct
iPPG waveforms and yield parameters to characterize the
cutaneous perfusion. To this end, the vasoconstrictive effect
induced by a localized cold stimulation was adopted as a test
case, in order to evaluate the sensitivity of the algorithm to
the expected attenuation of the cutaneous blood perfusion.
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II. MATERIALS AND METHODS

A. Subjects and measurement protocol

This work relied on a set of videos recorded during a
recent experimental study by Zaunseder et al. [13]. The study
aimed at assessing the capability of standard RGB cameras
to detect changes in the cutaneous microvascular perfusion,
in response to the application of a non-invasive cold (i.e.
vasoconstrictive) stimulus.
Specifically, the present analysis used videos captured from
15 healthy subjects (age: 26±6 years; M/F: 11/4) by means
of a high-speed UI-3370CP-C-HQ camera (IDS Imaging
Development Systems, Germany). The original study had
been approved by the Institutional Review Board of the
Technical University of Dresden (ID: EK168052013): all
the participants provided their informed consent prior to
the measurement sessions. The acquisitions were performed
under fluorescent ceiling illumination, with the subjects lying
supine. In detail, videos were captured at 100 fps, with a
420x320 pixel image resolution and a color depth of 12 bit,
at an approximate distance of 80 cm, so as to include the
face and part of the upper torso in the camera field of view.
The cold stimulus consisted in the application of an ice pack
(T< 0 ◦C) on the subjects’ forehead for 30 s. The original
experimental protocol included three successive phases of
cold stimulation, separated by time intervals where the
basal perfusion levels were restored; the final dataset was
thus comprised of 45 matched pre-cooling/post-cooling time
series of 10 s (i.e. 3 per subject), defined immediately before
and after each cold stimulus. Due to the time gap separating
the repeated stimuli, each pair was assumed to be statistically
independent in the following statistical analysis.

B. iPPG signal generation

The iPPG signals were generated from a region of interest
(ROI) centered on the subjects’ forehead, so as not to include
any disturbing elements (e.g. hair). The multi-Gaussian PDA
was applied only to the green channel of the captured videos,
as it carries the highest sensitivity to the blood pulsatility.
The captured videos were first inverted, since the intensity of
the backscattered green light is inversely related to the local
blood concentration. Then, a spatial 15x15 pixel moving
average filter was applied to improve the image SNR, fol-
lowed by a temporal 5-order IIR Butterworth low-pass filter
with cut-off frequency 3.3 Hz, introduced for suppressing
the unphysiological noisy components beyond the heart rate
range. The iPPG signal was finally obtained by averaging
the gray level intensities inside the entire ROI.
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Fig. 1. Multi-Gaussian decomposition of the iPPG pulse wave: single components (top) and general model (bottom). Red stars mark the systolic references,
whereas light blue triangles correspond to the incisura dividing the systolic and diastolic phases of each cardiac cycle (identified by the green squares). In
this example, the sixth pulse (highlighted in red) had been identified as a probable misfitted instance, and accordingly excluded from further analysis.

C. PDA for camera-based PPG

The extracted iPPG data were processed with a modified
version of a multi-Gaussian PDA recently developed for the
analysis of laser Doppler flowmetry pulse waveforms. As
thoroughly described in [12], the first detection stage of the
algorithm performs the automatic windowing of the cardiac
cycles and the identification of systolic and dicrotic markers
which are needed during the subsequent modeling of the
iPPG pulse contour (Fig. 1 top).
In detail, the PDA first identifies the local maxima of the
iPPG signal as systolic reference points (Fig. 1 top, red
stars), imposing an upper threshold of 150 bpm on the
resultant instantaneous heart rate, in order to restrict the
amount of false positive detections. Next, it searches for
any local minima between consecutive systolic peaks to
obtain a preliminary detection of the cardiac cycles to be
analyzed (Fig. 1 top, green squares): at this stage, if more
than one minimum is found, the algorithm selects the closest
detection to the systolic peak, whose amplitude difference
with respect to the absolute minimum is below 15% of ∆p,
i.e. the amplitude range between the systolic peak and the
lowest detected minimum; otherwise, the latter is kept as
end-diastolic marker.
Afterwards, the algorithm examines the accuracy of the
above detections: if the time delay between two consecutive
end-diastolic valleys is lower than 80% of the median dura-
tion of the identified cardiac cycles, then the corresponding
window is marked as “short”; next, consecutive “short”
intervals are detected, and the separating valley is deleted
together with the corresponding systolic peak (being likely
related to a secondary ripple, splitting the true cardiac cycle).

Vice versa, if the resulting cardiac cycle is longer then 180%
of the median length, a new arbitrary end-diastolic marker is
added to its center (so as to divide two cycles which had been
spuriously merged); then, the corresponding time windows
are marked so as to be excluded from further consideration.
This step is fundamental to the accurate detrending of the car-
diac pulsatility, as explained in the following. Furthermore, a
second refinement mechanism is implemented with the aim
of improving the preliminary systolic markers. In specific,
the algorithm tries to detect any local minima in the first
derivative of the iPPG signal (computed by means of a 3-
point differentiator), inside the interval between the original
peak and the instant corresponding to 20% of the cardiac
cycle duration; if such inflection points are present, the
algorithm seeks any maxima inside the above time window,
selecting as new reference the earliest peak whose amplitude
exceeds 67% of ∆p; otherwise, the earliest inflection point
above 0.2 ·∆p is selected.
Afterwards, the iPPG signal is detrended through a cubic
spline interpolation of the end-diastolic references and the
absolute minima between the refined systolic peaks (Fig.1),
in order to isolate the cardiac oscillatory component to
be modeled. At this stage, the provisional end-diastolic
markers are substituted for possible local minima, closer to
the systolic peak, if the amplitude change does not exceed
0.2 ·∆p.
Finally, a further dicrotic inflection point (Fig. 1 top, light
blue triangles), intended to identify the systolic and diastolic
phases of the waveform, is detected to the right of the systolic
peak. The technique adopted in this regard is identical to the
one reported in [12], except for marginal modifications.
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Fig. 2. Multi-Gaussian pulse decomposition algorithm: block diagram.

Following the initial detection stage, a four-component Gaus-
sian model is iteratively fitted to each identified pulse, in
order to derive a parametric representation of its wave-
form. The fitting of the iPPG data was performed with a
trust region approach for nonlinear optimization problems.
The configuration of the optimization algorithm is detailed
in [12]: in general, the initial and boundary values assigned
to the twelve free parameters of the multi-Gaussian model
are adapted to the amplitude and temporal properties of each
cardiac cycle, in order to improve the accuracy of the fitting
process; namely, the algorithm is designed so that only one
of the four Gaussian components is used for reproducing the
systolic interval to the left of the dicrotic inflection point. At
the end of the modeling stage, a series of exclusion criteria
is imposed on the identified parameters to detect residual
false cardiac cycles and, secondly, to exclude misfitted pulse
waves from further consideration [12].
Afterwards, the developed PDA performs a detailed char-
acterization of the identified waveform models, through the
following quantitative shape features:

~f =
(

a1, a2, a3, a4, ∆t1−2, ∆t1−3, ∆t1−4, SI, RI, CT
)
, (1)

where ai is the amplitude of the i th Gaussian, while ∆t1−2,
∆t1−3, and ∆t1−4 represent the relative delays of the sec-
ondary components with respect to the main systolic pulse.
Furthermore, the adopted feature vector includes the follow-
ing properties: the crest time (CT), i.e. the rise time from the
start of the cardiac cycle to the identified peak of the systolic
Gaussian; a large artery stiffness index (SI) [5], estimated by
dividing the subject’s height by the time delay between the
first systolic Gaussian and the centroid of the reconstructed
diastolic contour; and, finally, an index of peripheral vascular
tone, termed reflection index (RI) [6], computed as the ratio
of the areas under the diastolic and systolic phases of the
pulse model. Average values of these features were used to
characterize each processed time interval of the iPPG signals
(defined in Section II-A).

D. Statistical analysis

The statistical analysis was carried out with the SPSS
software (Version 21.0; IBM corp., US). Data normality was
assessed by means of a preliminary Shapiro-Wilk test: since
each feature was related to significantly non-normal distri-
butions in either the reference or cooling phases, the non-
parametric Wilcoxon signed-rank test for related samples
was selected for detecting the presence of significant effects
on the iPPG data. However, the available sample size of 45
observations limited the scope of the analysis to moderate-
to-large trends (Cohen’s d ≈ 0.4) at a significance level
α = 0.05 and power 1−β = 0.8, as assessed by means of a
post-hoc sensitivity analysis, performed with the G*Power 3
software [14] for statistical power analysis.

III. RESULTS

The quality of the multi-Gaussian model of the iPPG pulse
waveforms was inspected through the analysis of the average
coefficient of determination R2, related to each modeled
iPPG pulse and, furthermore, through a normalized goodness
of fit metric, defined for each iPPG signal as:

Gn = 1−
‖iPPG(t)−Mg(t)‖
‖iPPG(t)−〈iPPG(t)〉‖

, (2)

where Mg(t) represents the multi-Gaussian model, whereas
〈·〉 indicates time averaging. Over the available dataset of
90 iPPG time series, the algorithm achieved a mean R2 of
0.993±0.007 (±σ ) and a mean Gn equal to 0.941±0.039,
demonstrating an extremely high accuracy and reliability in
reproducing the iPPG waveforms.
The results of the statistical comparison between the time-
averaged features of the iPPG pulse wave, obtained from
matched pairs of pre-cooling and post-cooling intervals,
individually associated with a pulse detection rate > 60%
(following the application of the exclusion criteria), are
summarized in Table I. A statistically significant increase
of the CT and the relative delays ∆t1−i of the diastolic
Gaussians was detected, together with a consistent decrease
of the arterial SI. A significant decrease of the a1, a2 and a3
amplitudes was also observed; this expected effect, however,
was not mirrored by a significant alteration of the distal RI.
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TABLE I
COMPARISON OF THE IPPG WAVEFORM FEATURES,

BEFORE AND AFTER THE APPLICATION OF THE COLD STIMULUS.

FEATURE BASELINE COOLING p value
〈·〉 σ 〈·〉 σ

a1 [AU] 10.7 4.5 9.4 3.7 0.005†

a2 [AU] 6.0 2.5 5.3 2.1 0.005†

a3 [AU] 6.4 2.5 5.7 2.2 0.01†

a4 [AU] 4.5 1.7 4.1 1.5 0.122

SI [m/s] 7.0 1.5 6.4 1.1 <0.001†

RI [%] 104.1 24.4 111.3 33.3 0.509

CT [ms] 264 38 276 33 0.05†

∆t1−2 [ms] 168 40 182 34 0.006†

∆t1−3 [ms] 279 60 298 54 <0.001†

∆t1−4 [ms] 402 96 432 87 <0.001†

†: statistically significant;
〈·〉: time average.

IV. CONCLUSIONS

Collectively, the findings of the present preliminary study
support the suitability of PDAs for the automatic detection
and analysis of iPPG pulse waveforms. This is strongly
demonstrated by the goodness of fit exhibited by the four-
component Gaussian model. Furthermore, a mild modifica-
tion of the adopted amplitude and temporal features of the
iPPG pulse model (Eq.1) was detected in response to a local
cold stimulation.
Thus, the proposed technique appears to be sensitive to
the vasoconstrictive effect of this non-invasive stimulus and
might enable the contactless evaluation of the neurovascular
pathways underlying this physiological vasomotor response.
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determining factors of the arterial pulse waveform: theoretical analysis
and calculation using the 1-D formulation,” Journal of Engineering
Mathematics, vol. 77, no. 1, pp. 19–37, 2012.

[8] M. C. Baruch, D. E. R. Warburton, S. S. D. Bredin, A. Cote, D. W.
Gerdt, and C. M. Adkins, “Pulse Decomposition Analysis of the digital
arterial pulse during hemorrhage simulation,” Nonlinear Biomedical
Physics, vol. 5, no. 1, 2011.

[9] L. Wang, L. Xu, S. Feng, M. Q.-H. Meng, and K. Wang, “Multi-
gaussian fitting for pulse waveform using weighted least squares and
multi-criteria decision making method,” Computers in Biology and
Medicine, vol. 43, no. 11, pp. 1661–1672, 2013.

[10] R. Couceiro, P. Carvalho, R. Paiva, J. Henriques, I. Quintal, M. An-
tunes, J. Muehlsteff, C. Eickholt, C. Brinkmeyer, M. Kelm, et al.,
“Assessment of cardiovascular function from multi-gaussian fitting of
a finger photoplethysmogram,” Physiological Measurement, vol. 36,
no. 9, p. 1801, 2015.
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