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Abstract

We study the impact of prior knowledge about invariance
for the task of heart rate estimation from face videos in the
wild (e.g. in presence of disturbing factors like rigid head
motion, talking, facial expressions and natural illumination
conditions under different scenarios). We introduce features
invariant with respect to the action of a differentiable local
group of local transformations. As result, the energy of the
blood volume signal is re-arranged in vector space with a
more concentrated distribution. The uncertainty in the fea-
ture distribution is incorporated with a model that lever-
ages the local invariance of the heart rate. During experi-
ments the method achieved strong estimation performance
of heart rate from face videos in the wild. To demonstrate
the potential of the approach it is compared against recent
algorithms on data collected to study the impact of the men-
tioned nuisance attributes. To facilitate future comparisons,
we made the code and data for reproducing the results pub-
licly available.

1. Introduction

In general, it can’t be expected to obtain clear signals

from sensors. Signals are often affected by nuisance factors

hiding the target function. This is a major drawback and

makes the analysis of processes difficult, enforcing several

constraints for real applications. One of these applications

is the task of vital parameter estimation from face videos

under arbitrary natural conditions. The signal is heavily in-

fluenced by endogenous as well as exogenous factors, like

face and head motion, illumination changes as well as spe-

cific sensor and image properties [21] and, last but not least,

human conditions itself like age and health [37].

Figure 1. Rigid and non-rigid facial motions act as nuisance factors

on the tiny blood volume changes inherently destroying the target

information of heart rate under the conventional formulation of the

problem. Utilizing classical group theory we are able to define fea-

tures invariant with respect to the action of the group of nuisance

transformations making it possible to estimate heart rate informa-

tion under everyday facial motions. As illustrated for the above

head motions, the green channel information doesn’t yield to rea-

sonable heart rate information in the frequency domain. However,

the proposed invariant feature shows a clear signal in both time

and frequency domain.

The role of physiological states has a large impact

on human state computing in computer vision, since it

holds informations about the affective nature of the human

interacting with the machine. During the last years, mea-

suring blood volume changes and heart rate measurements

from facial images became a part of top computer vision

conferences [18, 19, 26, 38]. All these contributions focus

on how to cope with motion like head pose variations and

facial expressions since any kind of motion on a specific

skin region of interest (ROI) will destroy the raw signal

in a way that no reliable information can be extracted

anymore. Besides being able to estimate vitality parameters

like heart rate and respiration, the functional survey of

wounds as well as quantification of allergic skin reaction

[3] are further applications of camera-based blood perfu-
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Figure 2. Example images of the 25 user data collection. From left

to right: Face recordings during head resting conditions, during

head rotations, during an exercise on a bicycle ergometer in a gym

and during an urban conversation.

sion analysis. Recently, prediction of emotional states,

stress [22, 30, 5], fatigue [35] and sickness [14] became

interesting new achievements in this area, pushing the

focus of this technology further towards human-machine

interaction.

In contrast to the genuine medical use-case of the technol-

ogy, in computer vision and human-machine interaction

we can’t expect any cooperative behavior of the user

without introducing lack of convenience and a reduction

of the general acceptance. Thus, there’s a demand to

produce features and models robust to nuisance factors,

still preserving the desired target information. In a more

philosophical sense, where everything seems to change just

search for what is not changing.

The main contributions of this work are

• a feature representation for the problem of estimating

heart rate using low-cost camera sensor technology in-

variant under rigid and non-rigid facial motions and

varying illumination,

• a direct connection of the proposed feature presenta-

tion to a functional mathematical formulation for the

quasi-periodic and non-stationary nature of heart rate

and

• a set of uncompressed face video recordings with refer-

ence measurements collected under resting, head mo-

tion, a bicycle ergometer scenario and during an urban

conversation.

The outline of this work is as follows. From the histori-

cal genuine up to the development of the state of the art in

computer vision, the methodology of heart rate estimation

from face videos will be reviewed. Followed by theoreti-

cal aspects, the feature and model space will be described.

Based upon an evaluation on collected data the results will

be presented and finally discussed.

2. Related Work
Photoplethysmography, short PPG, dates back to the late

first half of the 20th century, when Molitor and Kniazak

[25] recorded peripheral circulatory changes in animals. A

year later, Hertzman [15] introduced the term Photoelec-

tric Plethysmograph as ”the amplitude of volume pulse as

a measure of the blood supply of the skin”. Hertzman’s

instrumentation comprised mainly of a tungsten arc lamp

and a photomultiplier tube. An advancement to the clas-

sical PPG is the camera based PPGI (with I for Imaging)

introduced by the work of Blazek [4]. The basic principle

behind the measurement of blood volume changes in the

skin by means of PPG is the fact that hemoglobin absorbs

light much stronger at specific frequency bands than the re-

maining skin tissues. The first published visualization of

pulsatile skin perfusion patterns in the time and frequency

domain is given by Blazek [4]. Since classical signal pro-

cessing is applied mostly to extract information out of the

perfusion signals [17, 28, 40]. However later it is realized

that motion of the skin ROI [17] and micro motion of the

head due to cardiac activity [2, 23] inherently induces ar-

tifacts into the extracted signal, especially when lighting is

neither uniform nor orthogonal, canceling motion artifacts

during signal processing became an important aspect for

reliable skin blood perfusion measurements [24]. A basic

early idea of compensating the motion of the skin ROI by

optical flow methods directly in the image plane [17] is fol-

lowed by Poh et al. [28], who proposed to solve the problem

by blind source separation using Independent Component

Analysis (ICA) over the different color channels. However,

Wedekind et al. [43] compared ICA in multiple setting and

principal component analysis and showed limitations of ei-

ther transform. In fact, in case the underlying signal basis is

majoritarian Gaussian, ICA will not be able to determine a

proper de-mixing matrix and the independent components

cannot be obtained in a deterministic order [8]. A solu-

tion to this problem excluding scenarios that have periodic

movements is discussed by Macwan et al. [20]. Tarassenko

et al. [36] attempted to cope with light flicker by using an

auto-regressive modeling and pole cancellation. Haan and

Jeanne [9] and De Haan and Van Leest [10] proposed to

map the PPGI-signals by linear combination of RGB data

to a direction that is orthogonal to motion induced artifacts.

An alternative, which does not require skin-tone or pulse-

related priors in contrast to the channel mapping algorithms,

determines the spatial subspace of skin-pixels and measure

its temporal rotation for signal extraction [42]. Tulyakov et
al. [38] proposed matrix completion to jointly estimate reli-
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able regions and heart rate estimates whereby Li et al. [19]

applied an adaptive least square approach to extract robust

pulse frequencies. Both reported performance gains sim-

ilar to De Haan and Jeanne [9], however they used com-

pressed video data during their experiments, which raises

some doubts on the validity of results. Wang et al. [41] re-

ported an orthogonal behavior of skin color and motion arti-

facts but introduced a static operator for feature transforma-

tion representing results on private data. A new stochastic

model formulation was introduced by Pilz et al. [27] out-

performing Wang et al. [42], however the proposed features

based upon vector quantization seem to be a rather time con-

suming heuristic approach. All these important contribu-

tions share the problem that there exists no consensus about

an unique benchmarking criterion as well as an agreement

on suitable open data sets for fair comparison of algorithms.

3. Methodology
In pattern recognition the invariance problem is anchored

as traditional paradigm where the classification aims to be

invariant with respect to action of a group that acts on set

of features [32]. More generally, an invariant with respect

to an equivalence relation is a property that is constant on

each equivalence class [44]. Therefore, the invariance cri-

terion is a necessary condition for the generalization ability

of learning algorithms. Invariance can be regarded in the

feature and model space. For heart rate from face videos

the basic feature is usually computed over a set of pixel in-

tensities out of aligned face regions and the model space

over a set of suitable frequencies. In the following we de-

scribe features invariant with respect to the action of the Lie

group [12] of rigid transformations, the Special Euclidean

group SE(3) and a stochastic frequency representation in-

variant with respect to the quasi-periodic nature and non-

stationarity of heart rate. The model space is based upon

the previous works of Särrkä [31] and Pilz et al. [27].

The Feature Space

Regarding a common optical sensor signal

�p ∈ R
n = {R,G,B}, n = 3 (1)

as spatial expectation over a skin operator s and function of

time t

�x(t) =

∫ ∞

0

E[{�p | s(�p)}]dt (2)

we assume this multivariate observation is drawn by a nor-

mal distribution

�x(t) ∼ N (�μ, �σ2). (3)

Local invariance of blood volume changes as function of

time for each input feature �x(t) under transformations of a

differentiable local group of local transformations LT [33]

∂

∂T

∣∣
T=0

= f(LT , �x(t)) = 0 (4)

can be approximately enforced by minimizing the regular-

izer

1

l

l∑
i=1

(
∂

∂T

∣∣
T=0

f(LT , �xi))
2. (5)

For the covariance matrix of the observation

{�xi : i = 1, ..., l} (6)

with respect to the transformations LT

C :=
1

l

l∑
i=1

(
∂

∂T

∣∣
T=0

LT , xi)(
∂

∂T

∣∣
T=0

LT , xi)
� (7)

and the corresponding symmetric eigenvalue problem

CV = V Λ (8)

we find an operator P with corank k = 1 [34] for

lim
l→∞

P = I − V V � (9)

and the corresponding feature vector

�̃x = P · �x. (10)

The observation {�̃xi : i = 1, ..., l} is located on the null

space defined by the projection operator P

H = N (P ) (11)

The hyperplaneH is a linear subspace of Rn.

Fig. 3 illustrates the feature transformation step.

Figure 3. The raw features �x (red dots, determined over the head

motion image sequence illustrated in Fig.1 and centered for visu-

alization purpose) are first transformed by projecting these onto

the largest eigenvector of the covariance matrix C (blue dots) and

then rescaled (green dots). In other words, the directions of main

variance of the random vector emphasis is put on features which

are less variant under LT . The projection matrix P carries out

an orthogonal projection to the blood volume change complemen-

tary space, which is assumed to accommodate the major load of

nuisance factors not related to the target function.
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For each resulting input feature �̃x under transformations

of a differentiable local group of local transformations LR

minimizing the corresponding regularizer, according to the

principles in (4) and (5), yields to [29]

lim
l→∞

C�̃xi
−A · lim

l→0
C�̃xi

·A� = 0 (12)

with

A = lim
l→∞

C
1
2

�̃xi
· lim
l→0

C
− 1

2

�̃xi
(13)

and

b = E[{�̃xi}]− E[{A · �̃xi}] (14)

resulting to feature representation obtained by the linear

transform

�xSE(3) = A · �̃x+ b (15)

Other common convenient solutions for the estimation of

rigid transforms can be found following the works of Arun

et al. [1] and Umeyama [39].

The choice of the interval lim
l→0

plays a crucial role.

We did experiments by computing the argument of the

derivatives of the largest eigenvalue over the integral

arg(t) =

∫ 2π

0

dλ1(t)

dt
dt (16)

with respect to the symmetric eigenvalue problem

lim
l→πft

C�̃xi
V = V Λ. (17)

Figure 4. The rescaled features �̃x (green dots) are then first rotated

to the direction of the largest variance of the new covariance matrix

C�̃x, scaled and then translated to center of mass E[{�̃xi}] (blue

dots). These steps essentially represent linear transformations of

the coordinate system in order to maintain a homogeneous view

onto the feature space of blood volume changes.

The observation {�xSE(3)i : i = 1, ..., l} is be distributed

on the topological manifold

S1 = {�xSE(3) ∈ C | C ∈ H :
∥∥�xSE(3)

∥∥ = 1}, (18)

for any real number 0 ≤ c < 1 with

�xSE(3)c ∈ C (19)

�xSE(3)c = e2πjc (20)

ν�xSE(3)c
: t �→ e2πjt (21)

Fig. 4 illustrates the feature rotation.

Selecting

lim
l→∞

C�̃xi
=

⎧⎨
⎩
1 0 0
0 1 0
0 0 0

⎫⎬
⎭ (22)

enforces �xSE(3)i to be distributed on the unit circle.

The Model Space

Deterministic systems are processes producing the ex-

act output from an initial state. This behavior can be ob-

served in mathematics and physics. Particular in the future

states of such systems there’s no randomness involved. Uti-

lizing physical laws these can be described by differential

equations. In nature, especially regarding biological sys-

tems like humans, this is rarely the case. Furthermore, this

can be expressed better as random variables which may be

completely different to various times. Their different quan-

tities take values in the same space solely.

By recalling the classical mechanics of circular motion, the

deterministic system of a single harmonic oscillator yields

to a 2nd order differential equation [11]

d2cn(t)

dt2
= −(2πnf)2cn(t) (23)

with the solution

cn(t) = ancos(2πnft) + bnsin(2πnft) (24)

where the constants an and bn are set by the initial con-

ditions of the differential equation. Accounting for non-

stationary frequency as a function of time and changes in

amplitude and phase, like it is expected for PPGI signals,

essentially leads to a stochastic differential equation

d2cn(t)

dt2
= −(2πnf(t))2cn(t) + en(t) (25)

for each harmonic component. Even when the frequency is

discontinuous the signal remains continuous. Fig. 5 shows

such a stochastic oscillator with time-varying frequency and

amplitude. The stochastic state space for the resonator sig-

nal yields to

dx(t)

dt
= F0(f(t))x(t) + Le(t), (26)

c(t) = Hx(t). (27)

Interestingly, this corresponds to the kernel formalism of

a Gaussian process, where the Gaussian process is con-

structed as a solution to a mth order linear stochastic dif-

ferential equation [13]. Here, the computational complexity
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is linear, whereby the genuine kernel formalism is of cubic

nature.

Figure 5. A simulated trajectory of a stochastic oscillator with fre-

quency trace in a possible range typical for a human in resting

state.

Since the frequency is unknown, the state space depends

on an additional latent variable

dx(t)

dt
= F0(θ)x(t) + Le(t), (28)

c(t) = H(θ)x(t) (29)

such that

θ ∈ Ω = {θ1, . . . , θS} (30)

forming a Markov chain with transition matrix Π with tran-

sition probabilities

P (θit|θjt−1) = Πij . (31)

The solution is given by computing the Gaussian mixture

approximation to the joint posterior distribution of the la-

tent variables and states [6]. Pilz et al. [27] stated that slow

varying drifts can be modeled by a Wiener process, whereby

any kind of violation of the smoothness criterion yields to a

Poisson process. We didn’t consider the drift and jump case

since the feature representation based upon local group in-

variance already accounts for such behavior.

4. Experiments
We divided the experimental procedure into two phases,

a data collection and an algorithmic benchmarking.

Data

To justify the data collection effort, we state that to the

best of our knowledge other data is either private therefore

not accessible, recorded or distributed using image com-

pression techniques or doesn’t reflect multiple recordings

in order to study the specific questions concerning the men-

tioned problems that comes with the task of heart rate mea-

surement from face videos. Although Heusch et al. [16]

and Bobbia et al. [7] introduced public data for evaluating

remote heart rate measurements along with reference im-

plementation of recent algorithms, we received the video

recordings done using image compression techniques or

didn’t receive access privileges yet. Therefore we designed

scenarios ranging from controlled and easy to uncontrolled

and more difficult. We built up on the concept and user pool

of Pilz et al. [27] but re-recorded the users to archive a better

time synchronization between the camera and reference de-

vice. As result we recorded four different sessions. The first

session consists of a resting scenario where no head or fa-

cial motion is performed and the illumination is more or less

static. In the second session the users are asked to perform

head as well as facial motions but the illumination remains

static. The third session is performed during an exercise on

a bicycle ergometer in a gym where no further instructions

are given to the user. The fourth sessions is recorded dur-

ing an urban conversation including head and facial motions

as well as natural varying illumination conditions. Fig. 2

shows some example images taken from the recordings dur-

ing the different sessions. Every session is recorded over an

one minute time span, except the ergometer session which is

recorded over a 5 minute period. In total 25 users were ask

to participate resulting in an amount of 100 video record-

ings with approximately 200 min total duration; more than

three hours. The data collection consists of 20 male and 5

female in the range of 25-42 years. The majority ethnic-

ity is Caucasian. The camera device is selected as Logitech

HD C270 webcam and as reference ground truth measure-

ments we synchronized a common finger pulseoximeter, a

CMS50E PPG device, over its serial port communication

protocol. The average frame rate of the camera is set to 25

FPS and for the pulseoximeter 60 FPS. The camera video

stream is captured uncompressed with auto-exposure and

stored into an AVI container. For every captured image the

time stamp is stored too. The pulseoximeter signal is stored

together with the device’s pre-computed heart rate informa-

tion.

Evaluation

The benchmarking of the described feature and model

space is conducted against established methods. To this we

count the ICA [28] approach as source separation method,

the Spatial Subspace Rotation (SSR) [42] and the Projection

Orthogonal to Skin (POS) [41] as feature transform meth-

ods 1. We performed tests for each session respectively as

well as a separate run for the POS and the Local Group In-

variance (LGI) on the entire data set. The signal processing

procedure is selected to be equal for every approach. For

each video frame a common face finder is used to pre-select

the region of interest. A skin operator is applied onto the

region by thresholding the blue- and red-difference chroma

components. For the set of obtained RGB-pixels the ex-

pectation is computed and stored as three-dimensional time

1We also re-implemented other methods [9, 19, 38, 20], since their code

is not available. However, we obtained worse results.
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Figure 6. Comparison of a users spectrograms for the different data sessions computed with different algorithms. The rows (from top to

down) reflect a head resting session, a head rotation session, a bicycle ergometer exercise and an urban conversation. The columns (from

left to right) correspond to the reference PPG device, the green channel, the ICA source separation, the SSR, the POS and the Local Group

Invariance (LGI) method. During the resting scenario each algorithm is able to extract reasonable heart rate information. When moving

the head nearly every algorithm starts to fail. During the ergometer exercise the interference of the pedal frequency is visible over all

algorithms. Here the LGI method benefits from its model space. The urban conversation as fully uncontrolled scenario with rigid and

non-rigid facial motion along with illumination changes makes it very difficult to extract robust signals

series for further processing. Each signal obtained by the

different algorithms is band-filtered in the range between

0.5 and 2.0 Hz. We increased the upper ranger to 2.5 Hz for

the processing of the ergometer sessions. All filtered sig-

nals are then analyzed by standard Fourier based spectral

method with windows size of 256 samples and overlap of

90 percent. A maximum peak energy criterion is applied

over the spectral traces to determine the heart rate candi-

dates. The PPG signals are analyzed in the same way but

initially resampled to the camera frame rate. Correlation

coefficients are computed against the PPG reference heart

rate together with the root-mean-square error (RMSE) for

each session and algorithm respectively. For the two full

database runs correlation plots and Bland-Altman plots are

computed additionally.

Fig. 6 compares the spectrograms for a single users over

all sessions against the different algorithms given the ref-

erence measurements. Under controlled motion free condi-

tions stable performance is obtained by all algorithms. Un-

der motion scenarios it becomes more and more challeng-

ing to robustly extract the heart rate whereby under the fully

uncontrolled urban conversation most of the algorithms to

fail completely. We observed this behavior during the en-

tire evaluation. The results for each session are presented in

Table 1. During the resting scenario the LGI method per-

forms slightly worse. For all other sessions the LGI method

archives quite robust results where the others mostly start to

fail. Fig. 7 compares the estimation performance between

the POS and the LGI approach. The correlation for the POS

method is heavily affected by outliers. Although the LGI

approach results in a better statistical performance, it shows

an estimation bias of approximately 4 BPM. This also ex-

plains why the LGI method performs slightly worse during

the resting scenario.

5. Conclusions

In this work we have presented a functional approach for

the task of heart rate estimation from face videos under the

load of nuisance factors. We performed evaluation on data

collected under everyday facial motions and environmen-
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Figure 7. Correlation and Bland-Altman plots for the POS [41] (upper plots) and LGI (lower plots) method over the entire data collection.

POS archives a correlation of 0.35 with a RMSE of 21 BPM and LGI a correlation of 0.87 with a RMSE of 11 BPM. Many outliers can be

attributed to false predictions during the gym session where the heart rate is confused with the pedal frequency.

Session ICA SSR POS LGI

Resting 0.97/1.4 0.97/2.0 0.96/2.1 0.96/3.3

Rotation 0.16/10.8 0.51/7.6 0.56/5.3 0.97/2.9

Gym 0.41/16.6 0.08/18.6 0.09/23.1 0.63/13.1

Talk 0.13/23.1 0.14/15.4 0.3/12.5 0.72/4.3

Table 1. Pearson’s correlation coefficient and RMSE of prediction

for the ICA [28], the SSR [42], the POS [41] and the LGI method.

tal conditions. In contrast to classical optical and spectral

interpretation we emphasized the point of view on unsuper-

vised learning of invariant features. A stochastic represen-

tation of the heart rate’s quasi-periodical process dynamics

is obtained by recursive inference. The proposed method-

ology achieves dramatic improvements in some situations.

We experienced cases were the camera based measurements

are highly in phase with the reference system but often just

not. Therefore, the general error of prediction is still rela-

tively large. With regard to future comparisons we suggest

an agreement on a broader necessity for public challenges

on heart rate estimation from face videos.

6. Acknowledgments
We would like to thank the MedAix fitness center in

Aachen for providing the bicycle ergometers. This work

was funded, in part, by the German Federal Ministry of

Education and Research (BMBF) under grant agreement

VIVID 01|S15024 and by CanControls GmbH Aachen.

References
[1] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares

fitting of two 3-d point sets. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 9(5):698–700, 1987.

[2] N. Blanik, C. Blazek, C. Pereira, V. Blazek, and S. Leon-

hardt. Wearable photoplethysmographic sensors: Past and

present. Proc. SPIE 9034, Medical Imaging: Image Pro-
cessing, 2014.
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[17] M. Hülsbusch. A functional imaging technique for opto-

electronic assessment of skin perfusion. PhD thesis, RWTH
Aachen University, 2008.

[18] A. Lam and Y. Kuno. Robust heart rate measurement from

video using select random patches. IEEE International Con-
ference on Computer Vision and Pattern Recognition, pages

3640–3648, 2015.

[19] X. Li, J. Chen, G. Zhao, and M. Pietikinen. Remote heart

rate measurement from face videos under realistic situations.

IEEE Conference on Computer Vision and Pattern Recogni-
tion, Columbus, OH, 2014.

[20] R. Macwan, Y. Benezeth, and A. Mansouri. Remote photo-

plethysmography with constrained ica using periodicity and

chrominance constraints. BioMedical Engineering OnLine,

17(1), 2018.

[21] D. McDuff, E. B. Blackford, and J. R. Estepp. The impact

of video compression on remote cardiac pulse measurement

using imaging photoplethysmography. 12th IEEE Interna-
tional Conference on Automatic Face and Gesture Recogni-
tion, pages 63–70, 2017.

[22] D. McDuff, S. Gontarek, and R. Picard. Remote measure-

ment of cognitive stress via heart rate variability. 36th An-
nual International Conference of the IEEE Engineering in
Medicine and Biology Society, pages 2957–2960, 2014.

[23] A. Moço, S. Stuijk, and G. de Haan. Ballistocardiographic

artifacts in ppg imaging. IEEE Transactions on Biomedical
Engineering, 63(9):1804–1811, 2015.

[24] A. Moço, S. Stuijk, and G. de Haan. Motion robust ppg-

imaging through color channel mapping. Biomed. Opt. Ex-
press, 7:1737–1754, 2016.

[25] H. Molitor and M. Knaizuk. A new bloodless method for

continuous recording of peripheral change. Jour. Phar. Expr.
Ther., 27:5–16, 1936.

[26] A. Osman, J. Turcot, and R. E. Kaliouby. Supervised learn-

ing approach to remote heart rate estimation from facial

videos. 11th IEEE International Conference and Workshops
on Automatic Face and Gesture Recognition, pages 1–6,

2015.

[27] C. S. Pilz, J. Krajewski, and V. Blazek. On the diffusion pro-

cess for heart rate estimation from face videos under realistic

conditions. Pattern Recognition. GCPR 2017. Lecture Notes
in Computer Science, vol 10496. Springer, 10496:361–373,

2017.

[28] M. Poh, J. McDuff, and R. Picard. Non-contact, automated

cardiac pulse measurements using video imaging and blind

source separation. Optics Express, 18(10):10 62–10774,

2010.

[29] L. Qi, A. Parthasarathy, and A. E. Rosenberg. A fast

algorithm for stochastic matching with application to ro-

bust speaker verification. IEEE International Conference
on Acoustics, Speech, and Signal Processing, 2:1543–1546,

1997.

[30] G. Ramirez, O. Fuentes, S.Crites, M. Jimenez, and J. Or-

donez. Color analysis of facial skin: Detection of emotional

state. IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 474–479, 2014.
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