
       

Dynamic DNA methylation reveals novel cis-regulatory elements
in mouse hematopoiesis
  



       
             
            
           
   

            
            
Dynamic DNA methylation reveals novel cis-regulatory
elements in mouse hematopoiesis
     
      
      

      
    
Maximilian Sch€onunga,b, Mark Hartmanna,c, Stephen Kr€amera,b,d, Sina St€ablea, Mariam Hakobyana,b,
Emely Kleinerta, Theo Auriche,f, Defne Cobanoglua,g, Florian H. Heidelh,i, Stefan Fr€ohlingj,

Michael D. Milsome,f, Matthias Schlesnerd, Pavlo Lutsikk**, and Daniel B. Lipkaa,l*

aSection Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer
Research Center and National Center for Tumor Diseases, Heidelberg, Germany; bFaculty of Biosciences,

Heidelberg University, Heidelberg, Germany; cDivision of Pediatric Hematology and Oncology, Department
of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Frei-
burg, Germany; dBiomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer

Science and Medical Faculty, University of Augsburg, Augsburg, Germany; eDivision of Experimental
Hematology, German Cancer Research Center, Heidelberg, Germany; fHeidelberg Institute for Stem Cell

Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; gInstitute of Pharmacy
and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany; hInnere Medizin C, Univer-
sit€atsmedizin Greifswald, Greifswald, Germany; iLeibniz Institute on Aging, Fritz-Lipmann-Institute,
Jena, Germany; jDivision of Translational Medical Oncology, German Cancer Research Center and

National Center for Tumor Diseases, Heidelberg, Germany; kDivision of Cancer Epigenomics, German Can-
cer Research Center, Heidelberg, Germany; lFaculty of Medicine, Otto-von-Guericke-University, Magdeburg,

Germany
                                                                                           
                                                                                 
                                                                                  
                                                                            
                                                                              
                                                                                 
               

                                                                           
                                                                               
                                                                                      
                                                                                       
                                                                                          
                                                                                     
                                                                                 
                                                                                
                                                                                        
                                        

                                                                              
                                                                                      
                                                                                     
                                                                                   
               
                                                     
                                                  
                                                     

                                                 
                            

                                                                
                              

                                            

  



                                       
           
HIGHLIGHTS

� Generation of a DNA methylation reference map of mouse hema-
topoiesis.

� Development of a Mouse Methylation BeadChip array analysis
pipeline.

� Progressive establishment of DNA methylation patterns during
hematopoiesis.

� Discovery of novel DNA methylation-dynamic cis-regulatory ele-
ments (novel mdCREs).

� Association of key hematopoietic lineage genes with hypomethy-
lation of novel mdCREs.

The hematopoietic system of the mouse is among the best-studied
model systems for regenerative tissues. Over the past decades, a road-
map of mouse hematopoietic differentiation has been generated,
whereby hematopoietic stem and progenitor cells (HSPCs) reside on
the top of a hierarchically organized system. These cells give rise to
lineage-committed progenitor cells, which then differentiate into
mature hematopoietic cells. This differentiation process is tightly regu-
lated to ensure the faithful production of hematopoietic cells accord-
ing to the actual needs of the organism. Epigenetic regulation plays a
key role in these processes, and DNA methylation has emerged as an
indispensable epigenetic mark required for maintenance of hemato-
poietic stem cell (HSC) function and faithful hematopoietic differenti-
ation [1−4]. DNA methylation refers to the covalent attachment of a
methyl group to cytosine residues in DNA, which in mammals mainly
occurs in a CpG sequence context [5]. This process is catalyzed by
three enzymes of the DNA methyltransferase (DNMT) family,
namely, DNMT1, DNMT3A, and DNMT3B. The latter two are
required for the de novo establishment of DNA methylation marks,
whereas DNMT1 is a maintenance DNA methyltransferase, which
propagates DNA methylation patterns following DNA replication
[6].

The observation that DNMT3A is among the most frequently
mutated genes in human acute myeloid leukemia (AML) [7,8] led to
a variety of studies investigating the role of DNA methylation in
healthy and malignant hematopoiesis [9−15]. An initial study using a
custom array platform revealed global DNA methylation plasticity
during mouse progenitor differentiation and observed global hyper-
methylation accompanying lymphoid lineage commitment [10]. This
work was further refined using reduced representation bisulfite
sequencing (RRBS), which assessed DNA methylation patterns at a
single CpG resolution. The authors demonstrated that myeloid tran-
scription factor (TF)-binding sites are methylated during lymphoid dif-
ferentiation, suggesting suppression of opposing lineage identities [9].
An integrated genome-wide DNA methylome and transcriptome
map of the HSPC compartment subsequently identified a set of
genes whose expression is at least in part regulated by DNA methyla-
tion programming and provided further support for the importance
of epigenetic programming in normal hematopoiesis [12,13]. Because
in-depth characterization of regulatory sites is required to achieve a
comprehensive understanding of hematopoietic differentiation pro-
cesses at the systems level, the robust identification and functional
annotation of cis-regulatory elements (CREs) via computational epi-
genomics is a critically important task. Many consortia, such as The
Immunological Genome Project (ImmGen) or the Validated System-
atic Integration of Hematopoietic Epigenomes (VISION), have inten-
sively worked on mapping and stratifying CREs that are dynamically
regulated during hematopoiesis [16,17]. However, these CRE catalogs
are solely defined by open chromatin and histone modification pat-
terns and thus lack a comprehensive annotation of dynamic DNA
methylation changes in mouse hematopoiesis. In contrast, the Ency-
clopedia of DNA Elements (ENCODE) analyzed DNA methylation,
histone marks, CCCTC binding factor (CTCF) deposition, and DNa-
seI binding across multiple organs and developmental stages during
mouse ontogenesis [18]. Nevertheless, this consortium did not specifi-
cally analyze cell types of the hematopoietic system, and their registry
of candidate CREs (cCREs) is based on H3K4me3, H3K27ac, CTCF,
and DNaseI and does not include DNA methylation.

The lack of a systematic DNA methylation layer in current CRE
atlases might in part be explained by the lack of robust, reproducible,
and cost-efficient methods for DNA methylation analysis in mouse
cells. Genome-wide methods include whole-genome bisulfite
sequencing (WGBS) and RRBS. Although RRBS can be performed
at relatively low costs, this method provides only limited information
on the DNA methylome with a strong bias toward CpG-dense
regions. In contrast, WGBS provides unbiased information covering
all CpGs throughout the genome. However, this is associated with
comparatively high costs, resulting from the requirement to sequence
with sufficient genome coverage to accurately estimate the DNA
methylation level of individual CpGs. As a result, WGBS is not ame-
nable for large-scale DNA methylation analysis of mouse models.

In human studies, these limitations were overcome by the intro-
duction of Infinium DNA Methylation BeadChip arrays, which in
their latest version allow the highly reproducible analysis of up to
850,000 CpG sites at low cost, facilitating the study of large patient
cohorts [19−21]. However, until recently, this technology was not
available for mouse samples. This changed with the recent introduc-
tion of the Infinium Mouse Methylation BeadChip (MMBC) array in
2020, which now allows DNA methylome analyses in mice at afford-
able cost. The MMBC array interrogates 285,000 CpG sites across
the mouse genome, including promoter regions of more than 28,000
protein-coding transcripts and 60,000 enhancers. However, meaning-
ful data analysis is likely to still pose a significant hurdle for many
groups who do not have specialized bioinformatics support in this
area.

We established an easy-to-use computational pipeline for the anal-
ysis of MMBC data that is based on the RnBeads Bioconductor pack-
age [22,23]. As a proof of concept, we applied this pipeline to
MMBC data generated from nine hematopoietic cell types across all
major lineages to provide an atlas of DNA methylation patterns of
the mouse hematopoietic system, which can serve as a resource for
the scientific community. In-depth analysis of this data set identified
DNA methylation programs associated with hematopoietic lineage
commitment and revealed novel candidate CREs that likely contrib-
ute to differentiation and regulation processes in hematopoiesis.
METHODS

Mice and Ethics Statement

C57BL/6J (Cd45.2) and B6.SJL-Ptprca Pepcb/BoyCrl (Cd45.1) mice
were bred in-house at the German Cancer Research Center (DKFZ)



                      
         

                 
under specific pathogen-free conditions. Mice at the age of 6−16
weeks were used for all experiments.

In addition, bone marrow samples from mice expressing the condi-
tional JAK2V617F mutant allele were used [24]. The mutant allele was
induced by a Vav1-Cre recombinase. Bone marrow was harvested
from JAK2V617F-expressing mice (JAK2VF/+ Vav-Cre+) and the
respective JAK2-wildtype (JAK2+/+ Vav1-Cre+) littermate controls at
10−12 weeks of age. All mouse experiments were approved by local
authorities according to German and European guidelines.

Bone Marrow Isolation and Cell Sorting

Tibiae, femora, iliae, vertebrae, sterna, and humeri of sacrificed mice
were isolated and crushed three times in Iscove’s modified Dulbec-
co's medium (Gibco) using a mortar and pestle. The supernatant was
filtered through 40-mm cell strainers (Falcon), and bone marrow cells
were pelleted by centrifugation. Red blood cell lysis was performed
by adding ACK lysis buffer (Lonza). The bone marrow cellularity was
determined by counting using a veterinary hematology analyzer (scil
Vet abc Plus+, scil). Lineage depletion was performed for the isolation
of HSPCs (Lin- Sca1+ Kit+ cells [LSK], common myeloid progenitors
[CMP], granulocyte macrophage progenitors [GMP], and megakar-
yocyte-erythroid progenitors [MEP]) and T cells (CD4 T cells and
CD8 T cells). In brief, biotinylated lineage antibodies were added to
the isolated bone marrow cells (HSCPs: CD5, CD8, B220, CD11b,
Gr1, and Ter-119; T cells: CD11b, CD16/32, B220, and Ter-119; man-
ufacturer details in Supplementary Table E1) and the labeled cells
were subsequently incubated with Mouse Depletion Dynabeads
(Invitrogen). Purification of lineage-negative cells was performed
using a DynaMag-15 magnet (Invitrogen). Cells were stained accord-
ing to previously established gating strategies for the mouse hemato-
poietic system [25,26] (Supplementary Figure E1; Supplementary
Table E1). Cell sorting was performed using a BD FACS Aria II or III
cell sorter (BD Biosciences). In total, 3£105 cells were sorted per
tube and snap-frozen on dry ice.

Flow Cytometry

For flow cytometry, isolated bone marrow cells were stained with
specific panels for the identification of hematopoietic cell lineages
(Supplementary Table E1; Supplementary Figure E1). All measure-
ments were performed on an LSRII flow cytometer (BD Bioscien-
ces).

DNA Isolation and MMBC

Snap-frozen cell pellets were thawed on ice, and DNA was isolated
using a QIAamp DNA Micro Kit (Qiagen) according to the manufac-
turer’s instructions. DNA concentrations were measured using the
Qubit dsDNA HS Assay Kit (Invitrogen). The integrity of genomic
DNA was verified by the DKFZ Genomics and Proteomics Core
Facility, and 100−250 ng was subjected to DNA methylation analysis
using Infinium MMBC arrays (Illumina).

RnBeads-Compatible Annotation of the MMBC Array

The RnBeadsAnnotationCreator package (https://github.com/epigen/
RnBeadsAnnotationCreator) was modified to generate an RnBeads-
compatible annotation of the MMBC array for the mm10 reference
genome. In short, the Infinium Mouse Methylation Manifest File (version
1.0) was downloaded and divided into assay and control probes. The
assay probes included 287,050 probes, of which 284,860 probes
were annotated to bind in a CG context, 838 in a CH context, and
1,352 in an SNP context. Among those, 24,860 probes (22,670 CG,
838 CH, and 1,352 SNP) were marked as “MFG_Change_Flagged,”
indicating manufacturing-related performance problems. These
probes and an additional 26 probes binding on the mitochondrial
genome (chrMT) were excluded from the reference annotation. This
resulted in 262,164 probes, which were considered for the RnBeads
DNA methylation analysis workflow. The control probes were anno-
tated as bisulfite conversion, specificity, non-polymorphic, or negative
control probes, with either an expected high or background intensity
as provided by Illumina. The resulting probe annotations together
with further mm10 genome annotations, which are required for the
RnBeads workflow, are available as RnBeads.mm10 package from Bio-
conductor [27].
Processing of DNA Methylation Array Data

A pipeline for the analysis of MMBC data was developed within
the RnBeads Bioconductor environment (release 3.1.4) [22,23,27].
In short, IDAT files were imported into RnBeads and a quality
control report was generated to inspect data quality. Background
subtraction (“rnb.bgcorr.subtr”) and subsequent intra-array dye
bias normalization (“rnb.norm.scaling”) with an internal reference
were performed. Unreliable probes (Greedycut algorithm with
detection p < 0.01) and probes mapping to sex chromosomes
were removed from the data set. For unsupervised inspection of
the data, a principal component analysis (PCA) was computed
based on the 5,000 most variable CpGs (mvCpGs) as deter-
mined by SD.
Functional Annotation of the MMBC Array

Gene and genomic region annotation were performed with gtfanno
0.2.0 (https://github.com/stephenkraemer/gtfanno). For all probes,
residence in the following genomic regions was considered (in
order of precedence): 1) promoter (1,500 bp upstream to 500 bp
downstream of transcription start sites [TSS]); 2) 50-untranslated
region (UTR) or 30-UTR; 3) intron or exon; 4) distant CRD
(DCRD; region §100 kb from TSS); and 5) intergenic (if no other
category was met). Based on a recent large-scale study of the
mouse immune system and its differentiation cascades, we used a
window of §100 kb around the TSS for annotating putative
enhancer relationships [16]. Annotations were performed against
Gencode (release M25 for GRCm38/mm10), considering only the
principal isoform of protein-coding genes (based on the APPRIS
isoform annotations provided with Gencode M25) [28]. If a probe
was annotated to several region classes, only annotations for the
region class with the highest precedence were considered. Within
the highest-ranked region class for each probe, all possible gene
annotations were kept. For example, a probe may reside in the pro-
moter region of two genes. In this case, both gene annotations
were kept. The distance of the probe to the TSS (for promoter
and DCRD annotated probes) or to the center of the exon, intron,
or UTR is detailed in the annotation table to allow for further rank-
ing in cases in which multiple genes were annotated to a single
probe (Supplementary Table E2). Documentation of the annotation
workflow is publicly available (https://github.com/stephenkraemer/
bead_chip_array_annotations).

https://github.com/epigen/RnBeadsAnnotationCreator
https://github.com/epigen/RnBeadsAnnotationCreator
https://github.com/stephenkraemer/gtfanno
https://github.com/stephenkraemer/bead_chip_array_annotations
https://github.com/stephenkraemer/bead_chip_array_annotations


                                       
           
Comparison of Data from Hematopoietic Cell Types Obtained
by RRBS and Tagmentation-Based Whole-Genome Bisulfite
Sequencing

Tagmentation-based WGBS (TWGBS) data from LSK subpopula-
tions (GSE146907) and RRBS data from hematopoietic progenitor
and differentiated cell types (RRBS; https://medical-epigenomics.
org/papers/broad_mirror/invivomethylation/index.html) from two
previous publications were downloaded (Supplementary Table E3)
[9,29]. TWGBS data were processed using the Methrix Bioconductor
package [30]. All autosomal CpG sites overlapping with the MMBC
array with minimal coverage of 10 reads in at least two replicates
were considered for further analysis. For analysis of the RRBS data, a
liftover from mm9 to mm10 was performed using the “liftOver” func-
tion from the rtracklayer R package, and CpG sites overlapping with
the MMBC array were determined [31]. For RRBS correlation analy-
sis, all autosomal CpG sites with a coverage of >20 reads were con-
sidered. Replicates from the same cell type were summarized by
mean and plotted against MMBC data using the ggpointdensity pack-
age (https://github.com/LKremer/ggpointdensity).
Unsupervised Phylogenetic Analysis

An unsupervised DNA methylation-based phylogenetic reconstruc-
tion of the mouse hematopoietic hierarchy was performed by extract-
ing the 5,000 mvCpGs from the data set and calculating the
Manhattan distance. The “fastme.bal” function from the ape R pack-
age was applied to infer phylogenetic trees based on a minimal evolu-
tion algorithm, and trees were plotted using the ape “plot.phylo”
function [32].
Cell Type Deconvolution

To determine a set of CpG sites that could predict the composition of
differentiated hematopoietic cell types in a tissue with high accuracy,
we calculated differentially methylated CpG sites in a one-versus-all
fashion between T cells, B cells, monocytes, neutrophils, and MEPs.
CpG sites with a maximum methylation of 20% in the query cell
type and a minimum methylation of 70% in all other cell types with
an SD per group of <10% and a false discovery rate adjusted p-value
of <0.05 were considered as cell type-specific differentially methyl-
ated probes (ctDMPs). These ctDMPs were then sorted based on the
mean methylation difference (Dmeth) between the two groups, and
the top 50 CpG sites with the highest Dmeth were used for cell type
decomposition (Supplementary Table E4). The cell type contribution
in the bone marrow of CD45.1, CD45.1, and JAK2V617F mutant
mice was predicted using different established algorithms: House-
man’s constrained projection method (RnBeads implementation),
EpiDISH robust partial correlations (RPC), and Cibersort (CBS)
mode as well as the reference-free non-negative matrix factorization-
based method MeDeCom [33−36]. For MeDeCom, a parameter
search was conducted to find the best LMCs (2−10) and λ-value (set-
tings: NINIT = 10, NFOLDS = 10, ITERMAX= 100,
NCORES = 20). The best results based on the evaluation of the
cross-validation error were achieved for five LMCs and a λ-value of
0.01. The fractional cell type contribution was calculated for the dif-
ferent samples and compared with flow cytometry data obtained
from the same samples. The mean absolute error (MAE) was calcu-
lated using the Metrics R package (https://github.com/mfrasco/
Metrics) and used as a measure of the predictive power of the differ-
ent algorithms.

Differential Methylation Calling

DMPs between LSK cells and all other cell types were determined in
a pairwise manner using the RnBeads “rnb.execute.computeDiffMeth”
function. CpG sites with a mean methylation difference of >20% and
a false discovery rate adjusted p-value of <0.05 were considered as
differentiation dynamic DMPs (diffDMPs) for each cell type (Supple-
mentary Table E5). The localization diffDMPs around the TSS of
common lineage marker genes were plotted using the Gviz Biocon-
ductor package [37].

Enrichment of TF-Binding Motifs

Enrichment of known TF-binding motifs within each hypomethylated
diffDMP set was calculated using the HOMER software (v4.8) [38].
In short, the HOMER “findMotifsGenome” function was used with
each cell type diffDMP set as input data and all remaining CpG sites
from the MMBC array (after quality control filtering) as a background
set. The size of the tested region was fixed as 50 bp upstream and
downstream of the input locus. Enrichment was calculated as the per-
centage of target regions with a known motif divided by the percent-
age of background regions with the same motif.

Overlap with Known CREs

Four previously published CRE catalogs were analyzed for overlap
with the MMBC array and with diffDMPs: ENCODE candidate
CREs (ENCODE-CRE), VISION project hematopoietic CREs
(VISION-CRE), hematopoietic enhancer (Enhancer-CRE), and open
chromatin regions (OCRs) of the Immunological Genome (IMGEN)
consortium (IMGEN-CRE) [16−18,39]. All CREs mapped to auto-
somes were considered for the analysis. IMGEN-CREs were
expanded by 125 bp upstream and downstream as these sites were
reported as having 250 bp width centered on the summit [16].
Enhancer-CRE intervals were extracted from Supplementary Table
E2 as provided in the study by Lara-Astiaso et al. [39]. The mm9
interval coordinates were translated to mm10 coordinates with the
UCSC liftOver command-line program. We used the mm9ToMm10.
over.chain.gz chain file provided in the UCSC genome browser data-
base (https://hgdownload-test.gi.ucsc.edu/goldenPath/mm9/lift
Over/mm9ToMm10.over.chain.gz).

The number of overlapping CpGs was plotted using the UpSetR
package (https://github.com/cran/UpSetR). We defined three sets of
candidate CREs for further analysis based on the overlap between
the catalogs used: methylation-dynamic CREs (overlap of diffDMPs
with any CRE of the previous catalogs), chromatin CREs (regions
identified in previous CRE catalogs, which did not show DNA meth-
ylation dynamics in our MMBC data set), and novel methylation-
dynamic CREs (novel mdCREs; diffDMPs, which did not overlap
with any of the other sets). The Pearson correlation of the methyla-
tion b-values for these CRE sets was calculated for all profiled cell
types.

Clustering of Candidate CREs

The mean methylation b-values of all novel mdCREs were calculated
across all biological replicates of each cell type and were then trans-
formed to Z scores. For unsupervised hierarchical clustering, we used

https://medical-epigenomics.org/papers/broad_mirror/invivomethylation/index.html
https://medical-epigenomics.org/papers/broad_mirror/invivomethylation/index.html
https://github.com/LKremer/ggpointdensity
https://github.com/mfrasco/Metrics
https://github.com/mfrasco/Metrics
https://hgdownload-test.gi.ucsc.edu/goldenPath/mm9/liftOver/mm9ToMm10.over.chain.gz
https://hgdownload-test.gi.ucsc.edu/goldenPath/mm9/liftOver/mm9ToMm10.over.chain.gz
https://github.com/cran/UpSetR


                      
         

                 
Ward’s method on the squared Euclidean distance. We used the “cut-
tree” R function to determine cell type−specific DNA methylation
programs and randomly selected 350 CpG sites from each cluster for
visualization.

Correlation to Gene Expression Data

RNA-sequencing (RNA-Seq) raw counts were downloaded from the
Haemopedia collection and processed using the DESeq2 Bioconduc-
tor package [40,41]. Genes with more than 10 reads over all cell pop-
ulations were included as expressed genes. The data were subjected
to variance-stabilizing transformation using the DESeq2 “vst” function.
The genes associated with each CRE (based on the distance defini-
tion; see “Functional Annotation of the MMBC Array” section) were
extracted and used for calculation of the Pearson correlation between
the cell types.

Identification of Putative Associations Between CREs and
Target Genes

Differential expression from LSK cells to all differentiated down-
stream cell populations was calculated using the DESeq2 Bioconduc-
tor package. Shrinkage of log2 foldchange (log2FC) values was
performed using the adaptive shrinkage estimator (ashr) as imple-
mented in the “lfcShrink” DESeq2 function [41]. Genes with an FDR-
adjusted p < 0.01 and log2FC >2 were considered as differentially
expressed genes (DEGs). TSS of expressed genes were gathered
from the Ensembl Archive Release 102 (November 2020; GRCm38.
p6) and all TSSs within a distance of 1 Mb to novel mdCREs were
mapped. For each novel mdCRE/gene pair, the mean methylation
b-value and mean vst-adjusted expression value were calculated
across the replicates of each cell type. These sets of paired methyla-
tion/expression values were subjected to an association test using
Pearson correlation and a linear model (i.e., expression of the target
gene as a function of the methylation value). The correlation test p-
values were false discovery rate (FDR) adjusted using the Benjamini-
Hochberg method. Sites with an FDR-adjusted correlation test p <
0.01 were considered as candidate associations. The intensity of asso-
ciation could be defined as the slope of the underlying linear model
whereby an absolute slope > 4 was required for a putative novel
mdCRE/gene pair.

Analysis of HiC Data

HiC data of naïve CD8+ T cells were downloaded from Gene
Expression Omnibus (GEO) (GSM5017661) and analyzed using Jui-
cebox [42,43]. Associated novel mdCREs for Thy1 were lifted to
mm9 and annotated together with the Thy1 TSS.

Data and Code Availability

All statistical analyses were performed using R version 4.0.3 and the
code is publicly available on GitHub (https://github.com/MaxSchoe
nung/MMBC). The ggplot2 and pheatmap (https://github.com/raivo
kolde/pheatmap) R packages were used for visualization [44]. The
MMBC data for hematopoietic cell types is available at the NCBI’s
GEO data repository (GSE201923). In addition, the following pub-
licly available data sets were used for this study: Haemopedia-Mouse-
RNASeq (https://www.haemosphere.org/datasets/show), LSK
TWGBS (GSE146907), and Hematopoiesis RRBS (https://medical-
epigenomics.org/papers/broad_mirror/invivomethylation/index.
html), CD8+ T cells HiC (GSM5017661) [9,29,40,42].

RESULTS

Implementation of an MMBC Array Analysis Framework in
RnBeads

To facilitate seamless analysis of MMBC array data, we extended our
earlier published R package RnBeads and used it to build a compre-
hensive computational workflow for the present study [22,23]. First,
we converted the manifest file provided by the manufacturer into an
RnBeads-compatible MMBC array annotation, which we added to
the RnBeads.mm10 companion data package (see Methods for fur-
ther details). Second, we adapted and generalized the core function-
ality of RnBeads to support the new array type. As a result, our
RnBeads-based computational workflow allows for automated and
user-friendly processing and analysis of MMBC data, which is in full
equivalence with the RnBeads workflows for 450k/EPIC-arrays. In
particular, data loading and quality control of the unprocessed IDAT
files can be executed using a single R function with global pipeline
configuration options. The subsequent preprocessing module features
several methods for background correction, automated filtering, and
normalization. The majority of QC and preprocessing procedures
already available in RnBeads for human 450k/EPIC arrays also work
for MMBC array data, including control probe visualization, negative
control- and out-of-band-based background subtraction, multiplica-
tive dye bias correction, and most probe filtering steps. Additional
downstream analysis modules allow users to perform standard
exploratory analysis, such as dimensionality reduction, inference of
batch effects and major covariates, calling of DMPs, and execution of
reference-based cell type deconvolution. Each of the modules gener-
ates an interactive HTML report for documentation and reproducibil-
ity purposes (Figure 1A). The updated package, featuring MMBC
support starting from version 2.9.4, is freely available on Bioconduc-
tor [27]. Furthermore, we generated a comprehensive functional
annotation of the MMBC array, including mapping of probes to regu-
latory regions in the mouse genome (mm10) and gene annotations
(Supplementary Table E2). Finally, we established a bioinformatic
workflow for de novo identification of methylation-dynamic CREs
(mdCREs) throughout hematopoietic differentiation. Integration
with published gene expression data allowed us to propose putative
functional gene annotations for a subset of these novel mdCREs
(Figure 1A).

MMBC Reference Map of Mouse Hematopoietic Differentiation

To study the DNA methylation patterns across the mouse hemato-
poietic system, nine hematopoietic cell types were prospectively iso-
lated in biological triplicates from the bone marrow of C57BL/6J
mice by fluorescence-activated cell sorting (FACS) using a set of
established cell surface markers (Figure 1B, Supplementary Figure
E1, Supplementary Table E1). Genomic DNA was purified and ana-
lyzed on the MMBC platform, which allows the simultaneous analy-
sis of the DNA methylation status of 285,000 CpGs throughout the
mouse genome. The data were processed using our newly estab-
lished RnBeads MMBC analysis pipeline. We then assessed the qual-
ity of the generated MMBC data set by 1) evaluating the internal
control probe intensities for each step of the procedure for their
expected values; 2) interrogating the median Infinium bead count

https://github.com/MaxSchoenung/MMBC
https://github.com/MaxSchoenung/MMBC
https://github.com/raivokolde/pheatmap
https://github.com/raivokolde/pheatmap
https://www.haemosphere.org/datasets/show
https://medical-epigenomics.org/papers/broad_mirror/invivomethylation/index.html
https://medical-epigenomics.org/papers/broad_mirror/invivomethylation/index.html
https://medical-epigenomics.org/papers/broad_mirror/invivomethylation/index.html


Figure 1 Mouse Methylation BeadChip (MMBC) reference map of hematopoietic differentiation. (A) Schematic depicting the compu-
tational pipeline that was developed and implemented within the RnBeads Bioconductor package. This pipeline includes quality

                                       
           



                      
         

                 
value and proportion of probes with low Infinium bead counts; and
3) assessing the proportion of probes with high detection p-values.
Our QC assessment confirmed the overall high quality of the data
generated with the MMBC array. Internal control probes demon-
strated expected intensity ranges according to the annotation pro-
vided by the manufacturer. The median bead count was 24 (range
0−204), and all samples had more than 261,550 (99.98%) probes
with an Infinium bead count of >3. The number of low-quality
probes with detection p-values > 0.001 ranged between 3 and 22
probes across all samples (Supplementary Figure E2A). Per CpG
comparison of b-values between biological replicates showed a high
correlation for all cell types as demonstrated for LSK (Pearson corre-
lation, r = 0.998, p < 2.2e-16), further confirming the technical
reproducibility (Supplementary Figure E2B, C). Additionally, an
inspection of methylation b-values before and after intra-array nor-
malization revealed a minor shift of the underlying methylation val-
ues, indicating a uniformly high quality of the data set
(Supplementary Figure E2D). To further assess the quality of the
MMBC data, we compared these with previously published data
from analogous cell populations generated using either TWGBS or
RRBS data. The TWGBS data set covered »2.48£105 CpGs
(100%) of the 2.48£105 autosomal CpGs present on the MMBC
array, whereas the RRBS data set covered only »2.1£104 (9%) of
the autosomal CpGs represented on the MMBC array (Supplemen-
tary Table E3). After quality control and coverage filtering,
2.35£105 CpGs (95% of autosomal MMBC CpGs) and 0.6
−1.6£104 CpGs (2.5%−6.7% of autosomal MMBC CpGs)
remained from the TWGBS and the RRBS data sets. Further analysis
revealed a high correlation of the MMBC data with the published
DNA methylation data sets, demonstrating the high quality of our
MMBC data set (r = 0.98 for TWGBS and r = 0.97−0.98 for
RRBS; Figure 1C, Supplementary Figure E3). Unsupervised analysis
of DNA methylation patterns in the represented cell types using
PCA showed that replicates from the same cell type cluster closely
together. Thus, different cell types can be distinguished based on
global DNA methylation differences, whereby the lymphoid and
myeloid lineages showed the most divergent DNA methylation pat-
terns (Figure 1D, E). Phylogenetic tree analysis recapitulated the
early branching of the lymphoid and the myeloid arms starting from
immature LSK cells (Figure 1F). Furthermore, this analysis demon-
strated that MEPs branch early from the myeloid arm, which is in
line with a previously described erythroid/megakaryocytic-priming
of CD55+ MPPs and CMPs [45]. In summary, we have generated a
high-quality MMBC reference data set of mouse hematopoiesis that
may serve as a resource for researchers working with mouse models
spanning a wide spectrum of diseases.
control, preprocessing (i.e., background subtraction, filtering, and no
tion and de novo identification of methylation-dynamic cis-regulato
bead chip data. (B) Overview of the hematopoietic cell types isolate
sity dot plot showing the correlation of DNA methylation b-valu
sequencing (TWGBS) and MMBC data of Lin� Sca1+ Kit+ (LSK) cel
were included in this analysis (n = 234,814 CpGs). Pearson correlat
analysis using the 5,000 most variable CpG (mvCpG) sites separat
The axes depict the principal components (PC) 1−3. (E) Heatmap
umns represent the cell types and the biological replicates, and the r
distance and complete linkage. Columns were ordered based on kno
genetic tree depicting the relationship of all cell types including the r
phylogenetic tree was calculated based on the methylation levels of
Identification of Reference DNA Methylation Programs Allows
Reliable Cell Type Deconvolution from Bulk Samples

Previous studies of reference epigenomes have revealed cell type
−specific DNA methylation patterns and underlined their suitability
to infer the cellular composition of bulk samples [46]. Based on this
knowledge, we tested if our MMBC data set could be used to per-
form reference-based cell type deconvolution of mouse bone mar-
row samples. Therefore, cell type-specific DMPs (ctDMPs) were
identified using a stringent filtering strategy. We selected CpGs that
exhibited strong cell type-specific hypomethylation while uniformly
maintaining high methylation levels across all other cell types
(Figure 2A; Supplementary Table E4). Data from HSPCs and myeloid
progenitor cells (CMPs and GMPs) were not included in this analysis,
as these cell populations constitute only a minor fraction of cells in
total bone marrow samples. Methylation data from CD4+ and CD8
+ T cells were combined and considered as “T cells,” as our filtering
strategy did not identify CpGs that would allow us to distinguish
between these T-cell subsets. In total, this analysis identified a set of
201 ctDMPs, which were used as features for cell type deconvolution
(Figure 2A, B). Four different cell type deconvolution algorithms,
which had previously been shown to work on human DNA methyla-
tion array data, were applied to compare their performance on the
selected ctDMPs: the reference-based constrained projection (CP)
algorithm (“Houseman”); the EpiDISH Cibersort (CBS) algorithm;
the EpiDISH RPC algorithm; and the reference-free constrained
non-negative matrix factorization algorithm MeDeCom [33−36].
The performance of these algorithms was tested on array data gener-
ated from total bone marrow samples isolated from two C57BL/6
wildtype mice carrying either the Cd45.1 or the Cd45.2 allele, as well
as from two bone marrow samples isolated from a myeloproliferative
neoplasia mouse model. These mice expressed a conditional
JAK2V617F knock-in allele, which previously caused a shift in the
myeloid and erythroid compartment, thus allowing us to test the
capability of the algorithms to predict disease-specific changes in the
cell type composition. Flow cytometry-based measurements of all ani-
mals were used as comparator data (Figure 2C). The MAE for each
cell type was calculated as this measure has recently been established
as a powerful predictor for the comparison of cell type deconvolution
algorithms [47]. Overall, all four deconvolution algorithms performed
comparably well on our test samples and were able to accurately dis-
criminate cell types based on the selected ctDMPs. The CP method
implemented in RnBeads performed best for the prediction of T-cell
(MAE: 0.02) and monocyte (MAE: 0.03) fractions, whereas B cells
were best predicted by EpiDISH (CBS; MAE: 0.04). For neutrophils,
EpiDISH (RPC), MeDeCom, and RnBeads (CP) worked similarly
rmalization), differential methylation calling, cell type deconvolu-
ry elements (CREs), and visualization of the mouse methylation
d by flow cytometry and analyzed in the present study. (C) Den-
es derived from tagmentation-based whole-genome bisulfite
ls. All CpG sites with >10 reads in at least two TWGBS samples
ion was calculated. (D) Three-dimensional principal component
ed major hematopoietic cell types and differentiation branches.
depicting the hierarchical clustering of the 5,000 mvCpGs. Col-
ows represent the CpGs. Rows were clustered using Manhattan
wn lineage relationships in the hematopoietic system. (F) Phylo-
eplicate information over three replicates for each cell type. The
the 5,000 mvCpGs using the Manhattan distance metric.



Figure 2 Cell type deconvolution. (A) Schematic overview of the cell type deconvolution pipeline. Cell type-specific DMPs (ctDMPs)
were determined in a one-versus-all manner using a stringent filtering strategy. The identified ctDMPs were used as input for four

                                       
           



                      
         

                 
well (MAE: 0.07; Figure 2C). The power to predict differences in cel-
lular composition using the selected ctDMPs for cell type deconvolu-
tion was further highlighted by an in-depth analysis of the monocytic
compartment: all four algorithms predicted an increase in the mono-
cyte fraction in the unsorted total bone marrow of JAK2V617F
mutant mice (Figure 2D), which could be confirmed by flow cytome-
try (Figure 2E, F). Of note, the MEP fraction was systematically pre-
dicted to be higher than the fraction of MEPs as measured by FACS,
resulting in a relatively high MAE (MAE: 0.22−0.27; Figure 2C). A
likely explanation for this finding could be that MEP-specific methyla-
tion programs also identify other nucleated erythrocyte progenitor
cells present in the bone marrow. It is well established that nucleated
erythrocyte precursors make up »20% of all nucleated bone marrow
cells, which would fit well with the predicted values [48]. This inter-
pretation is further supported by the observed increase in the pre-
dicted fraction of MEPs in both JAK2V617F knock-in bone marrow
samples, which is in line with published data demonstrating an
increase in erythrocyte progenitors in this model [24].

In conclusion, we established an enhanced strategy to define
ctDMPs from MMBC array data, which encompasses the most abun-
dant hematopoietic cell types present in the bone marrow. These
ctDMPs allow accurate cell type deconvolution independent of the
chosen algorithm and facilitate an orientating analysis of aberrant
hematopoiesis from bulk bone marrow samples.
DNA Methylation Dynamics During Mouse Hematopoietic
Differentiation

Next, we aimed to comprehensively investigate DNA methylation
programming during hematopoiesis. We calculated pairwise differen-
tial methylation between HSPCs and each of the remaining eight cell
types analyzed to determine all CpGs that show dynamic methylation
across hematopoietic differentiation (“differentiation dynamic
DMPs”; diffDMPs). In total, we identified 37,512 diffDMPs (Supple-
mentary Tables E5 and E6), of which 20,195 were found to be differ-
entially methylated in more than one cell type (“shared diffDMPs”),
whereas 17,317 diffDMPs were exclusively identified in a single cell
type (“unique diffDMPs”). During hematopoietic differentiation, DNA
methylation changes were predominantly characterized by a loss of
DNA methylation with 88% (15,278) of the unique diffDMPs and
74% (14,985) of the shared diffDMPs showing hypomethylation
compared with HSPCs (Figure 3A). Gain of DNA methylation dur-
ing differentiation from HSPCs to differentiated cell types was almost
exclusively observed in cells of the lymphoid lineage (Figure 3A). The
vast majority of diffDMPs determined for CMPs (100%) and GMPs
(99.93%) were shared diffDMPs. In contrast, unique diffDMPs were
typically identified in MEPs and differentiated cell types: in MEPs,
49% of diffDMPs were unique to this cell type, followed by CD4+ T
cells (33% unique diffDMPs), neutrophils (21% unique diffDMPs),
and monocytes (11% unique diffDMPs).
different cell type deconvolution algorithms. The predicted fractio
mutant mice (n = 2) were compared with flow cytometry measurem
the DNA methylation b-values for the ctDMPs. (C) Scatter plot comp
absolute error (MAE) was calculated for each cell type and algorithm
from the different deconvolution algorithms for wildtype (CD45.1 a
data assessing the fraction of monocytes of all CD45+ cells. Data
cytometry gating (F).
Next, we investigated whether shared diffDMPs identify DNA
methylation programs that are “inherited” along hematopoietic differ-
entiation trajectories. To disentangle the relationships of shared
diffDMPs across the different cell types, we calculated the percentage
of overlapping diffDMPs across cell types (Figure 3B, Supplementary
Table E7). A large fraction of diffDMPs identified in CMPs over-
lapped with diffDMPs identified in other myeloid cell types and
MEPs, indicating that DNA methylation changes at these sites are
faithfully propagated along the myeloid and the erythrocyte/mega-
karyocyte differentiation axis (Figure 3B, Supplementary Figure E4,
Supplementary Table E7). A similar pattern was observed for
diffDMPs identified in GMPs, where we found that the majority of
diffDMPs were shared with monocytes (98%) and neutrophils
(94%), whereas a much smaller proportion of GMP diffDMPs were
shared with CMPs (18%). Of note, only very few diffDMPs identified
in cells of the myeloid lineage were shared with lymphoid cell types
and vice versa showing the divergence of these lineages at the epige-
netic level. Interestingly, 75% of diffDMPs identified in CMPs were
shared with MEPs, whereas only 29% of GMP diffDMPs were
shared with MEPs (Figure 3B). This observation is in line with a previ-
ously described erythroid/megakaryocytic-priming of CD55+ pro-
genitor cells, which constitute a substantial fraction of
immunophenotypic CMPs but are virtually absent in GMPs [45].

These findings suggested that cell type−specific DNA methylation
patterns are established in a progressive manner during differentiation
and hence might serve as a molecular barcode to decipher differentia-
tion trajectories in vivo. This can be exemplified by looking at the
DNA methylation changes of monocyte-specific diffDMPs along the
myeloid differentiation axis. Thus, diffDMPs that are hypomethylated
in monocytes show the highest DNA methylation level in HSPCs and
progressively lose methylation along the myeloid differentiation tra-
jectory until they reach the lowest level in monocytes. Conversely,
diffDMPs that are hypermethylated in monocytes show the lowest
DNA methylation level in HSPCs and continuously gain methylation
along the monocytic differentiation axis (Figure 3C). The progressivity
of the DNA methylation changes observed during hematopoietic dif-
ferentiation appears to not only be a result of a progressive loss of
DNA methylation at single CpG positions but also involves the proc-
essive recruitment of neighboring CpGs (Figure 3D).
diffDMPs Reveal Novel Candidate CREs in the Mouse Genome

The observed “inheritance” of DNA methylation patterns acquired
during differentiation suggested a potential role of diffDMPs in the
regulation of hematopoiesis. To confirm this hypothesis, we analyzed
the enrichment of binding motifs from known hematopoietic TFs in
hypomethylated diffDMPs. We found enrichment of KLF TF-family
motifs in MEPs and enrichment of GATA TF-family motifs in MEPs
and CMPs (Figure 4A). Myeloid lineage specification was accompa-
nied by an enrichment of CEBP and PU.1 TF motifs in hypomethy-
lated diffDMPs found in CMPs and GMPs. Terminally differentiated
ns for C57BL/6 wildtype (CD45.1 and CD45.2) and JAK2V617F

ents to assess the prediction accuracy. (B) Heatmap depicting
aring the predicted and measured cell type fractions. The mean
. (D) Barplot showing the predicted monocyte fractions resulting
nd CD45.2) and JAK2V617F mutant mice. (E, F) Flow cytometry
are shown as barplots (E) and density plot to visualize the flow



Figure 3 DNA methylation changes underlying mouse hematopoietic differentiation. (A) Differentiation dynamic DMPs (diffDMPs; p <
0.05 and delta methylation > 0.2) were computed between LSK cells and all other cell types. Hypo- and hypermethylation refer to
the loss and gain of DNA methylation in the respective cell type compared with that in LSK cells. The number of hypo- and hyperme-
thylated probes per cell type is depicted as a bar plot. Each set of DMPs has been divided into shared DMPs (also differentially meth-
ylated in another cell type) and unique DMPs. (B) Heatmap showing the percentage of shared DMPs across cell types (row-wise). (C)
Violin plot showing the DNA methylation change of monocyte-specific diffDMPs from LSKs to cell types of the myeloid lineage. The
diffDMPs were stratified as hypo- or hypermethylated based on the DNA methylation difference to LSK cells. The DNA methylation
differences (D methylation) were calculated by subtracting b-values of LSKs from each cell type. (D) Locus plot depicting the geno-
mic region of the myeloid transcription factor Cebpe. Methylation b-values for the two diffDMPs identified in this region are shown as
barplots, and significant methylation changes are indicated with a shaded background.

                                       
           
cell types showed characteristic enrichment patterns of TF-binding
motifs. Thus, diffDMPs hypomethylated in monocytes were enriched
for IRF motifs, diffDMPs hypomethylated in CD4+ and CD8+ T
cells were enriched for TCF and LEF1 motifs, and diffDMPs hypome-
thylated in B cells showed EBF and PAX motif enrichment. This
enrichment of lineage-specific TF-binding motifs in hypomethylated
diffDMPs suggests that these sites might have cis-regulatory potential
during hematopoietic differentiation. Hence, these sites could indicate
the location of CREs in the mouse genome.

To further investigate this hypothesis, we compared the diffDMPs
to four previously published CRE catalogs: candidate CREs from the
ENCODE project (ENCODE-CRE; n = 339,815) [18]; active



Figure 4 Differentiation dynamic DMPs (diffDMPs) mark candidate cis-regulatory elements (CREs). (A) Enrichment of transcription
factor-binding motifs in hypomethylated diffDMPs (§50 bp) identified in the different cell types. Enriched fold change (circle size) and

                      
         

                 



Figure 5 Cell type−specific DNA methylation programs of novel mdCREs. DNA methylation b-values of novel mdCREs were Z-score
transformed and hierarchically clustered using Euclidean distance and Ward’s method. This strategy identified nine different clusters
with cell type−specific DNA methylation patterns. For display purposes, 350 CpG sites were randomly selected from each cluster.
The Z-score-transformed methylation b-values of these sites were again clustered within each cluster. Plotted are the Z-score-trans-
formed data (A) as well as the corresponding absolute b-values (B) of the same CpG sites in the same order. Please refer to Supple-
mentary Figure E7 for heatmaps representing all novel mdCRE CpGs.

                                       
           
hematopoietic enhancers (Enhancer-CRE; n = 48,396) [39]; OCRs
identified in The Immunological Genome Project (IMGEN-CRE;
n= 512,595) [16]; and CREs from the Validated Systematic Integra-
tion of Hematopoietic Epigenomes (VISION) project (VISION-
CRE; n = 205,019) [17]. A significant number of CpGs covered by
the MMBC array overlapped with the individual CRE catalogs (mini-
mum: 1.96£104, maximum: 7.78£104 CpGs), covering between
11% and 27% of the CREs defined by these catalogs (Supplementary
significant enrichments (filled circle) are shown. (B) Venn diagram d
(n = 119,599 MMBC CpGs overlapping with known CREs). chromCR
known CREs but without significant methylation changes in hematop
differentially methylated CpGs overlapping with known CREs; nove
methylated CpGs not overlapping with known CREs. (C) Genomic lo
and subsets based on the distance to annotated genes. DCRD: di
UTR: 30 untranslated region. (D) Pearson correlation heatmap of
(mdCREs, chromCREs, and novel mdCREs). (E) Pearson correlation
different CRE subsets (mdCREs, chromCREs, and novel mdCREs).
Figure E5A; Supplementary Table E8). In total, 119,599 CpGs repre-
sented on the MMBC array overlapped with known CREs as defined
by the aforementioned catalogs (Figure 4B). When considering all
37,512 diffDMPs, we found that 24,656 diffDMPs (66%) overlap
with known CREs and hence were defined as mdCREs (Figure 4B;
Supplementary Figure E5B). Importantly, the non-overlapping frac-
tion of 12,856 diffDMPs (34%) constituted the third-largest region
set found in a comprehensive overlap analysis of the individual CRE
epicting the overlap of diffDMPs (n = 37,512) with known CREs
Es: chromatin-regulated CREs, i.e., CpG sites overlapping with
oietic differentiation; mdCREs: methylation-dynamic CREs, i.e.,
l mdCREs: novel methylation-dynamic CpGs, i.e., differentially
calization for probes overlapping with the different CRE catalogs
stant cis-regulatory domain; 50-UTR: 50 untranslated region; 30-
methylation b-values for probes of the different CRE subsets
heatmap based on RNA-Seq data of genes associated with the



Figure 6 Hypomethylation of novel mdCREs is associated with lineage-specific gene expression patterns. (A) Strategy to annotate
novel mdCREs to putative target genes. All transcriptional start sites (TSS) within a radius of 1 Mb to novel mdCREs were mapped.
Next, Pearson correlation and a linear model (surrogate of DNA hypomethylation effect size) between gene expression of associated
genes and methylation b-values of novel mdCREs were calculated. All associations with a false discovery rate (FDR)-adjusted corre-
lation p-value of <0.01 and an absolute slope of >4 were selected as significant candidate associations. (B) Distribution of significant
candidate associations around TSS. (C) Histogram showing the number of associated genes per novel mdCRE. (D) Barplot of FDR-
adjusted correlation p-values for novel mdCREs within a distance of 1 Mb to the Thy1 TSS and the respective gene expression. Sig-
nificant candidate associations are colored as red bars. (E) HiC contact map for the Thy1 locus showing the localization of signifi-
cantly associated novel mdCREs and the Thy1 TSS. (F–H) Scatter plots show the methylation b-values and gene expression values

                      
         

                 



                                       
           
data sets (Supplementary Figure E5B). This suggests that this subset of
diffCpGs might indicate the presence of novel, yet unrecognized,
hematopoietic CREs and therefore were named “novel methylation-
dynamic CREs” (novel mdCREs; Figure 4B; Supplementary Figure
E5B; Supplementary Table E6). The remaining 94,943 CREs (79%),
which did not overlap with diffDMPs, were termed chromatin-
dynamic CREs (chromCREs). These chromCREs might represent
regions that are either not regulated at all during hematopoiesis or
they are dynamically regulated exclusively at the chromatin level and
do not show significant DNA methylation changes.

To investigate potential differences in genomic features captured
by the different catalogs, we analyzed the genomic localization of
diffDMPs and the different CRE subsets relative to neighboring
genes. We found that chromCREs as well as ENCODE-, IMGEN-,
and VISION-CREs are enriched in promoter regions (38%−62%;
Figure 4C). In contrast, diffDMPs, enhancers, mdCREs, and novel
mdCREs are enriched in intronic regions (43%−47%) and DCRDs
(24%−31%; Figure 4C). The observed similarity in the genomic distri-
bution of diffDMPs and known hematopoietic enhancers suggested
that diffDMPs, as a whole might identify both known (mdCREs) and
novel (novel mdCREs) hematopoietic enhancers.

We next computed a correlation matrix of DNA methylation
between all cell types to analyze how DNA methylation at these
CRE sets could preserve cell type and lineage identity. This analysis
revealed a high correlation across closely related cell types and within
the same lineages for mdCREs and novel mdCREs, whereas for
chromCREs, the observed DNA methylation patterns hardly allowed
discrimination of cell types and lineages (Figure 4D, Supplementary
Figure E6A, B). This analysis confirmed that chromCREs, in contrast
to mdCREs and novel mdCREs, are not regulated dynamically at the
level of DNA methylation during hematopoietic differentiation. To
get an estimate of the functional activity of these CRE subsets in
hematopoiesis, we assessed the expression of associated genes in
publicly available RNA-Seq data sets from mouse hematopoietic cells.
We annotated all mdCREs, chromCREs, and novel mdCREs to the
closest gene and correlated the expression of all associated genes
across different cell types. This analysis revealed high correlation of
gene expression across related cell types independent of whether
they had been associated with mdCREs, chromCREs, or novel
mdCREs (Figure 4E). This indicated that all CRE subsets identify rele-
vant CREs but further suggested that the different CRE subsets might
be subject to different mechanisms of epigenetic regulation. For
instance, chromCREs do not show prominent changes in DNA meth-
ylation and therefore might be regulated mainly at the chromatin
level. The mdCREs show dynamic regulation at the level of DNA
methylation and, presumably, also at the chromatin level, because
they had been identified using chromatin-based methods. In contrast,
novel mdCREs are exclusively identified in the present study based
on dynamic DNA methylation changes during hematopoietic differ-
entiation, whereas previous studies investigating chromatin changes
in the hematopoietic system failed to identify these regulatory ele-
ments. In summary, our analysis revealed three different classes of
(vst-transformed counts) for associated novel mdCRE-gene pairs wi
Z-score heatmaps for the CpG sites in the respective clusters are sh
cific hypomethylation (F, MEPs for cluster 4; G, B cells for cluster 8
other cell types (gene expression and methylation b-value range in
size show the log2 fold-change of a differential expression test betw
and LSK cells.
CREs: 1) CREs that have been identified by chromatin-level charac-
teristics but lack DNA methylation dynamics (chromCREs); 2) CREs
that have been identified by chromatin-level characteristics and those
that show dynamic DNA methylation changes during hematopoietic
differentiation (mdCREs); and 3) novel CREs that are so far exclu-
sively characterized by dynamic DNA methylation (novel mdCREs).
Importantly, the 12,856 novel mdCREs have not been described in
previous data sets, which underlines the importance of DNA methyl-
ation analysis for the functional annotation of genomes. This finding
further suggests that dynamic regulation of DNA methylation might
play a key role as an epigenetic regulatory layer in a subset of CREs.
Novel mdCREs Exhibit Cell Type−Specific DNA Methylation
Programs That Can Be Annotated to Putative Target Genes

Having demonstrated on a global scale that DNA methylation of the
novel mdCREs correlates with hematopoietic cell type identity, we
performed unsupervised hierarchical clustering to characterize the
DNA methylation programs encoded by the 12,856 novel mdCREs
in more detail. This clustering identified nine lineage-specific DNA
methylation programs that allowed the discrimination of all the cell
types analyzed (Figure 5A, B; Supplementary Figure E7A, B; Supple-
mentary Table E6). Remarkably, eight clusters showed loss of DNA
methylation from LSK to more differentiated cell types, whereas one
cluster (cluster 7) predominantly showed gain of DNA methylation
in differentiated lymphoid cells, with a maximum reached in CD4+
and CD8+ T cells (Figure 5A, B; Supplementary Figure E7A, B). Spe-
cifically, MEPs exhibited loss of DNA methylation in cluster 4; CD4
+ T cells demonstrated loss of DNA methylation in clusters 1 and 2;
both CD4+ and CD8+ T cells were characterized by DNA methyla-
tion loss in cluster 9; whereas the entire lymphoid lineage displayed
loss of DNA methylation in cluster 3. Cluster 8 specifically showed
loss of DNA methylation in B cells, and cells from the myeloid lineage
exhibited loss of DNA methylation in clusters 5 and 6. This coordi-
nated methylation programming of CpG sites observed in the novel
mdCREs further supported the idea that these CpG sites identify
regions that exert important regulatory functions during hematopoi-
etic differentiation.

Next, we aimed to identify genes that are likely regulated by the
novel mdCREs. Because recent reports indicated that the regulatory
potential of CREs may expand to a megabase scale [49], we devel-
oped a heuristic approach to infer putative functional CRE-gene pairs
based on a systematic integrative analysis of DNA methylation and
gene expression patterns (Figure 6A). First, all TSS within 1 Mb dis-
tance of the 12,856 novel mdCREs were determined and selected as
“candidate associations.” A total of 406,002 TSS were identified as
candidate associations, meaning that a median of 25 TSS (min=1;
max=167) were assigned to each novel mdCRE. For each candidate
association, a linear model was trained assuming that the DNA meth-
ylation b-values predict the gene expression levels in the same cell
populations, resulting in the identification of 1,445 significant candi-
date associations (Benjamini-Hochberg adjusted correlation test p-
thin the different novel mdCRE methylation clusters. Methylation
own above the scatter plots. Cell populations with cluster-spe-
; H, myeloid lineage for cluster 5) have been compared with all
other cell types depicted by error bars). The coloring and point
een the respective cell type with the strongest hypomethylation



                      
         

                 
value < 0.01). As an additional filter, we used the slope of the linear
model as a surrogate for the effect size of the regulation. Using these
stringent criteria, we found 843 significant novel mdCRE-gene pairs,
which we propose as strong candidates for further functional valida-
tion studies (Supplementary Table E9). Looking at the genomic distri-
bution of these 843 novel mdCRE-gene pairs, we observed that only
39 (4.6%) novel mdCREs were located within 5 kb to the TSS,
whereas the majority of novel mdCREs were found to be evenly dis-
tributed within 1 Mb distance up- or downstream of the TSS
(Figure 6B) and were associated with a single gene (Figure 6C). Five
of the novel mdCREs were each associated with more than 20 genes.
For example, the methylation of one CpG site correlated with the
expression of the T-cell receptor b chain gene cluster, indicating that
one mdCRE has a regulatory potential for several genes with similar
functions. The Thy1 locus, in contrast, is an example of a gene locus
that is associated with many novel mdCREs. In total, 35 novel
mdCRE-gene associations were identified within a 1 Mb distance of
the Thy1 TSS, of which ten associations fulfilled the correlation and
effect size criteria (Figure 6D). To further investigate whether these
associated novel mdCREs could function as distal regulatory ele-
ments, we analyzed HiC data of CD8+ T cells and found that the
associated novel mdCREs overlapped with high contact domains,
suggesting a possible physical interaction between these novel
mdCREs and the Thy1 TSS (Figure 6E).

Next, we performed a systematic analysis of the cell type- and line-
age-specific gene expression changes and their association with DNA
methylation changes of the novel mdCREs. To do so, the expression
of genes that are annotated as candidate associations within the line-
age-specific clusters of co-regulated CpG sites was analyzed
(Figure 6F−H; Supplementary Figure E8). Genes associated with the
erythroid cluster 4 revealed low methylation and high gene expres-
sion levels in MEPs. In contrast, all other populations showed high
methylation and low or decreasing gene expression values
(Figure 6F). Known erythroid marker genes such as Pklr or Sphk1
were among the cluster 4− associated genes, which showed the
strongest increase in gene expression accompanied by loss of DNA
methylation in MEPs. Similar results were obtained for the B-cell-spe-
cific cluster 8 where B-cell expression dynamics were compared with
all other cell types (Figure 6G). In this cluster, B-cell marker genes
such as Cd19 or Spib demonstrated loss of DNA methylation, which
was paralleled by the induction of gene expression. In turn, all other
cell types showed stable DNA methylation patterns, accompanied by
low gene expression levels. A more complex situation was observed
for genes associated with myeloid cluster 5 (Figure 6H). In this cluster,
the expression of myeloid (monocyte + neutrophil) marker genes
was analyzed for GMPs, neutrophils, and monocytes, as these cell
types showed cluster-specific hypomethylation. Compared with all
other cell types, myeloid marker genes showed initiation of DNA
methylation loss in GMPs, whereas the strongest hypomethylation
was observed in terminally differentiated myeloid cells. This loss of
DNA methylation was accompanied by a strong increase in the
expression of these genes from GMPs to monocytes/neutrophils.
Among those genes, Ifitm6 showed a continuous induction from
GMPs to neutrophils, which is in line with the high expression of
type I interferon response genes during neutrophil specification [50].
In summary, we developed an algorithm that allowed us to propose
putative functional gene annotation for a subset of the novel
mdCREs. In addition, we identified DNA methylation programs that
are defined by co-regulated novel mdCREs and those associated
with hematopoietic-specific gene expression patterns that are progres-
sively established during hematopoietic differentiation.
DISCUSSION

Many biological insights into the distinct role of DNA methylation
have emerged with the advent of array-based DNA methylation pro-
filing technologies. These arrays offer an affordable, easy-to-use, and
robust platform for DNA methylation profiling of hundreds to thou-
sands of samples. However, array-based technologies have not been
available until recently for the study of mouse methylomes. This has
compromised many mechanistic and functional studies investigating
the role of DNA methylation changes in mouse models.

The novel MMBC array is filled and allows to profile DNA methyl-
ation of 285 k CpG sites across the genome. The potential of this
method has recently been demonstrated by a mouse DNA methyla-
tion atlas encompassing MMBC data for distinct tissues, mouse
strains, age groups, and pathologies [51]. This study also demon-
strated the robustness and high reproducibility of the DNA methyla-
tion measurements generated using MMBC. Hence, the MMBC
array will help to accelerate the research of epigenetic plasticity in
homeostasis and disease.

To establish a computational workflow for the analysis of MMBC
data sets, we generated a comprehensive annotation of the MMBC
array. This includes mapping of probes to the nearest genes and anno-
tation of functional genomic elements such as promoters or distal
CRDs (DCRDs). Additionally, we expanded the commonly used
and highly cited RnBeads framework by methods that allow the proc-
essing of MMBC data [22,23]. This includes user-friendly functions
for quality control, normalization, and differential methylation calling.
Moreover, RnBeads generates automated reports, which document
analysis parameters and will thus enhance the reproducibility of
MMBC data analyses.

In the present study, we chose to profile DNA methylation
changes during mouse hematopoiesis using the MMBC array. The
advantage of this system is the well-defined differentiation landscape
including the opportunity to isolate homogeneous cell populations
using previously established cell surface markers. This allowed us to
assess the robustness of the MMBC array by investigating this com-
plex in vivo differentiation system with a focus on the myeloid differ-
entiation trajectory. We observed an accurate clustering of cell types
based on global DNA methylation changes, which indicated that the
MMBC array is capable of determining cell type−specific DNA
methylation programs across closely related cell types. Hence, we
challenged the MMBC array to test whether it is a suitable tool for
DNA methylation-based cell type deconvolution. Therefore, we have
elaborated a strategy to determine highly cell type−specific DNA
methylation signatures (ctDMPs), which were defined by the highest
DNA methylation difference between cell types with a low intra−cell
type variance at the same time. We hypothesized that these sites pos-
sess the potential to discriminate true epigenetic plasticity from an
impure DNA methylation signal due to a heterogeneous cell popula-
tion. To test this, we generated DNA methylation data from mixed
cellular populations and applied four different published cell type-
deconvolution algorithms. The predicted cell type fractions from
each of the algorithms were comparable to the direct measurement
of the cell type composition by flow cytometry. Moreover, all four
algorithms were able to confirm the disease-specific imbalance in the



                                       
           
cellular composition of the bone marrow of JAK2V617F mutant mice.
In summary, highly cell type−specific DNA methylation signatures
can be identified with the MMBC array, which allows an accurate
estimation of cell fractions in healthy and diseased tissues, indepen-
dent of the underlying deconvolution algorithm.

Besides the homeostatic state of a cell, the DNA methylation signa-
ture harbors information about its lineage history and potentially also
insights into future fate decisions [52]. This implies that cell types of a
certain lineage share DNA methylation signatures. To identify such
programs, we considered the HSPC compartment as a common
starting point in hematopoiesis and determined differentiation
dynamic CpG sites (diffDMPs) for all cell types relative to HSPCs.
We could identify three properties of these sites: i) diffDMPs of pro-
genitor cells were shared with their downstream progeny; ii) the num-
ber of diffDMPs increased with cellular differentiation states; iii) the
DNA methylation level of dynamic CpG sites progressively evolved
toward differentiated cells. Taken together, this indicated that DNA
methylation programs progressively and unidirectionally develop
along hematopoietic differentiation trajectories. Importantly, since
CpG sites can only exist in two DNA methylation states (methylated
or unmethylated), intermediate DNA methylation b-values have to
arise from the heterogeneity of the investigated sample. Conse-
quently, progressive changes of DNA methylation b-values within
diffDMPs either indicate that the isolated cell populations are mix-
tures of cells with heterogeneous differentiation states or that at the
level of individual cells, cellular commitment does not occur in a fully
coordinated manner. However, this problem cannot be addressed
with the currently available technologies as single-cell long-read DNA
methylation data would be required to answer this question.

Independent of the mechanisms underlying epigenetic heteroge-
neity at the population level, our study demonstrates pronounced
remodeling of the DNA methylation landscape during hematopoie-
sis. These dynamics point toward a regulatory role of DNA methyla-
tion in the course of cellular differentiation. A substantial fraction of
diffDMPs overlapped with previously described CREs, which further
underlines their regulatory potential. In addition to these mdCREs,
we identified 12,856 diffDMPs, which have not been described as
regulatory regions before. These regions represent novel candidates
of mdCREs (novel mdCREs). Of note, these single CpG sites do not
represent the whole region of a CRE in the genome but rather flag
genomic loci with regulatory potential. Importantly, we determined
these sites by comparing them to comprehensive CRE catalogs,
which either included histone marks, open chromatin sites, or a com-
bination of both [16−18,39]. However, none of these catalogs takes
DNA methylation as a regulatory mark into account. We demon-
strated that mdCREs can be clustered into programs with cell type
−specific DNA methylation patterns and that their methylation status
strongly correlates with expression programs of neighboring genes.
This confirms that we generated a unique resource of novel DNA
methylation-based regulatory elements, which are likely involved in
the regulation of mouse hematopoiesis and which are not restricted
to CpG-dense regions as was the case for previous studies [9].

The functional annotation of CREs to their target genes is a central
task in computational epigenomics. Previous studies have shown that
interactions between CREs and genes can occur on a megabase scale
[49]. In consequence, algorithms that focus solely on a distance-based
CRE-to-gene annotation will only include a subset of putative regula-
tory interactions. To address this issue, we developed a data-driven
annotation strategy, which incorporates the DNA methylation status
of CREs and the expression of genes in a region § 1 Mb of one TSS.
We could observe regulatory candidate associations both in the prox-
imity of TSS and in distant regions. The algorithm can in principle be
expanded using different data sources such as histone marks and will
allow the functional annotation of CREs in complex biological sys-
tems. Although the inferred candidate associations propose a biologi-
cal function of CREs and seem to be biologically meaningful, further
studies, e.g., using massive parallel reporter assays, will be required to
confirm these interactions.

In summary, we generated a reference atlas of dynamic DNA
methylation changes during mouse hematopoietic differentiation
using the recently released MMBC array. This atlas includes a com-
prehensive list of CpG sites with dynamic DNA methylation during
mouse hematopoiesis and candidate associations for novel regulatory
elements. Moreover, we developed a computational pipeline for a
fast, robust, reproducible, and user-friendly analysis of MMBC data
and propose an analysis workflow that can be applied to various tis-
sues and disease models and thus constitutes a major resource for epi-
genetic studies in mice.
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Supplementary Figure E1 Gating strategy for the isolation of reference cell types. Flow cytometry density plots depicting the cell sur-
face marker-based gating schemes for the isolation of hematopoietic cell types. Previous gates are listed above the respective plots.
(A) Monocytes (CD45+ CD8� CD4� CD11b+ Ly6Chi Ly6G�), neutrophils (CD45+ CD8� CD4� CD11b+ Ly6C� Ly6G+), and B cells
(CD45+ CD8� CD4� CD11b+ B220+) were sorted without lineage depletion. (B) Differentiated cells which are not from the T-cell
lineage were depleted for the isolation of CD4+ T cells (CD45+ Lin� CD4+ CD8�) and CD8+ T cells (CD45+ Lin� CD4� CD8+). (C)
LSKs (CD45+ Lin� Sca1+ cKIT+), MEPs (CD45+ Lin� Sca1� cKIT+ CD127� CD34� CD16/32�), CMPs (CD45+ Lin� Sca1� cKIT+
CD127� CD34+ CD16/32�), and GMPs MEPs (CD45+ Lin� Sca1� cKIT+ CD127� CD34+ CD16/32+) were sorted after depletion
of differentiated hematopoietic cells.
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Supplementary Figure E2 Quality control of MMBC samples. (A) Histograms showing the detection of p-values for sites on the
MMBC with a low detection rate (p > 0.001) per cell type. The percentage of these sites relative to all sites on the MMBC array is
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shown on the y axis. (B, C) Scatter density plots depicting the methylation b-values of all CpG sites across the three biological repli-
cates analyzed from LSK cells on the MMBC array. Pearson’s correlation coefficient is provided for each comparison. (D) Density
plot showing methylation b-value distribution before and after intra-array normalization.

Supplementary Figure E3 Correlation between MMBC and RRBS data. Scatter density plots showing the methylation b-values of
corresponding CpG sites from RRBS (x axis) and MMBC (y axis) analyses per cell type. The total number of CpG sites with
>20£ read coverage in RRBS is annotated together with Pearson’s correlation coefficient.
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Supplementary Figure E4 DNA methylation changes at hypomethylated diffDMPs. Boxplots showing the mean methylation b-values
over the replicates for cell type-specific hypomethylated diffDMPs (panel headings) per cell type.
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Supplementary Figure E5 Characterization of MMBC probes overlapping with CRE catalogs. (A) Barplot showing the number of
CREs per catalog, which overlap with the MMBC array. (B) Upset plot showing the mutual overlap of CRE catalogs and diffDMPs.
The intersection size is shown as column barplots and the catalog sizes as row barplots. Chromatin CREs (chromCREs; gray), meth-
ylation-dynamic CREs (mdCREs; yellow), and novel mdCREs (orange) have been highlighted.

Supplementary Figure E6 DNA methylation-based clustering of chromCREs. Methylation b-values of CpG sites from the chromCRE
subset were Z-score transformed and hierarchically clustered using Euclidean distance and Ward’s method. The heatmaps show
methylation Z scores (A) and the respective b-values for 1,000 randomly chosen CpG sites in the same order (B).
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Supplementary Figure E7 Clustering of novel mdCREs. Methylation b-values of all novel mdCREs were Z-score transformed and
hierarchically clustered using Euclidean distance and Ward’s method. This strategy identified nine different clusters with cell type
−specific DNA methylation patterns. Depicted are the Z-score-transformed data (A) and the respective absolute b-values (B), which
were plotted in the same order.
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Supplementary Figure E8 DNA methylation and gene expression dynamics for novel mdCRE-gene pairs. Methylation b-values and
normalized gene expression were plotted for the identified 843 novel mdCRE-gene pairs across all cell types. The novel mdCREs
were stratified by the DNA methylation cluster.
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