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Abstract. In this work, we improve upon two frequently used mutation
algorithms and therefore introduce three re�ned mutation strategies for
Cartesian Genetic Programming. At �rst, we take the probabilistic con-
cept of a mutation rate and split it into two mutation rates, one for active
and inactive nodes respectively. Afterwards, the mutation method Single

is taken and extended. Single mutates nodes until an active node is hit.
Here, our extension mutates nodes until more than one but still prede-
�ned number n of active nodes are hit. At last, this concept is taken and
a decay rate for n is introduced. Thus, we decrease the required number
of active nodes hit per mutation step during CGP's training process. We
show empirically on di�erent classi�cation, regression and boolean re-
gression benchmarks that all methods lead to better �tness values. This
is then further supported by probabilistic comparison methods such as
the Bayesian comparison of classi�ers and the Mann-Whitney-U-Test.
However, these improvements come with the cost of more mutation steps
needed which in turn lengthens the training time. The third variant, in
which n is decreased, does not di�er from the second mutation strategy
listed. 3

Keywords: Cartesian Genetic Programming · Genetic Programming ·

Evolutionary Algorithm · Mutation Strategy.

1 Introduction

Cartesian genetic programming (CGP) is a form of genetic programming and
a nature inspired search heuristic. It can be used to automatically generate
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Version is subject to the publisher's Accepted Manuscript terms of use https:
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programs and was �rst introduced by Miller [18] in 1999. Since its introduction it
has been used for a multitude of applications like evolving electronic circuits [17],
image processing [14] or evaluation of sensor data [3]. CGP employs a directed,
acyclic graph-based representation. This means that these graphs consists of
nodes which are arranged in a two-dimensional grid. These nodes can in turn
be active or inactive, meaning that they do or do not contribute to an output.
While some versions of CGP utilize or suggest the usage of a crossover operator,
as is seen in Kalkreuth et al. [11] or Wilson et al. [22], they remain unused in
standard CGP as it does not universally pro�t from this operation [10,16]. Thus,
mutation is oftentimes the only genetic operation used. In the literature, there
are two di�erent mutation strategies which protrude and are frequently applied:
a probabilistic approach or the Single mutation by Goldman and Punch [6]. As
for the �rst one, every node has a chance of mutation while in the latter one,
nodes are mutated until an active one is hit.

While the mutation function and the mutation rate, if needed, are very impor-
tant for the success of CGP, there is little research performed trying to improve
upon these two operations. Because of that, this work focuses on improving the
probabilistic and Single mutation approach. At �rst, the probabilistic approach
is further discussed. Normally, only a single mutation rate is used. However, we
hypothesize that utilizing a di�erent mutation rate for both active and inactive
genes may lead to faster convergence. As for one Single mutation step, nodes are
mutated until one active node is altered. This notion is suspended now and we
allow the mutation of nodes to take place until n active nodes are mutated. To
evaluate this concept, we experiment with di�erent n values. We also investigate
the e�ect of decreasing the mutation rate and number of active nodes changed
over time.

We show on multiple datasets that our extensions achieve statistically sig-
ni�cantly better �tness values on these datasets compared to the standard ones
for the cost of a slower convergence rate.

We follow this introduction with Section 2, which gives a brief overview of
related work. Afterwards, we present an introduction into CGP in Section 3. In
Section 4, the re�ned mutation concepts are introduced. Furthermore, a short
theoretical explanation is given as to why these concepts should lead to better
�tness values. Afterwards, the experimental design is introduced in Section 5 and
Section 6 presents and discusses our experimental results. Finally, we conclude
our work in Section 7.

2 Related Work

In this work, the focus lies on extending the probabilistic mutation strategy as
well as Single.

Previously, there has been other mutation strategies employed as well. Gold-
man and Punch [6] created other mutation algorithms alongside Single. Both
algorithm extends the probabilistc mutation and the �rst one skips redundant
evaluations, which leads to less computational time needed. The second algo-
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rithm is more complex and not recommended by the authors, as it does not
improve upon existing strategies.

In other studies, there has been some other work done investigating the
e�ect of mutating inactive genes. The authors Turner and Miller [20] did an in
depth investigation about genetic drift and genetic redundancy. Their �ndings,
included but are not limited to, are that performance signi�cantly worsens when
there is no mutation of inactive genes. Furthermore, they hypothesized that a
single mutation rate may be inferior to utilizing two mutation rates, for active
and inactive genes respectively. By utilizing a mutation rate for inactive genes
of up to 100%, they believe that this may enhance genetic drift and therefore
CGP's performance.

Kaufmann and Kalkreuth [12] examined, among other things, the e�ects
of Single mutation but mutated every inactive node while doing one mutation
step. By doing so, they found an improvement and other, better suited mutation
methods as well. One of these improvements would be to turn o� the mutation
of function genes when boolean regression benchmarks are used. Thus, they laid
out the �rst steps for this work.

3 Cartesian Genetic Programming

This section gives a brief overview of CGP and its mutation algorithm.

3.1 Introduction to Cartesian Genetic Programming

CGP is traditionally represented as a directed, acyclic and feed-forward graph.
It consists of nodes which are arranged in a nc×nr grid, wherein nc declares the
grid's number of columns and nr indicates its number of rows. It takes one or
multiple program inputs and feeds it forward through partially connected nodes
before writing �nal values to output nodes.

Each node consists of a number of genes, namely a function gene, two con-
nection genes and a parameter gene. The function gene addresses the encoded
computational function of the node. If this function depends on a parameter,
its value is taken from the parameter gene. The required input is taken from
its connection genes, as they indicate where the node gets its data from. This
can either be a program input or the output of a previous node. However, a
node cannot get its input from an arbitrary former node, as the hyperparame-
ter levels-back l restricts the connectivity of a node. Furthermore, the nodes are
partitioned into two groups: active and inactive nodes. Active nodes contribute
to a program output, while inactive nodes do not. The parameter l de�nes the
number of columns to the nodes left it can receive its input from. Oftentimes, l
is equal to nc meaning that every node receives its input from every prior node.

In our work, a slightly modi�ed version of CGP inspired by Harding et al. [8]
and Leitner et al. [13] is used. Here, the handling of input and output are di�erent
from regular CGP and are adopted from Self-Modifying CGP [9]. Traditionally,
if a program has ni many inputs and requires no outputs, CGP contains ni+no
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additional genes. Each additional gene represents an address to its respective
program input or output node. In our work though, no further input and output
genes are used. The function set used is extended by four special functions taken
from Harding et al. [9], indicating which node serves as an input or output.

An illustrative example of a genotype can be seen in Figure 1 as it shows a
graph with nr = 1 and nc = 7. The function of the �rst two nodes are `INPUT`,
indicating that the next program input is to be read. Afterwards, both input
values are added in the third node. However, it does not link to a node with an
output function, rendering it inactive. In the fourth node, the same inputs are
subtracted and then added in node six with an additional program input taken
from node �ve. At last, node seven indicates a program output.

INPUT INPUT ADD SUB INPUT ADD OUTPUT

Fig. 1. An example genotype of CGP.

As is the case for many CGP algorithms, the standard (1 + λ) Evolutionary
Algorithm (EA) is used where the individual with the highest �tness is chosen
as the next parent. This parent individual is taken to evolve λ o�springs. Ad-
ditionally, neutral search is performed. This means that, when an o�spring and
the parent have the same �tness score, the o�spring is always chosen as the next
parent, even in the rare case that both o�spring and parent are identical. This
allows to generate better o�springs [20,23].

As is described by Miller [19], inactive nodes are part of non coding genes
which are not used to provide an output. Such nodes can be exempli�ed by the
third node in Figure 1 as it is part of the genotype but not contributing to the
genotypes output.

By having non coding genes, genetic drift is allowed to occur as mutating
them does not a�ect the �tness of the phenotype. These inactive nodes have
the possibility to later be changed to active nodes when connection genes are
mutated [7]. The works of Turner and Miller [20] and Yu and Miller [23] show
that such neutral genes are highly bene�cial for the evolutionary process of
Evolutionary Algorithms and CGP as they help escape local optima and the
evolutionary search of CGP. Albeit this theory is doubted by Goldman and
Punch [5].

3.2 Mutation Algorithm

The most common mutation algorithms are of probabilistic nature [19] and Single
[6].
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As for the �rst one, the nodes are mutated according to a prede�ned muta-
tion probability p. Furthermore, there is a distinction between point mutation

and probabilistic mutation. For the point mutation, p percent of all nodes are
randomly chosen and mutated. Concerning the probabilistic mutation, we iter-
ate through every node with each node mutating with a probability p. However,
with a probabilistic mutation strategy, it is possible that only inactive genes are
mutated. Thus, it does not change the �tness value and nothing can be said
about the quality of the changes.

Single, on the other hand, takes random nodes and mutates them until an
active node is mutated. This o�ers the bene�t to generate good results without
setting a mutation rate. Goldman and Punch [6] evaluated Single on four boolean
benchmarks and found that Single is preferred when the optimal mutation rate is
unknown. Another bene�t is that there is a guaranteed change in the phenotype.
This avoids wasted evolutions where the phenotype stays the same. However,
When the mutation rate can be optimized, a probabilistic mutation method is
able to outperform Single.

4 Further Changes in the Mutation Algorithm

The following section gives an overview about the re�ned mutation strategies
utilized in this work. Afterwards, a short theoretical explanation is given to
motivate and reason their respective e�ectiveness.

4.1 Probabilistic Mutation

A caveat of the probabilistic mutation is that it does not di�erentiate between
active and inactive nodes. We hypothesize that this could lead to a slower conver-
gence and/or worse �tness. The main motivation is established by the �ndings of
Turner and Miller [20]. This work addresses neutral drift in the context of CGP.
They found that, among other things, not mutating inactive genes leads to a
worse evolutionary search and in turn worse results overall. The authors Miller
and Turner [20] also hypothesize that it could be favorable to explicitly use a
higher mutation rate for inactive genes; and perhaps change it as high as up to
100%, meaning that every inactive node in the genotype is mutated after a single
evaluation step. As having neutral drift is highly bene�cial for the evolution of
the CGP phenotype, such high mutation rates for inactive genes could lead to
lower convergence rates.

To test this hypothesis, we split the mutation rate into two. A user de�ned
probability pi for the mutation of inactive nodes is introduced as well as a muta-
tion rate pa for active nodes. We compare di�erent combinations of pi and pa for
di�erent classi�cation and regression datasets as well as some selected boolean
regression benchmarks.
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INPUT INPUT ADD SUB INPUT ADD OUTPUT

Fig. 2. An example of a changed phenotype as compared by Fig 1. By changing the
connection gene of the sixth node, it is possible to alter the phenotype greatly. The
computation does not rely on the second and fourth node anymore.

4.2 Single and Multiple Mutation

Single randomly changes inactive genes until one active gene is hit. Thus, only
incremental changes are possible. However, these changes may a�ect the phe-
notype greatly by changing a connection gene as is exempli�ed in Fig. 2. The
connection gene of the sixth node is mutated and now merely depends on the
�rst and third input. Compared to the previous phenotype version in Fig 1, the
computation of the program output does not rely on the second and fourth node
anymore. Nevertheless, the single incremental change may, on the other hand,
not a�ect the phenotype at all or only slightly. As is shown by Kaufmann and
Kalkreuth [12], changing connection genes can improve the �tness at most and
is the most meaningful mutation according to their estimation. Looking at the
CGP implementation used in this work, every node has four possible genes which
can be mutated: two connection genes, one function and one parameter gene.
However, only the �rst connection gene guarantees a change in the phenotype.
The second connection gene is only used if the corresponding function requires
two inputs, which is needed by 6 out of 30 functions in our case. This leads to
a chance of mutating a meaningful connection gene at about 29%. Albeit one
could argue to exclusively mutate connection genes, only selected problems ben-
e�t from solely changing the in-going connections rendering this procedure not
viable for every problem [12].

As is hypothesized by Goldman et al. [6], the incremental change of Single
may perform worse on problems where larger changes per evaluation step are
necessary. Thus, we introduce a modi�ed version of Single: Multi-n and Decreas-

ing Multi-n (DMulti-n).

Multi-n takes the concept of Single but mutates the genotype until n active
nodes are mutated. It should be noted that, when an active node is hit, it is
possible that the phenotype is completely changed. Thus, the list of active nodes
may not stay the same during mutation and it is important to update the new
active nodes before mutation is continued.

We speculate that Multi-n could lead to faster convergence due to several
reasons. At �rst, more inactive genes are mutated per evolution step which leads
to more genetic drift. The original authors of Single report an average of t−a

a+1 +
1 expected mutations, where t is the number of total genes and a being the
number of active parent genes. With Multi-n, we should expect an average of
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∏n
i=1

(
t−ai

ai+1 + 1
)
mutations with ai being the number of active nodes after i

active nodes have been hit. As is shown by Miller and Smith [15], typically there
are more inactive genes than active ones. Considering Multi-n, this leads to even
more mutated inactive genes per evolution cycle which should also introduce
more genetic drift. Another reasoning in favor of Multi-n is a higher chance of a
more impactful mutation in the phenotype, as more active nodes are mutated.
A higher n leads to a higher probability of mutating a meaningful connection
gene while also maintaining the chance to mutate function or parameter genes.
With n = 2, the probability rises to 49% or even 74% for n = 4.

While Multi-n could lead to a faster convergence to possible solution spaces
and local optima, it may also introduce a lot of changes per evolution step. It
looses the ability to make small and incremental changes. DMulti-n introduces
a slight modi�cation to Multi-n. It can be imagined as Multi-n, but n decreases
over time. Here, we employ a simple stepped decay rate:

ncurrent = nstart −
⌊
icurrent ·

nstart

itotal

⌋
(1)

with ncurrent being the current n value, nstart the initial n value, icurrent the
current evaluation step and itotal the total evaluation steps to perform. We have,
for example, the following two starting values: itotal = 100 and nstart = 5. This
means that, in the beginning, we start mutating nodes until �ve active nodes are
hit for each mutation step. After the 20th evaluation step, ncurrent reduces to
4. Now the nodes are mutated until only four active ones are hit per mutation
step. This repeats until a lower limit of ncurrent = 1 is reached and the training
is �nished with the equivalent of Single mutation.

5 Preliminaries

This section is now dedicated to the experiments conducted to explore the pre-
viously de�ned mutation concepts.

5.1 Experiment Description

As far as hyperparameters are concerned, default values found in the literature
[19] are used. This means that nr = 1 and l = nc are adopted. For the genotype,
a length of nc = 100 is employed. The number of maximum evaluations are
100, 000. If the parameter gene is needed, its value is randomly changed to a value
in the range of [−10, 10]. Each experiment is repeated for a total of 15 times.
The program inputs of the real-world datasets are standardized and standard
k-fold cross validation with k = 5 is used when no train/test split is de�ned by
the dataset.

For classi�cation problems, the �tness function used in this work is subject
to the Matthews Correlation Coe�cient (MCC) [1]. Its score is in range [−1, 1],
with 1 and −1 indicating that every sample is correctly classi�ed (but inverted,
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in case of −1). A value of 0 indicates only falsely classi�ed samples. Thus, the
�tness value is de�ned as:

fitness = 1− |MCC| (2)

For regression problems, the mean squared error is used.
As optimization algorithm, a (1 + λ) with λ = 4 evolutionary algorithm as

mentioned in section 3.1 is utilized.
Furthermore as is discussed in the later section 5.2, two di�erent kinds of

datasets are used to evaluate the mutation operators. We employed real-world
classi�cation and regression datasets as well as symbolic regression benchmarks.
Both utilize di�erent function sets to accommodate to their respective problem.
The function sets are speci�ed in Table 1.

Table 1. Functions used in this work. The number of required inputs is given by arity.

Function Name Arity Description

Functions for Real-World Datasets

INP, INPP, SKIP 0 Special input functions taken from [9]

OUTPUT 1 Special output functions taken from [9]

Add, Sub, Mul, Div 2 Standard mathematical functions

Addc, Subc, Mulc, Divc 1

Mathematical function, the operation takes one

input i and the nodes' parameter as a constant

c to calculate i ◦ c
Sin, Cos, Tan, Tanh, Log,

Log1p, Sqrt, Abs, Ceil, Floor
1 Standard mathematical functions

Max, Min 1
Compares the input with the nodes' parameter.

Returns the bigger / lower value

Const 0 Returns the nodes' parameter

Negate 1 Returns the negated value

Functions for Symbolic regression datasets

INP, INPP, SKIP 0 Special input functions taken from [9]

OUTPUT 1 Special output functions taken from [9]

Add, Sub, Mul, Div 2 Standard mathematical functions

Sin, Cos, Log 1 Standard mathematical functions

5.2 Datasets

We used a mixture of classi�cation, regression and symbolic regression bench-
marks to assess our mutation algorithms for multiple problem de�nitions. These
datasets are chosen according to White et al. [21] as they surveyed and recom-
mended multiple benchmarks for genetic programming. For classi�cation and
regression, we use Abalone, Breast Cancer, Credit, Forest Fire, Page Block and
Spect, downloaded from the UCI repository [4]. We also employ symbolic regres-
sion benchmarks, namely Nguyen-7, Pagie-1 and Vlad-4 [21].
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6 Experiments

In this work, several experiments are conducted to empirically test the di�erent
mutation strategies. We state the average �tness value as well as the average
number of evaluations it takes until CGP converges, i.e. the number of evalua-
tions until the best �tness result is achieved. Both values are then compared to
their standard equivalent mutation strategy 4.

Furthermore, we utilize the Bayesian comparison of classi�ers introduced
by Benavoli et al. [2] to compare our models trained on classi�cation datasets.
The advantage here is that no null hypothesis is needed. Hence the results are
presented as a triplet (pdefault, pequal, pextend). These values indicate di�erent
probability values with pdefault stating the probability that the standard clas-
si�er is better; pequal expresses the probability that the di�erences are within
the region of practical equivalence and pextend presents the probability that the
modi�ed mutation strategy is better. However, if the Bayesian comparison is not
applicable since this only works for classi�cation models, we utilize the Mann-
Whitney-U-Test at α = 0.05 between the default and the extended model. Again,
we report our results as a triplet (U,Z, p) with U being the Mann-Whitney-U
value, Z the z-statistic and p the p-value.

6.1 Impact of di�erent probabilistic mutation strategies

To test the impact of splitting a single mutation rate p into two mutation rates
pa and pi for the respective active and inactive nodes, we ran multiple experi-
ments with di�erent mutation rates and combinations thereof. For comparison,
we utilize p ∈ {0.03, 0.1, 0.15, 0.2, 0.25}. As for utilizing two mutation rates,
we ran experiments for every combination of the following probability values:
pi ∈ {0.1, 0.25, 0.5, 0.75, 1.0} and pa ∈ {0.03, 0.1, 0.15, 0.2, 0.25}. These mutation
rates should cover a wide range of varieties while not being too �negrained or
too fuzzy. For space-savings sake, the p and pa values are averaged into pavg or
pa,avg respectively.

The averaged �tness values can be seen in Table 2. Here, even with averaged
values there is a clear trend noticeable towards utilizing two di�erent mutation
rates instead of one as a split mutation rate almost always yields higher �tness
values. Additionally, a higher mutation rate for inactive nodes oftentimes gen-
erate better results. This is in accordance to the same �ndings of other works,
such as Kaufmann and Kalkreuth [12] who tested the in�uence of mutating ev-
ery inactive node per mutation step. Still, it is not recommended to always set
pi = 1.0 as a more optimal pi value is oftentimes lower than 1.0.

This �nding is supported by the probabilistic evaluation in Table 3. Often-
times, the comparison lies in favor of a split mutation rate or both methods being
equal. However, only Page Block shows a trend towards the single mutation rate

4 The code as well as its datasets preprocessing can be found in the following GitHub
repository: https://github.com/CuiHen/Re�ning-Mutation-in-CGP.git

https://github.com/CuiHen/Refining-Mutation-in-CGP.git
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when a higher pi value is used. Additionally, the p-values for Forest Fire are
higher than 0.05, which means that those are not statistically signi�cant.

Table 4 shows the convergence speed. Here, the results are averaged as is seen
in Table 2. Interestingly, two di�erent mutation rates oftentimes leads to more
mutation steps needed for the model to converge. Moreover, the convergence
speed for the best �tness results is oftentimes the lowest, too.

Table 2. The average �tness value achieved with a single and two mutation rates. The
p and pa values are averaged into pavg or pa,avg respectively. Lower values are better.
Bold symbols indicate the best values in the current row.

Dataset pavg
pa,avg ,
pi = 0.1

pa,avg ,
pi = 0.25

pa,avg ,
pi = 0.50

pa,avg ,
pi = 0.75

pa,avg ,
pi = 1.0

Abalone 6.59 5.96 5.84 5.99 5.84 5.77

Breast
Cancer

0.074 0.054 0.049 0.042 0.049 0.048

Credit 0.229 0.230 0.241 0.223 0.223 0.229

Forest Fire 1.78 1.79 1.75 1.72 1.73 1.72

Heart
Disease

0.763 0.743 0.744 0.736 0.734 0.742

Page Block 0.253 0.212 0.298 0.246 0.310 0.274

Spect 0.445 0.423 0.423 0.408 0.414 0.406

Nguyen-7 1.42 · 10−2 5.44 · 10−3 6.16 · 10−3 5.94 · 10−3 5.30 · 10−3 6.67 · 10−3

Pagie-1 0.175 0.093 0.103 0.100 0.109 0.115

Vlad-4 0.037 0.034 0.034 0.034 0.035 0.035

6.2 Impact of Multi-n and DMulti-n

As for the other mutation strategy tested in this work, Single is compared to
our Multi-n mutation strategy with n ∈ {2, 3, 4, 5} at �rst.

Our results are shown in Table 5, 7 and 6. Here, we can see a clear trend
towards higher n values, as they generally deliver better results. Interestingly,
the highest n value of 5 seldom leads to the best results. It is possible that
there are too many changes in the phenotype per mutation step so it becomes
impossible to grasp more optimal results.

As the probability values in Table 6 suggest, the trend towards higher n
values lead to better results, too. This reinforces the hypothesis that Multi-n

can be better than Single. However, a caveat is that the datasets evaluated on
the Mann-Whitney-U-Test oftentimes only signi�cantly di�er for n > 3.

Nonetheless, the convergence speed shows the same behavior as for the prob-
abilistic approaches. This performance boost comes with a higher training time
as most often CGP converges faster with a lower n value.

DMulti-n Afterwards, DMulti-n is utilized and n is decreased over time until
n = 1. Interestingly, this does in fact not lead to better results because its
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Table 3. The probability of one classi�er being better than the other, evaluated on a
single mutation rate compared to a split one. The p and pa values are averaged into
pavg or pa,avg respectively. Datasets where the Bayesian comparison is used are marked
with (B); the Mann-Whitney-U-Tests are marked with (MW). Every (pa,avg, pi) value
is compared to pavg.

Dataset pa,avg ,
pi = 0.1

pa,avg ,
pi = 0.25

pa,avg ,
pi = 0.50

pa,avg ,
pi = 0.75

pa,avg ,
pi = 1.0

Abalone
(MW)

(450,−2.6, 0.01) (460,−2.9, 0.00) (470,−3.0, 0.00) (460,−2.9, 0.00) (500,−3.6, 0.00)

Breast
Cancer (B)

(0.00, 0.12, 0.88) (0.00, 0.03, 0.97) (0.00, 0.00, 1.0) (0.00, 0.05, 0.95) (0.00, 0.02, 0.98)

Credit (B) (0.21, 0.63, 0.16) (0.54, 0.26, 0.2) (0.14, 0.49, 0.37) (0.08, 0.61, 0.31) (0.22, 0.58, 0.2)
Forest

Fire (MW)
(310,−0.02, 0.98) (370,−1.1, 0.25) (370,−1.0, 0.30) (360,−0.81, 0.42) (390,−1.5, 0.14)

Heart
Disease (B)

(0.00, 0.17, 0.83) (0.00, 0.13, 0.87) (0.00, 0.04, 0.96) (0.00, 0.04, 0.96) (0.00, 0.07, 0.93)

Page
Block (B)

(0.08, 0.11, 0.81) (0.87, 0.09, 0.04) (0.32, 0.21, 0.47) (0.82, 0.09, 0.09) (0.59, 0.14, 0.27)

Spect (B) (0.10, 0.21, 0.69) (0.08, 0.22, 0.70) (0.00, 0.02, 0.98) (0.00, 0.05, 0.95) (0.00, 0.03, 0.97)
Nguyen-7
(MW)

(490,−3.5, 0.00) (470,−3.1, 0.00) (480,−3.2, 0.00) (470,−3.0, 0.00) (460,−2.9, 0.00)

Pagie-1
(MW)

(510,−3.7, 0.00) (490,−3.5, 0.00) (510,−3.8, 0.00) (480,−3.2, 0.00) (510,−3.8, 0.00)

Vlad-4
(MW)

(520,−4.1, 0.00) (500,−3.7, 0.00) (500,−3.6, 0.00) (510,−3.8, 0.00) (500,−3.5, 0.00)

Table 4. The average number of evaluations until convergence is achieved; given for
a single and two mutation rates. The p and pa values are averaged into pavg or pa,avg
respectively. Lower values are better. The number of evaluations for the best model
(i.e. the best �tness, cf. Tab. 2) is underlined; the lowest number indicates the fastest
convergence is in bold.

Dataset pavg
pa,avg ,
pi = 0.1

pa,avg ,
pi = 0.25

pa,avg ,
pi = 0.50

pa,avg ,
pi = 0.75

pa,avg ,
pi = 1.0

Abalone 663 2034 2531 2280 2352 2654

Breast
Cancer

962 1406 1275 1412 1286 1724

Credit 759 1086 1108 1412 1653 847

Forest Fire 866 2077 1978 1826 2473 2490

Heart
Disease

759 1440 1426 1702 2185 1364

Page Block 2142 2549 2210 2787 1871 2818

Spect 834 1244 1461 1398 1007 1689

Nguyen-7 276 316 282 300 468 266

Pagie-1 700 2330 2002 2021 1901 2433

Vlad-4 819 1553 1616 2213 2094 1959
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Table 5. The average �tness value for Single and Multi-n. Lower values are better.
Bold symbols indicate the best values in the current row.

Dataset Single n = 2 n = 3 n = 4 n = 5

Abalone 6.07 5.84 5.71 5.60 5.64

Breast Cancer 0.059 0.042 0.039 0.035 0.034

Credit 0.389 0.258 0.222 0.239 0.228

Forest Fire 1.75 1.72 1.71 1.67 1.69

Heart Disease 0.756 0.752 0.736 0.739 0.742

Page Block 0.273 0.282 0.255 0.238 0.239

Spect 0.489 0.433 0.445 0.391 0.408

Nguyen-7 5.60 · 10−3 4.15 · 10−3 5.19 · 10−3 6.15 · 10−3 7.04 · 10−3

Pagie-1 0.075 0.056 0.044 0.042 0.036

Vlad-4 0.034 0.035 0.034 0.031 0.032

Table 6. The probability of one classi�er being better than the other, evaluated on Sin-

gle compared to Multi-n. Datasets where the Bayesian comparison is used are marked
with (B); the Mann-Whitney-U-Tests are marked with (MW). Every n value is com-
pared to Single.

Dataset n = 2 n = 3 n = 4 n = 5

Abalone (MW) (130,−0.54, 0.59) (150,−1.6, 0.11) (170,−2.3, 0.02) (170,−2.3, 0.02)

Breast Cancer (B) (0.01, 0.25, 0.73) (0.01, 0.20, 0.78) (0.00, 0.08, 0.92) (0.01, 0.11, 0.88)

Credit (B) (0.04, 0.02, 0.94) (0.01, 0.01, 0.99) (0.02, 0.02, 0.96) (0.01, 0.01, 0.98)

Forest Fire (MW) (130,−0.58, 0.56) (140,−1.2, 0.21) (150,−1.6, 0.11) (120,−0.41, 0.68)

Heart Disease (B) (0.23, 0.41, 0.36) (0.02, 0.22, 0.76) (0.04, 0.29, 0.67) (0.06, 0.35, 0.59)

Page Block (B) (0.49, 0.19, 0.32) (0.26, 0.17, 0.57) (0.25, 0.10, 0.64) (0.12, 0.14, 0.74)

Spect (B) (0.01, 0.04, 0.95) (0.02, 0.07, 0.91) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00)

Nguyen-7 (MW) (150,−1.50, 0.15) (120,−0.37, 0.71) (99,−0.54, 0.59) (79,−1.4, 0.17)

Pagie-1 (MW) (140,−1.10, 0.28) (160,−1.80, 0.07) (160,−1.9, 0.06) (170,−2.4, 0.02)

Vlad-4 (MW) (120,−0.25, 0.80) (110, 0.00, 1.00) (210,−3.9, 0.00) (170,−2.4, 0.02)

Table 7. The average number of evaluations until CGP converges for Single and Multi-

n. The lower the better. The number of evaluations for the best model (i.e. the best
�tness, cf. Tab. 5) is underlined; the lowest number indicates the fastest convergence
is in bold.

Dataset Single n = 2 n = 3 n = 4 n = 5

Abalone 2084 2043 2244 2239 2230

Breast Cancer 1497 1319 1632 2085 1561

Credit 1553 2113 1734 2175 1440

Forest Fire 1816 1946 2437 2462 2264

Heart Disease 2174 2042 2802 3048 2805

Page Block 846 957 1044 1194 1041

Spect 461 891 724 1353 1508

Nguyen-7 108 21 64 38 20

Pagie-1 1866 2141 1849 2481 1997

Vlad-4 2149 2052 2494 3309 2527
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�tness values and training times are very identical to the results in Table 5. This
is why we did not list the results separately. Moreover, this implies that the later
decreases of n do not improve the �tness values as all models converge before
n is decreased. Hence it can be said that there is no need for smaller and more
incremental changes in this setting. This leads to the assumption that there is
no gain derived from decreasing n over time.

However, these �ndings are highly counter intuitive to the �ndings of Multi-

n and its slight decrease in performance between n = 4 and n = 5 or n = 3
and n = 5. One may assume that, by decreasing n, CGP should be able to
counter balance the negative e�ects of a starting value of n = 5. The reason is
that there is a big portion of mutation steps utilizing lower n values. Thus, it
should be able to balance the best results of Multi-n seen in Table 5. This may,
in theory, come with the cost of having a lower convergence rate. Nevertheless,
this is not the case here. Our theory is that CGP seems to get stuck in a local
optimum after the �rst iterations. In later stages of training, decreasing the
hyperparameter n apparently cannot signi�cantly help to increase performance.
Further research should be done in this direction to explore the reasoning behind
this phenomenon.

7 Conclusion

In this work, we empirically evaluated the �tness values as well as the conver-
gence speed for three new mutation algorithms. The mutation based on proba-
bility as well as Single was extended. At �rst, two di�erent mutation rates for
active and inactive nodes respectively were employed. On the utilized datasets,
we found that it is favorable to utilize two mutation rates. However, while a
higher rate for inactive genes is encouraged, the optimal probability di�ers be-
tween the problems. Albeit most of the times, it is better to utilize a mutation
rate of 50% or higher.

Afterwards, we extended the Single Algorithm to Multi-n and DMulti-n.
We found that, in these datasets, Multi-n always outperforms Single but its
improvements decline for high values of n.

However, there is the caveat that all of these improvements in �tness value
oftentimes comes with the downside of longer training time. Most of the time,
a single mutation rate or Single need less evaluation steps until a solution was
found.

As for future work, the introduced concepts could be merged and used in-
terchangeably. As Goldman et al. [6] found, Single performs better than the
probabilistic approach when the best mutation rate is unknown. Both of these
mutation strategies could be changed depending on the current training status
and or �tness value.

Another possibility is to keep two mutation rates for active and inactive
genes. In addition, these mutation rates could change with their position in the
grid. In the work of Goldman and Punch [5], they found a high positional bias
in CGP as well as challenged the status quo in terms of neutral search, bloat
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and the importance of genetic drift. By applying higher mutation rates for genes
positioned in the back, a partial success could be achieved to reduce CGP's
positional bias.

At last, it is unclear as to why DMulti-n does not show an advantage over
Multi-n as well as why it does not improve when n is lowered. Further works
might investigate into this phenomena, possibly leading into deeper understand-
ing of CGP.
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