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Abstract—Modern patient care aims for individualized so-
lutions. Current machine learning techniques, in general and
in the medical domain, typically incorporate big amounts of
data. In fact, more data contributes to the generalizability of
said techniques. However, it might conflict with the desire for
individualized solutions. Our works aim at the implementation
of individual solutions based on machine learning techniques.
Within this contribution, we investigate the potential benefit of
individualized classifiers in the context of automatic sleep staging
using cardiorespiratory features.

To that end, we performed sleep stage classification using
237 records of the Sleep Heart Health Study. For each patient,
we trained an ensemble classifier that is based on a subset of
the available patients. Such subsets of varying size were chosen
by a modified version of sequential forward floating selection.
Our results show that the individualized classifier improves
classification compared to a classifier that uses all available
patients by 30% (improvement in Cohen’s kappa coefficient (κ)
of 0.15 from 0.46 to 0.61). On average the subset used for training
thereby includes five patients.

The presented contribution clearly depicts the potential of
an individualized classification approach. Based on the current
results, future works will try to establish metrics that can identify
the most appropriate training subset in an unsupervised way.

Index Terms—sleep stage classification, automatic sleep stag-
ing, individualized classifier, heart rate variability, respiration

I. INTRODUCTION

To account for individual patients’ characteristics and pa-
tients’ backgrounds, modern patient care aims for individual-
ized solutions. Individualization equally affects both, diagnosis
and therapy. Accurate classification or prediction, respectively,
are essential tasks for diagnosis and to guide therapy. Machine
learning techniques become more and more popular for such
tasks even in the medical domain. A basic taxonomy on ma-
chine learning methods distinguishes model-based approaches
and instance-based approaches. Model-based approaches use
training instances to construct an explicit description of a target

function. This description maps data to a target value, i.e.
assigns a class to a query instance. Instance-based learning
methods evaluate the similarity between training instances and
the query instance to find the target function value for the
query instance [1].

Though instance-based methods inherently incorporate indi-
vidualization by their function principle, in many cases model-
based approaches outperform instance-based methods in terms
of classification accuracy and computational efficiency [2].
Moreover, both approaches typically exploit large datasets to
estimate the target function or do comparisons, respectively.
In fact, more training data allows for a better generalization
and, consequently, leads to better results regarding the mean
classification accuracy. However, concerning an individual
patient, a specifically trained classifier might lead to better
results [3] and the common concept of large training sets
opposes the idea of individualization.

This paper investigates the potential of adjusting the train-
ing data for model-based classifiers to yield individualized
classifiers. Figure 1 provides a problem formulation. As an
exemplary application, this work directs at sleep stage clas-
sification. Conventionally, sleep staging is done by medical
experts based on polysomnographic data, most importantly
based on the electroencephalogram, electromyogram and elec-
trooculogram [4]. The recording of such signals requires elec-
trodes on the scalp and face, which substantially interfere with
patients’ comfort and normal sleep. Current research focuses
on alternative ways for sleep stage classification. Among them,
heart rate variability (HRV) and respiration were used as a
basis for sleep staging [5]–[8]. Such signals can be easily
acquired, even in a non-contact way [9], [10]. Sleep stage
classification based on HRV and respiration most often makes
use of the common training concept, namely constructing a
large database and training a generalized classification model
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General:
N . . . number of patients,
Ej . . . number of epochs of patient j,
F . . . number of features,
Xj . . . features of patient j, Xj ∈ REj×F ,
Yj . . . sleep stages of patient j, Yj ∈ {W, LS, DS, REM}Ej ,
Sj . . . patient with index j, Sj = (Xj , Yj)

Sets:
S . . . Set of all patients,
Si . . . Subset of one index patient,
St . . . Training Subset,
Sr . . . Remaining Subset,

S = {S1, . . . , SN} = Si ∪ St ∪ Sr and |Si|=1,
with Si, St, Sr pairwise disjoint

Models:
Mg . . . Generalized Model trained with |St| = |S \ Si|,
Mi . . . Individualized Model trained with 0 < |St| < |S|

Fig. 1. Explanation of subsets used for classification. This contribution investigates if there is a subset St that optimizes the classification for a single patient
(called index patient).

on it. To evaluate the potential of an individualized classifier,
we compare this common concept of training to an approach
which forms an individual training subset by a sequential
floating search.

The remainder of the work is structured as follows. Sec-
tion II details the used data and its processing. The latter
comprises preprocessing, feature extraction, classification and
evaluation including the method for training subset selection.
In section III we give quantitative results. Section IV discusses
the results and outlines the meaning of our findings regarding
the fully automated construction of individualized classifiers.
Section V closes with our conclusions.

II. METHODS

A. Data

We used data from the first part of the Sleep Heart Health
Study (SHHS) [11]. The database contains 5804 subjects. We
removed patients suffering from acute cardiovascular diseases
as well as those showing an Apnea-Hypopnea Index greater
than 5%. Such criteria left 263 recordings. Of those, 26 were
not usable because of a poor QRS detection performance
(see next section for details), leaving 237 recordings for the
analysis.

Each recording features polysomnographic data together
with reference sleep stage annotations for each epoch of 30 s
according to Rechtschaffen and Kales. We combined sleep
stages S1 and S2 to light sleep and S3 and S4 to deep sleep,
leading to 4 classes, namely wake (W), light sleep (LS),
deep sleep (DS) and REM sleep (REM). The first and the
last 5 minutes of all records were discarded because they
often contained strongly corrupted signals. Figure 2 shows the
resulting class distribution over all 237 recordings.
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Fig. 2. Distribution of sleep stages in the data.

B. Signal processing

Signal processing covered the extraction of (filtered) beat-
to-beat (RR) and breath-to-breath (BB) interval time series and
feature extraction from such time series.

Time series extraction: To extract RR intervals, we de-
tected QRS complexes from the ECG using the QRS detector
by Afonso et al. [12] in its implementation from [13]. To
account for outliers in the RR interval series introduced
by wrong detections or arrhythmic events, we filtered the
RR intervals by an iterative algorithm according to [14].
Briefly, the iterative method always considers three adjacent
RR intervals, calculates a regression between the two outer
ones and estimates the central one. The central RR interval is
regarded as an outlier if its deviation from the estimated value
exceeds 15%. Within each iteration, the algorithm considers
all available RR intervals and removes outliers before the next
iteration. The algorithm stops if no more outliers are present.
The filtered RR series served as input to the calculation of
HRV features. We discarded records if more than 25% of

                                                                                              

                                                                                                                                          



initially found RR intervals were removed by the adaptive
filter. If the number of filtered RR intervals was less than
d · 70 bpm

2 or more than d · 70 bpm
0.5 (with d the length of

the recording in seconds), the respective record was also
discarded. Both criteria account for irregular RR intervals,
which are likely to hinder a meaningful HRV analysis. In total
26 of 263 recordings were removed based on that criteria.

To extract the BB intervals, single respiratory cycles were
detected in the respiration signal by the method respdetect
provided in [13]. The BB interval time series served directly
as input to the feature extraction without further processing or
exclusion criteria.

Feature extraction: Our feature extraction is based on
a sliding window approach at a step width of 30 s between
analysis time instants ta (which allows to score sleep stages
each 30 s). For each ta, we considered the filtered RR intervals
and BB intervals over windows of length tw 30 s, 90 s and
180 s centered on the current time instant ta1.

From each window, we derived four common HRV fea-
tures [15], namely the average RR interval, the normalized
high and low frequency powers (PLFnu, PHFnu) as well as
the power in the very low frequency range PV LF normalized
to the average RR. The calculation was done using the
BiosigToolbox [13]. We employed a regression model to yield
an estimate of the power spectral density and determined said
features from it. In addition to those features, which we further
denote as raw features, we calculated so-called ∆-features
for each raw feature. These ∆-features refer to the difference
between a feature’s value at the time ta and its value at time
ta− tw

2 or ta− tw, respectively. ∆-features thus capture linear
trends in the used features. If the number of detected RR
intervals in one of the windows belonging to a time instant
ta was less than tw · 70 bpm

2 or larger than tw · 70 bpm
0.5 (with

tw in seconds), no HRV features were calculated but the last
calculated features were reused.

The respiration was assessed by two raw features, namely
the mean respiratory interval and the standard deviation of
respiratory cycles normalized to the mean interval. Again, we
calculated ∆-features the same way we did for HRV features.
If the number of detected respiratory cycles within a window
fell below four, no respiration features were calculated but the
last calculated features were reused.

As a last feature, we used the time index of the current
window to indicate the time of the night. Overall, the proce-
dure yields 49 features (4 raw HRV features per time window,
3 time windows, 2 ∆-features for each raw feature; 2 raw
respiratory features per time window, 2 time windows, 2 ∆-
features for each raw feature; 1 time index feature).

C. Used Classifiers

As classifiers, we used Random Forests (RF) and k-Nearest
Neighbors (kNN). RF is a model-based approach that uses
decision trees to create an ensemble classifier. It combines
bagging and feature subset selection in order to yield diversity

1Respiration is considered over 90 s and 180 s only

over the ensemble. Our RF was trained with 30 trees by
fitcensemble from MATLAB’s Statistics and Machine
Learning Toolbox. The k-Nearest Neighbors algorithm is an
instance-based classifier. It compares the epoch to be classified
to all single epochs in the training set. It assigns a class based
on the k most similar epochs’ majority class. We used the
kNN implementation fitcknn by MATLAB’s Statistics and
Machine Learning Toolbox and evaluated the performance for
different k.

D. Evaluation strategy

To evaluate the performance of individualized models, we
performed a leave one out cross validation, so that each patient
Sj was index patient once, i.e. member of the subset Si (see
figure 1 for the used notation). For each subject, we computed
a generalized model using RF and kNN (denoted as gRF
and gkNN) and the individualized model using RF (denoted
as iRF). The comparison was done based on Cohen’s kappa
coefficient (κ).

Generalized Model: For the generalized model, all sub-
jects except the index patient were used for training, i. e.
Sr = ∅ and St = S \ Si.

Individualized Model: The individualized model assumes
that not all subjects in S hold valuable information to establish
a model for an index patient. Accordingly, there should exist
an individualized training subset St that significantly improves
classification quality compared to the generalized model. To
prove this hypothesis is the central goal of this contribution.

We sought the individualized training subset by a modi-
fied sequential forward floating search (SFFS) approach as
described in algorithm 1. SFFS typically is used to select a
subset of features which optimize the classification accuracy.
To that end, SFFS iteratively adds and removes features while
optimizing a criterion function. From this wrapper function,
the concept of feature selection can readily be transferred to
select a subset of subjects. In contrast to the well known SFFS
by Pudil et al. [16], we did not try to find an optimal subset for
each subset size but applied a heuristic to yield the locally best
subset with fewest training subjects. Therefore, the algorithm
only adds or removes subjects that improve the classification
result independent of the subset size, i. e. always compared
to the last best subset. The search stops as soon as adding
and removing any subject does not improve the classification
result. For computational reasons, we restricted the maximum
number of subjects to ten, i.e. the search was also stopped
when the training subset comprised ten patients.

Evaluation measure: We evaluate the results with Co-
hen’s κ [17] for each index patient. κ is calculated as:

κ =
po − pe
1− pe

(1)

where po denotes the proportion of correct classifications
and pe denotes the proportion of correct classifications that
is expected by chance. κ of 0 is the expected result for
guessing the classes without previous knowledge, whereas κ
of 1 constitutes a perfect classifier as described in Table I.

                                                                                              

                                                                                                                                          



TABLE I
INTERPRETATION OF κ [18]

κ Classification quality
< 0 worse than chance

0.01− 0.20 slight
0.21− 0.40 fair
0.41− 0.60 moderate
0.61− 0.80 substantial
0.81− 0.99 almost perfect

Algorithm 1 SFFS, notation according to figure 1
1: K = NaN( |S|, 1 )
2: for Sn in S do
3: Si = {Sn}
4: St = ∅
5: Sr = S \ {Sn}
6: kappa max = 0
7: R = NaN( |Sr|, 1 )
8: for Sj in Sr do
9: Stemp = St ∪ {Sj}

10: M = model( Stemp )
11: Rj = kappa( M.predict( Si ) )
12: end for
13: jm = index of max(R)
14: if Rjm > kappa max then
15: kappa max = Rjm

16: S = Sj ∈ Sr
17: St = St ∪ {S}
18: Sr = Sr \ {S}
19: while 1 do
20: R = NaN( |St|, 1 )
21: for Sj in St do
22: Stemp = St \ {Sj}
23: M = model( Stemp )
24: Rj = kappa( M.predict( Si ) )
25: end for
26: jm = index of max(R)
27: if Rjm > kappa max then
28: kappa max = Rjm

29: S = Sj ∈ St
30: St = St \ {S}
31: Sr = Sr ∪ {S}
32: else
33: break
34: end if
35: end while
36: else
37: Kn = kappa max
38: end if
39: end for

III. RESULTS

Figure 3 shows the results for the different classifiers. For
gRF, a mean κ of 0.46 is achieved with a standard deviation
of 0.11. For gkNN, k equal to 25 (see figure 4) yields the best
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Fig. 3. κ distribution for different classifiers.

0 10 20 30 40

0.28

0.3

0.32

0.34

0.36

k

κ

Fig. 4. Mean κ of gkNN for different number of epochs k.
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Fig. 5. Distribution of found training subset sizes
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Fig. 6. κ results against size of training subset for iRF.
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Fig. 7. Hypnogram of patient 193 from different classifiers.
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Fig. 8. Hypnogram of patient 35 from different classifiers.

mean κ of 0.35 with a standard deviation of 0.11. In contrast,
the resulting mean κ of iRF is 0.61 with a standard deviation
of 0.09.

While |St| is 236 for both gRF and gkNN, the mean training
subset size of iRF is only five patients (see figure 5).

Figure 6 shows that for |St| between 3 and 10, the median
κ is consistently greater than 0.57.

The four hypnograms in figure 7 are for the same night of
one patient. The record exemplarily illustrates the effect of
an increase in κ by 0.15, which iRF yields averaged over all
records. In this example, the iRF classifier is the most stable
in detecting the light sleep from hours 5.5 to 7 and the only
one not to wrongly detect deep sleep from hour 4 to 5.

An even wider range of different classification qualities

is displayed in figure 8 and underlines the potential of the
proposed approach. A κ of 0.79 is an exceptionally good
result for the iRF. Even though there are some problems with
detecting the REM phase at hour 4 and the wake phase from
hours 5 to 6, the similarity between the iRF hypnogram and
the annotation is striking.

IV. DISCUSSION

Interpretation: Our results show that an individualized
training subset can distinctly improve classification results
over a larger training set (we yield an improvement of more
than 30%). We found subset sizes smaller than ten being large
enough to meet the stopping criterion and improve the results
for almost all patients. As the results for |St| of size one

                                                                                              

                                                                                                                                          



and two are apparently worse than for larger subset sizes (see
figure 6), we assume that for such patients no more appropriate
training patients were available.

Even in terms of absolute values, our results are remarkable.
For gRF, the results comply well with other works that make
use of HRV and respiration to classify sleep stages. Such
works also yield κ in the range up to 0.5 [5]–[8] (note
that HRV and respiration cannot yield an accuracy as high
as electroencephalographic features can yield). iRF, however,
yields a classification accuracy beyond what is obtained by
other works. Moreover, regarding the absolute classification
accuracy, we assume the individualized classifier to bear more
potential: compared to other works in the field, the used
database of 237 patients is large. However, the individualized
classifier relies on identifying matching training subjects.
There are no design rules on minimum database sizes, but
a larger database naturally will provide a better base for the
individualization as pursued here. Generalized classifiers, in
turn, are likely to saturate in their classification accuracy so
that increasing the database size will have a smaller effect.

Limitations: In a way, we overfit the training subset to
each index patient, because we use classification accuracy
on the index patients to guide the subset selection. Conse-
quently, the found κ might overestimate the true obtainable
performance. However, first, we do not use the index patients
features, which would mean a higher risk of overfitting.
Second, the found improvement of 30% compared to the gen-
eral classifier is substantial. We doubt that overfitting would
allow such fundamental improvement. Third, we modified the
original SFFS algorithm in order to stop the selection imme-
diately if no single subject improves the results. According
to SFFS’s original description, adding subjects even if they
do not improve the results instantaneously would be possible,
which would promote overfitting. Fourth, frequent subset sizes
of 1 and 2 could hint at overfitting. However, as figure 5 shows,
such subset sizes rarely occur and yield poor results. The found
sizes, in turn, seem to be of reasonable size. Consequently,
our results show that individualization is possible from a small
patient set, and without training data from the individual itself.

V. CONCLUSION

The presented work proved the potential of individualized
classifiers to improve classification by using small training
subsets rather than all available data. However, at the cur-
rent state our methods can not be applied to test data in
an unsupervised fashion, i. e. this contribution focuses on
the principle benefits of an individualization. The automatic,
unsupervised creation of such training subsets for previously
unknown patients is the final goal of our work.

Future work: So far, we did not further analyze the
training subsets chosen by SFFS. This is a main task for our
future works. We will use the found training subsets to train
neighborhood algorithms, which identify individualized train-
ing subsets in an unsupervised manner. To that end, we plan
to analyze the relationship and similarity between the index

patient, its training subset and remaining patients concerning
features, distribution of sleep stages and demographics.
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