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Abstract—Objective: Novel minimum-contact vital signs
monitoring techniques like textile or capacitive electrocar-
diogram (ECG) provide new opportunities for health mon-
itoring. These techniques are sensitive to artifacts and re-
quire handling of unstable signal quality. Spatio-temporal
blind source separation (BSS) is capable of processing
suchlike multichannel signals. However, BSS’s permutation
indeterminacy requires the selection of the cardiac signal
(i.e., the component resembling the electric cardiac activ-
ity) after its separation from artifacts. This study evaluates
different concepts for solving permutation indeterminacy.
Methods: Novel automated component selection routines
based on heartbeat detections are compared with standard
concepts, as using higher order moments or frequency-
domain features, for solving permutation indeterminacy in
spatio-temporal BSS. BSS was applied to a textile and a ca-
pacitive ECG dataset of healthy subjects performing a mo-
tion protocol, and to the MIT-BIH Arrhythmia Database. The
performance of the subsequent component selection was
evaluated by means of the heartbeat detection accuracy
(ACC) using an automatically selected single component.
Results: The proposed heartbeat-detection-based selection
routines significantly outperformed the standard selectors
based on Skewness, Kurtosis, and frequency-domain fea-
tures, especially for datasets containing motion artifacts.
For arrhythmia data, beat analysis by sparse coding out-
performed simple periodicity tests of the detected heart-
beats. Conclusion: Component selection routines based on
heartbeat detections are capable of reliably selecting car-
diac signals after spatio-temporal BSS in case of severe
motion artifacts and arrhythmia. Significance: The avail-
ability of robust cardiac component selectors for solving
permutation indeterminacy facilitates the usage of spatio-
temporal BSS to extract cardiac signals in artifact-sensitive
minimum-contact vital sighs monitoring techniques.
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|. INTRODUCTION

HE telemedical management of early diagnosis and reha-

bilitation of diseases provides major opportunities for re-
organizing an increasingly expensive healthcare system. More-
over, the ambulatory monitoring of health and stress offers new
applications for monitoring people’s wellness while performing
safety-critical tasks, e.g. driving vehicles [1], [2].

Applicable ambulatory measurement techniques include dry-
contact and noncontact biopotential electrodes [3]. Electrode
implementations like textile or polymeric electrodes for wear-
able sensing or capacitive electrodes for seat-integrated sensing
through clothes have been successfully proven to record the elec-
trocardiogram (ECG) [1], [2], [4]. However, the recorded ECG
is of non-standard nature when compared to its clinical counter-
part. Moreover, the minimal-conductive measurement principle,
which allows flexible health monitoring, is also strongly affected
by movement artifacts [3]. The resulting decreased coverage and
accuracy of a single channel can be addressed by exploiting the
redundancy of a multichannel setup [4], [5].

Blind Source Separation (BSS) is a signal processing tech-
nique suitable for multichannel processing meanwhile aiming
at the separation of signal mixtures (e.g., mixtures of ECG and
distortions) into its components [6]. Whereas the standard BSS
such as Independent Component Analysis (ICA) determines
a purely spatial filter for processing multiple (spatially dis-
tributed) channels, the spatio-temporal BSS adds Finite Impulse
Response (FIR) filters to the multichannel processing by adding
a temporal dimension [7]. Spatio-temporal ICA-based on the
FastICA algorithm [6] is one realization which has shown a su-
perior performance on wearable data compared to the standard
ICA [4].

In ICA settings for biomedical signal analysis, it is likely
that the number of measured channels exceeds the number of
underlying sources [8]. This is particularly relevant for ambu-
latory multichannel recordings. Most common ICA algorithms
compute a symmetrical transformation, i.e., ensure the same
number of input and output channels [8]. Since ICA is typically
only solved up to a permutation (i.e., separated components
are available but the output is unordered which is referred to as

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/


https://orcid.org/0000-0003-0069-640X
https://orcid.org/0000-0001-6114-3142

WEDEKIND et al.: ROBUST METHODS FOR AUTOMATED SELECTION OF CARDIAC SIGNALS AFTER BLIND SOURCE SEPARATION

2249

permutation indeterminacy), the desired output component (e.g.,
the ECG component) has to be selected automatically. This se-
lection is particularly important when processing a large number
of channels as in spatio-temporal ICA, which adds time-lagged
channels during the processing [7], [9], [10].

In the context of ECG processing and ECG identification,
the permutation indeterminacy has been addressed by two ma-
jor strategies. The first strategy aims at identifying the unde-
sired components (i.e. artifacts) for exclusion, thus, it indirectly
obtains the desired ECG component. Heuristic thresholds of
second-order and higher-order statistics were used for that pur-
pose in [11] whereas components periodicity by means of auto-
correlation was exploited in [12]. Feature decision trees were
used to classify artifacts in [13]. The second strategy aims at di-
rectly identifying the desired component (i.e. the ECG). Again,
higher-order statistics have been utilized. Single channel selec-
tion by higher order moments was addressed in [4] and [14].
Multiple ECG candidates as input of a multichannel postpro-
cessing were identified by utilizing kurtosis in [15]. Kurtosis
ordering of heart activity components after ICA was used in
[16]. Other approaches used template matching for single chan-
nel selection [17]-[19] and the amplitude of detected heart-
beats [20]. A combination of both strategies, primarily sorting
out undesired BSS components and further selecting the (best)
ECG component among the residual channels, each utilizing
frequency characteristics, was proposed by our group in [10]
and [21].

Whereas the above described approaches directly measure
signal statistics and features, component selection can also be
based on more abstract signal representations. For instance, the
ECG develops a characteristic and distinct waveform (the QRS
complex) which marks the main excitation of the heart muscle
and can serve as a basis of an abstract signal representation.
After all, the periodic nature of this waveform under physi-
ological conditions offers an indirect way of identifying the
ECG component within a BSS output by assessing detections of
QRS waveforms (peaks). The maternal ECG of an abdominal
ECG recording after BSS was identified by comparing pre- and
post-BSS QRS detections [22] or the assessment of QRSs’ pe-
riodicity [23]. A simple periodicity criterion was also applied to
identify the ECG component inside the BSS output of an elec-
troencephalogram (EEG) by using QRS detections in [24]. A
novel approach for evaluation of the temporal behavior of QRS
detections by utilization of sparse coding was proposed by our
group in [25].

If a temporal reference, e.g. the time instants of QRS com-
plexes is available a priori, BSS can be applied with an additional
constraint aiming at the temporal structure of the BSS output
signal. The problem of component selection becomes obsolete.
James and Gibson [26] identified the ECG component in the
output after applying ICA to EEG by QRS time instants ex-
tracted from another simultaneously recorded signal. Lee et al.
[27] realized the identification of the maternal ECG component
from an abdominal ECG by using temporal a priori informa-
tion. In this context, the signal covering the temporal constraint
does not have to match the exact temporal behavior but should
point the algorithm in the direction of the target component [8].

However, a priori information about temporal structures is more
likely to be available in multi-diagnostic clinical settings rather
than in contact-less recording settings.

Besides the existing diversified approaches to component se-
lection, the evaluation of their actual selection performance is
rare. Identifying a robust component selector would allow pow-
erful techniques as spatio-temporal BSS to become applicable
for multichannel biosignal processing. Accordingly, this study
compares the performance of two novel automated BSS output
selection approaches that are based on the temporal assess-
ment of heartbeat (QRS) detections (proposed in its initial form
in [24] and [25]) with the use of higher order statistics and
time/frequency domain features in order to identify a single
optimal ECG component. The novel approaches to solve per-
mutation indeterminacy aim at directly identifying ECG com-
ponents in BSS outputs based on a sparse representation of each
component. The sparse representation itself, thereby, features
QRS waveforms and their temporal behavior, expressed in the
form of ‘spike trains’ typical for the spatio-temporal BSS on
ECG [4]. The performance of the algorithms for BSS output
channel selection is assessed using real ECG data of different
origin (standard ECG, textile ECG, capacitive ECG), including
recordings from both normal sinus rhythm and arrhythmia.

Il. DATA MATERIAL
A. Textile ECG Data

The textile ECG (tECG) recordings consist of data from
ten healthy subjects wearing a garment with integrated tex-
tile electrodes [4] while performing a protocol of motion and
non-motion phases (sitting, standing, sitting down, standing up,
walking, flexing chest muscles). Seven bipolar ECG leads ob-
tained from the garment (sampling rate 500 Hz) using a refer-
ence potential near the waist were processed in subsequent 10s
segments (1 s segment shift). A total of (mean =+ standard devi-
ation) 536 & 9 segments per subject were considered. Manual
annotations in a reference ECG recorded simultaneously using
conductive electrodes served as the ground truth. See Fig. 1(a)
for a data example including a large motion artifact as well as
Fig. 1(b) for an illustration of the electrode placement in the
tECG garment.

B. Capacitive ECG Data

The capacitive ECG (cECG) recordings consist of data from
ten healthy subjects seated at a driver’s seat equipped with eight
capacitive electrodes [10]. The protocol comprised a resting
phase and a passive motion phase, where the seat was moved
impulse-like from outside at a given period of time. Bipolar
ECG leads were obtained using a fixed bipolar reference elec-
trode in chest height. See Fig. 2(b) for an illustration of the
electrode placement of the cECG system. Seven ECG leads
obtained from the driver’s seat (sampling rate 500 Hz) were
processed in subsequent 10 s segments (1 s segment shift). A
total of 523 £ 11 segments per subject containing both, rest-
ing and motion phases, were considered. The reference ECG
recorded simultaneously using conductive electrodes served as
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Wearable data (tECG) and recording. (a) Input data with heavy distortions and a large motion artifact. REF indicates the conductive

reference ECG and CH1-7 the ECG leads derived from the textile electrodes. Due to the normalization of signals, QRS complexes are not visible
in the upper channels. (b) Electrode placement of the tECG garment. The numbered electrodes indicate pairs of bipolar leads (equivalent to CH in
(a)) and the reference potential measurement is marked green near the waist.

the ground truth. See Fig. 2(a) for an example of a recording
without a motion artifact.

C. Arrhythmia ECG Data

Since no arrhythmia data were available for the used tECG
and cECG techniques, pathological (arrhythmia) ECG data
(aECG) were assembled out of the PhysioNet [28] MIT-BIH
Arrhythmia Database [29]. To match the data amount and the
structure of the textile and capacitive ECGs, 100 segments
(10 s duration, minimum 1 s segment shift, sampling rate
360 Hz) were randomly sampled out of each of the database’s 48
ambulatory two-channel recordings. Based on the expert beat
annotations available with the database, first, segments con-
taining pathological beats (i.e. premature and block beats, no
escape beats) were extracted. If 100 different segments contain-
ing pathological beats could not be sampled for a single patient,
segments containing only (quasi-)physiological beats (sinus or
paced beats) are added. By applying this procedure, we obtained
74 £ 41 of 100 segments for each patient containing pathologi-
cal beats. The expert beat annotations also served as the ground
truth regardless of its beat type.

I1l. DATA PROCESSING AND PERFORMANCE EVALUATION

A. Blind Source Separation

Each channel of each segment of the ECG data was nor-
malized for further processing by subtracting its mean and

division through its standard deviation. Time-delayed versions
of the original signals were added as additional inputs to the
multichannel filter. The filter coefficients were determined by
spatio-temporal ICA, which has shown superior performance
compared to the standard ICA in the textile ECG setting [4].
Therefore, this BSS algorithm was exclusively selected for fur-
ther processing. Spatio-temporal BSS using FastICA algorithm
with the Skewness maximization and ten added time lags [10]
(k € [0, 10] samples) was symmetrically applied to the seven
textile or capacitive ECG leads which resulted in 77 output
components per segment. Two ambulatory ECG leads of the ar-
rhythmia database were processed similarly producing 22 out-
put components per segment. In this context, the concept of
Skewness maximization by BSS refers to generating spike train
signals out of the ECG which show distinct QRS spikes and a
low noise level. Fig. 3 shows an example of an output compo-
nent excerpt of the tECG data according to the input data in
Fig. 1(a).

B. Output Component Selection Using Heartbeat
Detections

A component selection which is based on heartbeat detec-
tion consists of three major steps: 1) detection of peaks (both
heartbeats and other peaks as large artifacts) in the output com-
ponents; 2) interpreting the temporal behavior of the peaks of
each component; 3) selecting one single component based on the
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Capacitive data (cECG) and recording. (a) Input data example of the capacitive data. REF indicates the conductive reference ECG and

CH1-7 the ECG leads obtained from the driver’s seat electrodes. (b) Electrode placement of the cECG setup. The numbered electrodes each define

a bipolar lead (CH) together with the green (unnumbered) electrode.
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Fig. 3. Spatio-temporal BSS output components (excerpt) of the in-
put signals from Fig. 1(a). Components are vertically ordered according
to the alternative Skewness measure (AltSkew). The modified Hamming
distance dy as well as the sparse code sequence of each output compo-
nent are shown in grey bars. The RCODE selection is marked by orange
colorand dy = 0.

above interpretation which most likely resembles the noise-free
ECG component. Note that the second step requires an analysis
of heartbeat dynamics that includes both false positive and false
negative detections.

Before the peak detection, each component was pre-processed
by highpass-filtering (0.5 Hz, Sth-order Butterworth) and
lowpass-filtering (40 Hz, Sth-order Butterworth), a subsequent
normalization (subtraction of the mean and division by its stan-
dard deviation) and an optional sign-change to ensure consistent
positive heartbeat peaks.

1) Peak Detection in BSS output components: The main
function of the peak detection in this context is to serve the basis
for a sensitive subsequent interpretation, thus achieving a bal-
ance between sensitivity to distortions and likewise the ability
to detect peaks in the presence of distortions. The essential pro-
cessing steps prior to peak detection are shown in Fig. 4. First,
the envelope (ENV) is calculated for each BSS component us-
ing Hilbert transformation. A spike train signal is formed by
extracting (EXT) the signal content above the lowpass-filtered
(0.5 Hz, 5Sth-order Butterworth) envelope. This procedure in-
tends to suppress distortions typical for relative motions be-
tween electrode and body surface in minimal-conductive ECG
recordings (see Fig. 1(a) for an example). Peaks are further con-
solidated by moving window integration (MOV) using a 0.1 s
Hamming window (considered as QRS length [30]). Finally,
peaks are detected by applying our customized QRS-detector
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Fig. 4. Data processing steps prior to the coding. Spatio-temporal
BSS output channel (BSS) including its envelope (orange) and the
lowpass-filtered (green) envelope (ENV), the extracted signal (EXT) and
its moving window integrated version (MOV) including peak detections
(black o).

of the combined maximum-search [31] and the Pan-Tompkins
[32] principle on MOV.

Specifically, the *spike trains’ typical for spatio-temporal BSS
processing are robustly addressed by the detection principle of
the simple maximum search detector [31]. However, the broad
range of heart rates covered by the data as well as the arrhyth-
mic events render the fixed heart rate guess of the maximum
search detector to be impractical. Therefore, we combined the
maximum search detector with the beat-to-beat decision logic
and threshold-adaption of the Pan-Tompkins QRS-detection al-
gorithm detecting one beat after another [32].

Whereas for the later assessment of the component selection
a refractory period of 0.3 s was utilized on the original BSS
component, the QRS-detector’s refractory period was decreased
to 0.05 s prior to the selection on MOV to achieve sensitivity to
artifacts.

2) Interpretation of Peak Detections | (RCODE): In order
to interpret the peak detections from the above procedure, we ap-
plied two different algorithms. The first (RCODE) was initially
proposed by our group in [25]. It delivers a quasi-continuous
measure between the expected behavior of a cardiac component
consisting of peak detections followed by a reasonable time be-
tween subsequent peaks and differently pronounced deviations
from this behavior up to a lack of multiple detections. This
measure refers to as modified Hamming distance. It is derived
from a sparse code representation of the peak detections. The
distance is calculated for each component’s peak detections at
times t; (i € [1, I], I is the number of peak detections) by cod-
ing according to the dictionary {peak - 1, no peak - 0} together
with physiological temporal a-priori information. The cardiac
refractory period Atg is considered as 0.3 s [22], whereas the
maximum peak-to-peak distance Aty is considered as 1.5 s
(i.e. a minimum heart rate of 45 bpm [33]). Accordingly, a
sequence (x) € {0, 1} is obtained by:

1) (x;) =1withi €[1, 1]

2) add [(tiy1 — t;)/Atmax | zeros between x; and x;.; if
fipy1 — 6 > Afg

3) add [(#1)/Atmax] zeros to (x) att < 1

4) add [(10 — t7)/ Atmax] zeros to (x) at ¢t > ¢;.

The sequence (x) of final length L is further evaluated by
the modified Hamming distance dy which is designed to in-
dicate the distance from the expected code behavior assum-
ing a perfect ECG component with code (x) = 1,0, 1,0, ... or
(x)=0,1,0,1..., respectively.

However, subjects with very low heart rate (=45 bpm) or ar-
rhythmia even under perfect peak detection (ACC = 1) can
feature sparse code patterns like (x)=...,1,0,0,1,... or
(x)=0,0,1,... and (x) = ..., 1, 0, 0 at the beginning/end of
the code sequence, respectively. To avoid negatively judging
codes of such origin, these patterns are identified in each output
component of a segment. Moreover, if there is temporal coinci-
dence of these patterns (<50 ms) in multiple components of the
same segment, very low heart rate or arrhythmia is considered
to be apparent in the segment. One “0” of the respective (0,
0) code pairs is removed from the sequence (x) of the affected
components in the case that none of the other components has
already shown perfect ((x) = 1,0, 1,0, ...) behavior.

After completing the code generation and manipulation, the
modified Hamming distance distinctly evaluates single code
pairs whether they show desired or non-desired patterns with
respect to the expected cardiac pattern. Contrary to that, a com-
mon Hamming distance would serve a simultaneous distance
measure between all code elements and the expected binary
pattern. Our modified assessing measure dy consists of two
factors

dy = wy - dyo (D

where d;o forms a distance to the expected behavior assessing
only pairs of two subsequent code elements (x;, x;41) each. It
is defined by the ratio between the amount of non-desired code
pairs (0, 0) or (1, 1) and the total amount of code pairs

_ HGs, i DI, xi0) = (0,00 U, DY
B L—1

le (2)
withi e [1,L — 1].

wy factors the length of the longest continuous sequence
(X, Xit1, - -.) € (x) of the expected ECG code behavior where
all pairs of subsequent code elements suffice (x;,x;y;) =
(1,0) U (0, 1). Accordingly,

Lo
wy=1- 3)
where /i is the length of the longest continuous sequence. If
I =1, dy is set to 1. Examples of code sequences (x) and
derived distance measures dy are shown in Fig. 3.

3) Interpretation of Peak Detections Il (PeriodTest): The
second algorithm is a simple periodicity test (PeriodTest) based
on the peak detection evaluation proposed by Hamaneh et al.
[24], which aims at the binary classification into periodic
and non-periodic detections. It consists of the following three
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conditions for classifying a series of peak detections at times #;
(i € [1, I, I the number of peak detections) and the series of
the according inter-beat intervals (Af in s) with At; = ;4] — t;
and its median At,,.; as periodic (and non-periodic otherwise):

1) V/Atyea = 2/3

2) V/Atyea <3

3) HAL|AL < 0.75 - Atyea U At > 1.25 - Atyea}| < 0.2 -

(=1

Besides the frequency limitation with respect to the median
peak-to-peak interval, the amount of single peak-to-peak inter-
vals deviating more than 25% from their median is limited to
20%. The result of the periodicity test is given as Hamaneh
criterion HC = 0: periodic peak detections (cardiac component
candidate) or otherwise HC = 1: non-periodic peak detections
(other component).

4) Selection: The component with the minimal dy or
Hamaneh criterion HC = 0 is selected as RCODE or Peri-
odTest output, respectively. In the case of obtaining multiple
components with equal minimum dy or HC, a further selec-
tion is necessary to obtain a single output component for each
selection routine. By application of spatio-temporal BSS with
Skewness maximization, we are aiming at ‘spike trains’ as car-
diac output components. In order to evaluate the quality of
the spike train in cardiac component candidates, we apply a
measure similar to Skewness but focused on the peaks only.
A peak energy vector E, is formed by the maximum peak
value of the preprocessed component around each peak detec-
tion E,; = max;,+2s5 ms(BSS). The AltSkew measure assesses
the average absolute peak energy of E, ; divided by its standard
deviation:

1 1
1 Zi:l |Ep.il
1 1 I
=1 Zizl(Ep,i - Ep)z

Accordingly, highly energetic peaks of similar amplitude pro-
vide a high AltSkew. Examples can be seen in Fig. 3, where
components are vertically ordered with respect to AltSkew.
Among the components with equal minimum dy or HC, the
single component with the maximum AltSkew is selected.

AltSkew =

4)

C. Output Component Selection by Standard
Approaches

In order to facilitate a comparison to traditional component se-
lection methods using higher-order statistics [4], [11], [14]-[16],
we also applied a single component selection based on Skew-
ness and Kurtosis, respectively. To achieve measures which are
less affected by outliers, an outlier-removal using Walsh’s non-
parametric outlier test [34] was performed on each component
prior to selecting the component with the highest Skewness
(SKEW) or highest Kurtosis (KURT).

Additionally, to depict a component selection strategy based
on traditional features of the time-/frequency domain, we also
applied the CASCSEL algorithm proposed earlier by our group
[10]. It combines two approaches: on the one hand to ex-
clude unsuitable components (by identifying artifact compo-
nents), and on the other hand to select single suitable com-

ponents among the residual components. It can be briefly de-
scribed according to the following three-step procedure: (1)
estimate a spectral power ratio between low-frequency content
Prr (0.1 Hz to 5 Hz) and high-frequency content Py (5 Hz to
40 Hz) and exclude channels, which show less high-frequency
content Py r/Prr < 1,(2) reintroduce/amplify fundamental os-
cillations related to the heart rate by filtering inspired by the Pan-
Tompkins QRS detector and again test for the spectral power
ratio but this time in reverse direction excluding components
which show Py r/Ppr > d (with d an adaptive threshold, Py
(0.5 Hz to 5 Hz) and Pyr (5 Hz to 30 Hz)) and (3) select
the single component based on the power distribution in the
low-frequency band (0.5 Hz to 5 Hz).

D. Evaluation of Selection Performance

The target of the component selection after the BSS was to
select a single output component for further evaluation. In the
selected BSS component, heartbeats were detected by apply-
ing our customized QRS-detector (see Section III-B), where
the QRS-detector’s refractory period was set to 0.3 s. The
performance of the selection was assessed by the heartbeat
detection accuracy (ACC) of the selected BSS output compo-
nent for each segment. The accuracy was obtained by com-
paring the manual QRS annotations from the reference ECG
with the QRS detections estimated from the component as
follows [10]:

TP

ACC= 77—
TP+ FP+FN

%)

In the case of the aECG, the pathologic beats were also ex-
pected to contribute to the true positive (TP) detections and were
considered false positive (FP) or false negative (FN) otherwise
(no true negative beats allowed).

In order to make a benchmark comparison to the input data
without the BSS processing and selection routines, an average
input ACC (Av.Input) is provided as the average ACC of all
input leads of a segment using the same detector.

The statistical analysis of the accuracies was conducted sep-
arately for the textile, capacitive and arrhythmia ECG data. The
acquired groups of accuracies (Av.Input, each BSS component
selector) were pairwise compared by Wilcoxon’s signed-rank
test after testing for significant differences between all groups
by applying the Friedman test and assessing homoscedasticity
of the groups by the Brown-Forsythe-test. To ensure indepen-
dence within each group, the statistical analysis was calculated
for subject-wise averaged accuracies (N = 10 resp. N = 48
for aECG data). As effect size measure for the p-values ob-
tained from Wilcoxon’s signed-rank test, Cohen’s U1l including
its 95%-confidence interval (CI) was calculated with bootstrap-
ping (N = 1000) [35]. Since it assesses relative amounts of
group elements being larger/smaller than opposing group max-
ima/minima, respectively, its interpretation is straightforward.
A maximum effect (Ul = 1) is achieved if every group element
of one group is larger than all elements of another group. No
effect equals Ul = 0.
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Fig. 5. Heartbeat detection accuracy ACC for each segment and subject (N = 10 resp. N = 48 for aECG data). Shown are the average input

ACC (Av.Input) of the respective ECG input leads and the selections results of the RCODE, PeriodTest, Skewness (SKEW), Kurtosis (KURT) and
Cascaded (CASCSEL) output component selectors. The whisker length is defined as 10% and 90% percentile, respectively. No outliers are shown.

Subject-wise averaged results can be found in Tables I-lII.

TABLE |
PAIRWISE RESULTS FOR TECG DATA

ACC Group Av.Input RCODE PeriodTest SKEW KURT CASCSEL
0.687 £ 0.164 Av. Input 1[1,1] 1[1,1]  0.25[0.15,0.6] 0.15 [0.1,0.5] 0.9 [0.75,1]
0.983 4+ 0.014 RCODE < 0.01 0.15 [0.1,0.4] 1[1,1] 1[1,1] 0.2 [0.1,0.4]
0.983 & 0.011 PeriodTest < 0.01 0.85 1[1,1] 1[1,1]  0.15[0.1,0.4]
0.818 £ 0.110 SKEW < 0.01 < 0.01 < 0.01 0.15 [0.1,0.35] 0.8 [0.65,1]
0.791 £ 0.129 KURT 0.06 < 0.01 < 0.01 < 0.01 0.8 [0.65,1]
0.972 4+ 0.028 | CASCSEL < 0.01 0.04 0.06 < 0.01 < 0.01

ACCs are shown as mean =+ standard deviation, p-values (below main diagonal) from Wilcoxon’s signed-rank tests on subject-wise
means (N = 10) and effect size (above main diagonal) Cohen’s U1 and 95% CIs of U1 [35] in brackets.

IV. RESULTS

Fig. 5 shows boxplots of the accuracies obtained after select-
ing a single output component after spatio-temporal BSS ap-
plication by using five different selectors (RCODE, PeriodTest,
SKEW, KURT, CASCSEL) for three different datasets (tECG,
cECG, aECG) without subject-wise averaging. The boxplots
also show the average input accuracy (Av.Input) before BSS ap-
plication to highlight the potential of BSS application in the con-
text of the component selection. The Friedman test on subject-
wise averaged ACCs on the tECG data shows highly significant
differences between the groups (p < 0.001) as well as for cECG
and aECG data. Brown-Forsythe-test proves homoscedasticity
for the cECG and aECG data. Pairwise post-hoc tests including
effect size measure Cohen’s U1 and its 95% CI are shown in the
Tables I-II1.

The pairwise comparisons between the average input ac-
curacy (Av.Input) and any component selection after spatio-
temporal BSS show an unambiguous benefit of the BSS ap-
plication with the subsequent component selection. Despite the
Kurtosis selector for tECG and the Skewness and Kurtosis selec-
tor for cECG data, we find highly significant ACC increases by
the selected BSS component compared to the average of input
channels. Large effects (effect sizes) are obtained especially for

the peak-detection-based selectors (RCODE, PeriodTest) and
the CASCSEL selector in tECG and cECG data. However, for
tECG and cECG data, the application of higher order moments
selection (SKEW, KURT) is not able to provide significantly
higher ACC after BSS compared to the average of input chan-
nels.

Pairwise comparison of the peak-detection-based selec-
tors (RCODE, PeriodTest) with the other selectors based on
higher order moments or frequency-domain-features shows that
the peak-detection-based methods significantly outperform the
other approaches for all datasets. Large effects can especially
be proven for tECG and cECG data. No significant difference
of the RCODE/PeriodTest algorithm can be obtained in the case
of the arrhythmia data in comparison to the Skewness selector.
However, the average difference achieved in the output ACC (see
Table IIT) between RCODE/PeriodTest and SKEW is 1.5% and
1.2%, respectively, in favor of the peak-detection-based meth-
ods. The Skewness selector always significantly outperforms
the Kurtosis selector, too.

When comparing the peak-detection-based selectors
(RCODE, PeriodTest) against each other, no significant dif-
ference between the obtained ACC of the respectively selected
components can be found for tECG and cECG data. Despite be-
ing of very small absolute value, a significant difference in favor
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TABL
PAIRWISE RESULTS

Ell
FOR CECG DATA

ACC Group Av.Input RCODE PeriodTest SKEW KURT CASCSEL
0.566 £ 0.136 Av. Input 0.85 [0.7,1] 0.9 [0.75,1]  0.25[0.15,0.45] 0.1 [0.1,0.35] 0.7 [0.55,1]
0.867 £ 0.092 RCODE < 0.01 0.1 [0.1,0.3] 0.7 [0.55,1] 0.8 [0.65,1] 0.3 [0.2,0.58]
0.868 £ 0.093 PeriodTest < 0.01 0.77 0.7 [0.55,1] 0.8 [0.65,1] 0.3 [0.2,0.6]
0.629 £ 0.107 SKEW 0.08 < 0.01 < 0.01 0.3 [0.15,0.5] 0.6 [0.5,1]
0.584 £ 0.127 KURT 0.49 < 0.01 < 0.01 < 0.01 0.6 [0.5,1]
0.793 £ 0.064 | CASCSEL < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

ACCs are shown as mean =+ standard deviation, p-values (below main diagonal) from Wilcoxon’s signed-rank tests on subject-wise means (N
= 10) and effect size (above main diagonal) Cohen’s U1 and 95% CIs of U1 [35] in brackets.

TABL

E Il

PAIRWISE RESULTS FOR AECG (MIT-BIH) DATA

ACC Group Av.Input RCODE PeriodTest SKEW KURT CASCSEL
0.871 4 0.100 Av. Input 0.16 [0.10,0.33]  0.17 [0.12,0.30]  0.08 [0.05,0.23]  0.06 [0.03,0.19]  0.06 [0.03,0.23]
0.948 + 0.065 RCODE < 0.001 0.01 [0.01,0.04]  0.01 [0.01,0.08]  0.01 [0.01,0.17]  0.01 [0.01,0.09]
0.945 4+ 0.067 | PeriodTest < 0.001 0.01 0.02 [0.01,0.07]  0.02 [0.01,0.14]  0.01 [0.01,0.09]
0.933 + 0.083 SKEW < 0.001 0.21 0.67 0.01 [0.01,0.10]  0.01 [0.01,0.08]
0.917 £ 0.095 KURT < 0.001 < 0.01 0.02 < 0.001 0.01 [0.01,0.13]
0.942 + 0.067 | CASCSEL < 0.001 0.01 0.16 0.91 0.06

ACCs are shown as mean =+ standard deviation, p-values (below main diagonal) from Wilcoxon’s signed-rank tests on subject-wise means (N = 48) and
effect size (above main diagonal) Cohen’s U1 and 95% ClIs of U1 [35] in brackets.
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Hamaneh Criterion

Comparison between the modified Hamming distance gathered from the RCODE algorithm with the periodicity criterion according to the

PeriodTest algorithm for the cECG data (whisker length marks 10% and 90% percentile, no outliers are shown). As comparative measure (y-axis)

serve the ACC that is obtained from components’ peak detections with res
output components are assessed (not only the selected components). A h
(average ACC).

of RCODE is achieved for the aECG data. An insight into the
direct comparison between RCODE and PeriodTest and their
respective selection criteria, modified Hamming Distance and
the Hamaneh periodicity criterion, is given in Figs. 6 and 7. The
figures show the accuracy of any output component (i.e. its peak
detections) given its selection measure for all available output
components after BSS. The variance of the output ACC given
dy /HC = 0 underlines the necessity of applying an additional
criterion (i.e. AltSkew) for selecting among the components

pective Hamming distance/Hamaneh Criterion (x-axis). All available BSS
istogram shows the data distribution with respect to the input data quality

classified as suitable candidates by RCODE/PeriodTest. In the
case of the cECG data (Fig. 6), the candidates for selection of the
cardiac component (modified Hamming distance or Hamaneh
criterion equals zero) show a higher first quartile in the accord-
ing RCODE boxplot (ACC > 0.35) compared to the PeriodTest
boxplot (ACC < 0.25). Fig. 7 shows the same assessment for the
aECG data. In this case, the RCODE algorithm shows a slight
advantage regarding the amount of data accessed as good car-
diac component candidates. The histogram shows around 10%
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Comparison between the modified Hamming distance gathered from the RCODE algorithm with the periodicity criterion according to

the PeriodTest algorithm for the aECG data of the MIT-BIH database (whisker length marks 10% and 90% percentile, no outliers are shown).
As comparative measure (y-axis) serve the ACC that is obtained from components’ peak detections with respective Hamming distance/Hamaneh
Criterion (x-axis). All available BSS output components are assessed (not only the selected components). A histogram shows the data distribution

with respect to the rhythm/arrhythmia type.

more components achieving modified Hamming distance equal
to zero compared to the components classified as periodic using
the Hamaneh criterion with comparable ACC.

V. DISCUSSION
A. The Potential of Spatio-Temporal BSS

BSS in general is considered an appropriate tool for the pro-
cessing of measurements imposing non-predictable and varying
signal qualities across multiple channels (as exemplarily indi-
cated in Figs. 1(a) and 2(a)). Moreover, spatio-temporal BSS is a
powerful processing technique which combines spatial-filtering
of multichannel data with channel-wise adaptive FIR filtering
all guided by the concept of statistical independence [9]. Al-
though it has been proven to successfully compete against the
standard BSS [4], its application to cardiac signal processing
is addressed only by limited number of researchers, so far [4],
[9], [10], [36]. This may be attributed to the lack of robust se-
lectors of components of interest (i.e. the cardiac component),
namely for solving permutation indeterminacy, a problem in-
trinsic to the BSS. Especially, spatio-temporal BSS generates a
vast amount of output components after its usage. Particularly,
a very large number of temporal filter coefficients is proposed
in [36]. At the same time, even pure spatial BSS (standard BSS)
often requires complex selection routines of cascaded structure
or pre-computed thresholds. Pre-trained templates are seldom
transferable over datasets of different nature [11], [16], [17].
On the other hand, using non-symmetric BSS approaches like
projection pursuit [9] which estimates output components one-
by-one still involves the problem of deciding whether the com-
ponent of interest has already been extracted.

We have shown, that component selection methods based on
peak detections (RCODE, PeriodTest) and their rhythm evalu-
ation regarding potential cardiac behaviour are capable of han-
dling spatio-temporal BSS outputs of different data nature (i.e.
tECG, cECG, aECG). This can be seen from Fig. 5, where
for tECG and aECG data both median and inter-quartile-range
(IQR) show output accuracies of selected components being
ACC = 1. Also, the highly distorted cECG data achieve an
IQR ACC > 0.9. This finding is underlined by the pairwise
comparisons of these selectors with the average input quality
(Tables I-III), always significantly increasing ACC. Efficient
usage of spatio-temporal BSS, thus, becomes possible.

B. Selection Strategies

One major problem of automatically selecting a single (de-
sired) component after BSS application is given by undesired
components (e.g., artifact components) resembling features ini-
tially chosen to characterize the desired component. In par-
ticular, this is relevant for higher order moments, which are
heavily affected by outliers or time-/frequency based features
[25]. Moreover, both types of features may vary in absolute and
relative values between datasets of different origin [37], which
renders an according feature selection to be even more compli-
cated. We observed the susceptibility of higher order moments
to artifacts especially in the minimal-conductive ECG datasets
(tECG and cECG, see Fig. 5), where artifacts are likely to occur
(e.g., see Fig. 1(a)). In pairwise comparisons (Tables I and II)
even adecrease in ACC after BSS application and the subsequent
selection was obtained by using Skewness or Kurtosis selectors
(with outlier removal). For an almost artifact-free ECG setting
(aECG) the higher order moments (i.e. Skewness) performed
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Fig. 8. Two different BSS output component examples of one aECG

recording. The lower panel shows the RCODE selection and the respec-
tive PeriodTest selection is depicted in the upper panel. The correspond-
ing modified Hamming distance (dy), Hamaneh criterion (HC) and beat
detection accuraccy (ACC) is provided. The sparse code sequence is
indicated above each component and the QRS detections obtained from
the customized peak detector are marked as orange crosses. The y-axis
shows the AlrSkew measure.

well and no significant difference compared to other selectors
was observed. This highlights the limitations of higher order
moments as the BSS component selector in distorted ECG set-
tings. Still, Skewness showed better performance than Kurtosis,
which is in accordance with [4].

Nevertheless, a selector based on peak detections can also
be misguided, since its performance is given by: (1) the detec-
tion performance prior to selection, and (2) the detection per-
formance after selection. Both performances are not necessarily
the same, since, e.g. prior to selection, our detector was designed
to be more sensitive to artifacts compared to the post-selection
detector. Also, periodic artifacts (such as those included in the
measurement protocol of the assessed cECG data) can cause an
artifact component being a good cardiac candidate according to
the selection criterion. The large IQR (Fig. 6) of components
showing Hamming distance or Hamaneh criterion equals zero
for the cECG data is a possible consequence. However, Fig. 6
shows the detection accuracy in all available output compo-
nents, whereas Fig. 5 depicts the results only for the selected
ones. The largely decreased IQR in Fig. 5 (cECG) compared to
Fig. 6 supports the usability of our additional selection criterion
AltSkew in the case of multiple cardiac component candidates
after peak detection evaluation and underlines its necessity. In
the case of arrhythmia, which can also hamper periodicity tests
based on peak detections, the advantage of our advanced code
manipulation and assessment (RCODE) compared to the simple
periodicity test (PeriodTest) emerges. Fig. 8 underlines this find-
ing by means of two BSS components after processing aECG.
The upper component was selected by PeriodTest solely based
on AltSkew, because no output component could be classified
as periodic according to the Hamaneh criterion HC (HC =1V
components). Accordingly, using AltSkew alone fails to select
the proper component in this case. The lower component (Fig. 8)

was selected by RCODE according to its modified Hamming
distance dy = 0 and shows maximum ACC = 1. Thus RCODE
shows a higher capability to select cardiac components in the
case of arrhythmia. Also, RCODE explicitly tries to compensate
for arrhythmia originating from blocks before rhythm evalua-
tion (but it doesn’t compensate for fibrillation type arrhythmia).
Whereas this is not relevant for the healthy subjects in the tECG
and cECG data, for the aECG data we obtain a slightly but signif-
icantly higher output ACC using RCODE (Table III). Moreover,
around 10% more components (Fig. 7) can be exploited of the
aECG data showing Hamming distance equal to zero compared
to the PeriodTest-selected components. Nevertheless, it should
be noted that the BSS analysis of the two-lead ECGs in the
aECG data comprises a less complicated component selection
problem in BSS’s permutation indeterminacy, as compared to
the analysis of the tECG and cECG data. However, it is as-
sumed, that the equivalent BSS processing for all data using
the same amount of time lags in BSS input construction brings
along comparable BSS component characteristics as precondi-
tion for the selection problem. Accordingly, the aECG results
are considered exemplary for arrhythmia data originating from
minimum-contact techniques.

VI. CONCLUSION

We have investigated the performance of several strategies
for automatically selecting a single component (namely the car-
diac component) after applying spatio-temporal BSS to ECG
recordings of different nature. We tested component selectors
based on the evaluation of peak detections from a rhythmical
point of view and compared this to the classical usage of higher
order moments and frequency domain features for this purpose.

We observed, that the usage of peak detections for solving per-
mutation indeterminacy after BSS in the ECG context is to be
preferred over the usage of higher order moments or frequency-
domain features. The application of a sophisticated evaluation of
peak detections (RCODE) shows an advantage over simple peri-
odicity tests (PeriodTest) in special applications like arrhythmia
ECG. In the case of using higher order moments for the selec-
tion of spatio-temporal BSS components, the Skewness is to be
preferred over the Kurtosis.

Spatio-temporal BSS processing is highly capable of pro-
cessing ECGs with large distortions like minimal-conductive
ECGs as textile or capacitive ECG. The disadvantage of spatio-
temporal BSS is a large number of output components obtained
after processing, which causes component selection after BSS
to be difficult. However, the availability of methods (RCODE,
PeriodTest) being able to handle large amounts of BSS out-
put components and, nevertheless, selecting the best cardiac
component with high certainty, facilitates utilizing the potential
of spatio-temporal BSS for processing highly distorted ECGs.
This promotes the usage of spatio-temporal BSS for accessing
cardiac information from minimum-contact ECGs as textile or
capacitive ECG. Future work should address the evaluation of
the obtained results for arrhythmia ECG data measured with
minimum-contact ECG techniques.
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