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Phase diagrams of Kitaev models for arbitrary magnetic field orientations
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The Kitaev model is an exactly solvable quantum spin model within the language of constrained real fermions.
In spite of numerous studies for magnetic fields along special orientations, there is a limited amount of
knowledge on the complete field-angle characterization, which can provide valuable information on the existence
of fractionalized excitations. For this purpose, we first study the pure ferromagnetic and antiferromagnetic
Kitaev models for arbitrary external magnetic field directions via a mean-field theory, showing that there are
many topological phases with different (or zero) Chern numbers, depending on the magnetic field strength
and orientations. However, a realistic description of the candidate Kitaev materials, within the edge-sharing
octahedra paradigm, requires additional coupling terms, including a large off-diagonal term � along with
possible anisotropic corrections �p. It is therefore not sufficient to rely on the topological properties of the
bare Kitaev model as the basis for the observed thermal Hall-conductivity signals, and an understanding of these
extended Kitaev models with a complete field response is demanded. Starting from the zero-field phase diagram
of K-�-�p models, we identify, besides the Kitaev spin liquid phase, antiferromagnetic zigzag, ferromagnetic
phases, as well as an unusual Kitaev(-�) spin liquid phase. The magnetic field response of these phases for
arbitrary field orientations provides a remarkably rich phase diagram. For an extended parameter range and
just above the critical field where the zigzag phase is suppressed, there is an intermediate phase region with
suppressed energy gaps and substantial spin fractionalization. To comply our findings with experiments, we also
reproduce a large asymmetry in the extent of this intermediate phases specifically for the two different field
directions θ = ±60o with respect to the normal to the plane of the honeycomb lattice.

DOI: 10.1103/PhysRevResearch.4.043024

I. INTRODUCTION

The Kitaev model is an exactly solvable [1] quantum spin
model with fractionalized excitations within the family of spin
liquid models. Candidate materials for its Jeff = 1/2 ferro-
magnetic (F) realization are the iridates X2IrO3 (X: Li [2,3],
Na [4–9]), and α-RuCl3 [10–25]. Recently, there is a growing
interest in the search of additional materials [26–28] with
perhaps antiferromagnetic (AF) Kitaev type couplings such
as in Na3Co2SbO6-Na2Co2TeO6 [29] and theoretical studies
focusing on f -electron based rare-earth oxides [30]. These
quantum magnets are acclaimed to have a significantly large
Kitaev type spin-spin coupling. Detailed analyses of the un-
derlying physics and the material characteristics have been
summarized in numerous reviews [31–37].

The Kitaev model is defined on a honeycomb lattice with
highly anisotropic Ising type exchange couplings at each bond
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direction,

HK =
α−bond∑

〈i j〉
KαSα

i Sα
j , (1)

where the sublattices A and B are denoted with site index
i and j respectively. It can host anyonic excitations within
the real fermion language [1]. In this approach, each of
the Pauli operators is replaced by two composite Majorana
fermions σα

j = ibα
j c j , α ∈ {x, y, z} with the local constraint

Dj = bx
jb

y
jb

z
jc j = 1 at site j. The basic theoretical work in

materializing such an exotic model relies on the Jackeli-
Khaliullin mechanism [38,39]. The effective Hamiltonians
for transition metals are coupled with additional (extended)
edge-sharing [40,41] octahedral ligands. The destructive in-
terference between different exchange paths via ligands can
eliminate the dominant Heisenberg exchange coupling in
the effective spin Hamiltonian for transition metals. Thereby
the additional Kitaev and other off-diagonal terms become
dominant terms. There is also the additional proposition to
tune the magnitude of each term by Floquet driving [42,43].
Eventually, most of the recent work has been allocated to
the theoretical [38,44–47] and experimental investigation of
the candidate materials. Experimental data suggest that it is
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highly likely for the candidate materials to have a spin-liquid
ground state (GS) for intermediate magnetic field strengths.
This is inferred in particular through bulk probes such as
the continuum of excitations in neutron-scattering experi-
ments [48] and thermodynamic measurements such as the
field-angle dependence of the specific heat [49]. A significant
amount of work has also focused on alternative explanations
to a spin-liquid scenario such as chiral conventional quasipar-
ticles [50–53] or beyond-Kitaev model spin liquids [54]. In
all approaches, the anti/ferromagnetic Kitaev term has to be
supplemented by additional interactions for a realistic mate-
rial specific modeling. Depending on their relative strengths,
the direct relation between the thermal Hall coefficient and the
Kitaev interaction becomes obscure.

The thermal conductivity measurements has been recog-
nized as a useful tool to rule in/out a topological Kitaev
spin-liquid due to their charge neutral energy transport. In
particular, a Kitaev spin liquid in a finite magnetic field is
proposed to host a half-quantized neutral edge current as its
distinct signature [1]. In an applied magnetic field, a gapless,
topologically trivial Kitaev liquid can turn into a gapped, topo-
logically nontrivial phase. Measurements [14–20] have shown
that the magnetically ordered zigzag (ZZ) phase present
in this material (as a result of spin interactions beyond
the pure Kitaev model) can be suppressed by an external
magnetic field, followed by a region with suppressed mag-
netization before the system enters into a field polarized
(P) phase. In this intermediate field window, thermal Hall
conductivity is anomalous [55,56]. Quantized thermal Hall
conductance [57,58] has been reported in this region, giving
support to a topologically nontrivial spin-liquid. Moreover,
this quantized thermal Hall conductance, and an associated
gap opening for the bulk excitations [49], can be generated
by a pure in-plane magnetic field, lending further support to
the topological origin of the field-induced topological phase.
However, a recent experiment has revealed an unusual oscilla-
tion in the longitudinal thermal conductivity καα as a function
of inverse magnetic field α-RuCl3 [59] within the region of
interest, which challenges some of the conclusions above. In
this respect, a further characterization of this “intermediate
phase” for arbitrary magnetic field strengths and directions
could provide valuable information for the search of (non-
)Abelian anyons.

In spite of numerous studies [60–68] along special field
directions such as [001] and [111], there exists limited knowl-
edge on the complete field-angle dependence of κxy in the
Kitaev model itself. If the additional off-diagonal couplings
are significant, it could be a naive approximation to relate
thermal Hall coefficients to the pure Kitaev spin liquid. The
studies on the candidate materials indicate the presence of a
relatively large spin-orbit coupling �α term, the off-diagonal
coupling on the α-bond, ∼�α (Sβ

j Sγ

l + Sγ
j Sβ

l ) as well as the

additional symmetry allowed �α
p terms ∼�α

p (Sβ
j Sα

l + Sα
j Sβ

l +
Sγ

j Sα
l + Sα

j Sγ

l ). Reference [69] has addressed this issue and
also the magnetic field effects perturbatively, yet assuming
a KSL GS. In this respect, it is crucial to clarify the effect
of large � ∼ |K| [70,71] as well as arbitrary magnetic field
orientations and strengths to understand the validity of ex-
isting results based on the putative F Kitaev GS. Naturally,

FIG. 1. The crystal structure of α-RuCl3. The Ru atoms (green
circles) form a honeycomb lattice (with black bonds) on the plane
perpendicular to the crystallographic [111] direction, referred to
as the c axis. The three bonds are labeled as x, y, and z. The Cl
atoms form edge-sharing octahedra with two sublattices indicated
by shaded blue and orange lines. For the Kitaev only models (� =
0, �p = 0), we consider a unit cell contains two Ru sites connected
by the z bond (indicated by site labels 2 and 3). For the Kitaev-�
type models (� �= 0, �p �= 0), a four-site unit cell is considered, as
indicated by a green dashed rectangle with site labels 1 − 4.

an unbiased method is needed which takes into account spin
ordering and spin liquid character on equal footing.

In this paper, we attempt to answer the following two
questions: (1) What are the full phase diagram of the fer-
romagnetic and the antiferromagnetic Kitaev models in the
presence of an external magnetic field pointing in arbitrary
directions? (2) What are the essential effects of the additional
�-�p off-diagonal terms? Regarding the former, we identify
a magnetization process with multiple topologically distinct
phases depending on the field direction and strength. The
phase boundaries are characterized by the first Chern number
of the fermionic vacuum. Regarding the latter, we examine
the phase diagram of the (K, �, �p)-model and identified four
different zero-field phases: a zigzag z (ZZ-z), a ferromagnetic
(F), an extended KSL, and the Kitaev-� spin liquid (K�SL)
phase. A focus is given to the experimentally relevant ZZ-z
phase, in which ferromagnetic chains are antiferromagneti-
cally aligned perpendicular to the z bond. Our choice of the
unit cell in Fig. 1 allows only for the ZZ-z phase. This dis-
cussion is elaborated further in Sec. IV B. Then, starting from
the ZZ-z GS, we examine the magnetic field response as a
function of the off-diagonal coupling strength �. We identify a
region with reduced magnetization and decreased energy gap,
named as the partially fractionalized (PF) phase. This phase is
found to host strong partial spin fractionalization.

Throughout this paper, we employ a mean-field theory of
the Majorana representation with local constraints. The ad-
vantage of this approach is that it readily captures the strong
correlations inherent within this composite (fractionalized)
representation along with the magnetic phases. We emphasize
that the mean-field techniques should be considered as the
pioneer strategy in the vast parameter space to guide more
sophisticated yet expensive numerical techniques.

The article is divided into three sections. The current in-
troductory section is completed with the discussion on the
material aspects of the Kitaev model. In Sec. II, we present the
mean-field theory scheme employed in this paper. Using this

043024-2



PHASE DIAGRAMS OF KITAEV MODELS FOR ARBITRARY … PHYSICAL REVIEW RESEARCH 4, 043024 (2022)

approach, we then identify the topological Chern invariants
for the pure AF/F Kitaev model for arbitrary magnetic-field
orientations and strengths. The critical field strength and the
angles for topological phase transitions are determined. In
Sec. III, the role of the additional off-diagonal terms, �,�p is
examined. We complete this section by discussing the impli-
cations of our results for the recent thermal Hall experiments
on candidate materials.

II. MATERIALS AND METHODS

A. A Kitaev material: α-RuCl3

The experimental side of the search of Kitaev materials
has advanced by signatures of massively degenerate, gapless
excitations in the iridates X2IrO3 and in α-RuCl3. The realistic
modeling of these specific materials requires additional terms
in the spin Hamiltonian. For concernant materials, the sym-
metry group is D3d = {I, 2C3, 3C2, 2S6, 3M} [38,39,44,45],
the symmetry allowed interactions can be cast into a general
spin-spin coupling, �αβ

i j Sα
i Sβ

j where �αα
i j → K, J and �

α �=β
i j →

�,�p. The additional interactions and their role in the ex-
perimental findings are the subject of current experimental
research [2,3,11–13,15–19], ab initio calculations [72], exact-
diagonalization methods [73–75] and effective low-energy
Hubbard Hamiltonians [32,76,77].

Here, we focus on α-RuCl3 because there are several works
in the literature to compare to and to ensure the validity of
our approach in certain limits in � − �p space. α − RuCl3

crystals have a honeycomb structure of Ru-Ru bonds for a
cut in the [111] direction (see Fig. 1). The Cl atoms are
aligned as edge-sharing octahedra. The additional exchange
paths through Ru-Cl bonds create a destructive interference
for the otherwise leading term J , the Heisenberg exchange
coupling [38,39]. Therefore, a Kitaev-type exchange coupling
along with � and �p terms takes stage. Experiments in zero
magnetic field suggests a long range ZZ-z order for the GS of
α-RuCl3 [2,3,11–13,15–19]. Yet, a finite magnetic field melts
the magnetic order and thereby allows for a transition to a spin
liquid phase [14–17,57].

For the calculations described below, we switch to a new
orthogonal coordinate system (ê1, ê2, ê3) with the following
transformation:

⎛
⎝ê1

ê2

ê3

⎞
⎠ = 1√

6

⎛
⎜⎝

1 1 −2

−√
3

√
3 0√

2
√

2
√

2

⎞
⎟⎠

⎛
⎝êx

êy

êz

⎞
⎠. (2)

Here, ê3 points along the [111] direction, while the in-plane
vectors ê1 and ê2 are perpendicular and parallel respectively
to the z bonds.

B. A mean-field theory of Kitaev model

In materials like α-RuCl3 and Na2IrO3, the Kitaev ex-
change coupling along all bond directions are likely to be
equal [38,39]. We therefore consider an isotropic Kitaev
coupling, Kα = K . The isotropic model supports the trivial
gapless B phase [1]. It can host two types of fractionalized ex-
citations, the Z2 vortices and itinerant fermionic excitations,
albeit a topologically trivial ground state. The system supports

a topological phase in an external magnetic field along the
[111] direction and thereby an energy gap opens proportional
to 	 ∼ h3

K2 [1] where h is the magnetic field strength. The re-
sulting phase is indexed by a finite integer Chern number. The
concomitant neutral anyonic excitations lead to a quantized
thermal Hall conductivity, i.e., they reveal themselves by a
quantized response to a temperature gradient [1]. An intimate
connection between the integer valued Chern number and the
“half-integer” conductance arises [1].

In this section, we consider the Kitaev model in an arbitrar-
ily oriented magnetic field within a mean-field theory scheme.
We shall see that this approach reveals topological phase
transitions as a function of the magnetic field strengths and
orientations. The essential ingredients are described briefly
below. An elaborated discussion of the mean-field approach
is given in Appendix A where the authors discuss the detailed
derivation, the role of quantum fluctuations as well as possible
intrinsic bias. (Similar approaches have also been followed in
Refs. [60–64,78–80].) The Hamiltonian takes the following
form (μB = 1):

HK =
α−bond∑

〈i j〉
KαSα

i Sα
j −

∑
i,β

hβSβ
i (3)

where 〈i j〉 indicates nearest-neighbor sites on the honeycomb
lattice and hβ is a component of the external magnetic field.
As in [1], we replace the spin operators Sα

j by two composite
Majorana operators bα

j (α ∈ {x, y, z}) and c j as Sα
j = i

2 bα
j c j

where (bα
j )2 = c2

j = 1. This results in

HK = K

4

α−bond∑
〈i j〉

ibα
i ciib

α
j c j − i

2

∑
i,β

hβbβ
i ci. (4)

The Kitaev Majorana representation doubles the Hilbert space
size and the physical gauge sector is retained by the lo-
cal gauge condition Dj |ψ〉 = |ψ〉 where Dj = bx

jb
y
jb

z
jc j . We

rewrite the local constraint Dj = 1 as i bα
j c j + i εαβγ

2 bβ
j bγ

j = 1,
where εαβγ is the antisymmetric rank-3 tensor. The constraint
is enforced by adding the term

Hλ = i

2

α∑
j

λα
j

(
bα

j c j + εαβγ

2
bβ

j bγ
j

)
, (5)

with Lagrange multipliers, λα
j to the Hamiltonian, i.e., HK −

Hλ. The only terms that are not quadratic in Majorana vari-
ables in the Hamiltonian are the quartic terms in Eq. (4)
arising from spin-spin interactions Sα

i Sα
j in Eq. (3). We de-

compose these quartic terms into 〈ibα
i ci〉 × ibα

j c j + 〈ibα
i bα

j 〉 ×
−icic j + . . . etc, resulting in an effective mean-field Hamil-
tonian, which is subsequently solved in a straightforward
manner. The averages

mα
A = 〈

ibα
i ci

〉
, mα

B = 〈
ibα

j c j
〉
, (6)

wγ = 〈−icic j〉γ , 
αβ
γ = 〈

ibα
i bβ

j

〉
γ
, (7)

are treated as the mean-field parameters with respect to (w.r.t.)
which the total energy Etot will eventually be minimized. Here
A, B are the honeycomb sublattice labels, and the subscripts
γ indicate the bonds over which the averages are taken. We
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FIG. 2. Ferromagnetic Kitaev model: The Chern number map for
arbitrary field direction and strength in the (h1 − h3) plane, where
hi = h · êi in units of |K|. Topologically distinct GSs with Chern
numbers ν = ±1 are identified. The trivial phase ν = 0 corresponds
to the high-field polarized phase. The red arrows indicate the ex-
perimental magnetic field angles that are used in Ref. [57] with
θ = ±60o, where θ is the clockwise angle w.r.t. the h3 axis. Note
that θ = 35o line corresponds to a direction in the êx - êy plane. The
[001] direction is shown for visualization purposes.

demand ∂Etot
∂λα = 0 from which a set of self-consistency equa-

tions follows.
Some comments are in order. If the averages corresponding

to products of Majorana fermions on different sites, such
as the bond operators 
αβ

γ are dropped or found to vanish,
then the spins in the resulting state can be treated entirely
as classical. On the other hand, if all averages on the same
site such as mα

i vanish, the result is analogous to Ref. [1],
where the spins are completely fractionalized. In particular,
for the pure Kitaev Hamiltonian in zero field, the absolute
value of 
xx

x ≡ X attains its maximum possible value of 1,
and similarly for x → y or z. We shall say in this case that the
spins are “maximally fractionalized”. In general, the values
of X,Y , and Z thus describe the degree of fractionalization
of the spins; they vanish in the classical limit. In this limit,
the resulting effective Hamiltonian for the Majorana fermions
is entirely local, and the Majorana bands have zero Chern
numbers. In this respect, we emphasize that this mean-field
method captures the quantum character of the model via the
parameters X,Y, Z , and wγ .

III. KITAEV MODEL IN AN ARBITRARY
MAGNETIC FIELD

A. Ferromagnetic Kitaev model

We start with the ferromagnetic Kitaev model (K < 0),
which has been extensively studied in the literature be-
fore [58,81]. We calculate the Chern number map in Fig. 2
for magnetic fields in the a − c plane. The Chern numbers
are calculated numerically following Ref. [82]. The radial
axis in the selected directions mark the field strengths, h =√

h2
1 + h2

2 + h2
3 and hi = h · êi. The upper half (h1 − h3)

plane is sufficient because reversing the field direction simply
changes the sign of the Chern number [83].

In zero field, the KSL ground state is gapless. At small
field strengths 0 < h 
 1, the fermionic vacuum becomes
topologically nontrivial [1] with ν = ±1 [84]. The odd val-

FIG. 3. Same as in Fig. 2 but the antiferromagnetic Kitaev model.
There are in total five topologically distinct GSs possible with Chern
numbers ν ∈ {0,±1, ±2}. The ν = 0 phase is the field polarized
phase. The red arrows indicate again the experimental magnetic
field-angles that are used in Ref. [57].

ued Chern numbers indicate the presence of non-Abelian
anyons [1] whereas even valued Chern numbers imply the
presence of Abelian anyons. At higher fields beyond hF

c ≈
0.18|K|, the system turns into a polarized, topologically triv-
ial phase. The obtained sequence of states as a function of
the magnetic field strength reproduces the previous result in
Ref. [81]. In addition, there is an overall sign reversal (e.g.,
ν = 1 → −1) upon crossing the θ ≈ 35o line in the h1 − h3

plane [1,58]. Beware that the angle θ is defined w.r.t. the
h3 axis (clock-wise), e.g., positive angle means positive h1

value. The sign change in ν can be naturally understood by
a sign change of any magnetic field component (in this case
hz), because the Chern number is proportional to the sign of
the energy gap created by the product of the magnetic field
components, ν ∼ sgn(hxhyhz ). Using the transpose of Eq. (2),
the critical line (in the upper h1 − h3 plane) is identified by the
angle where hz changes sign, this is when −√

2h1 + h3 = 0 or
θc = tan−1( h1

h3
) 180

π
= 35o is satisfied. The same sign changes

apply to the antiferromagnetic Kitaev model as well.
Our approach captures all the qualitative properties of the

field response for the F Kitaev model reported in the lit-
erature. On the quantitative side, the critical field strength
for the transition to the polarized phase is found to be
larger (hMF

c = 0.18|K|) than the exact diagonalization results
(hED

c = 0.03 |K|) [58]. The latter result is more realistic be-
cause the current MF method neglects not only the additional
correlations that cannot be described by a single particle
wavefunctions but also the site dependent fluctuations of the
constraint field (λα

i ), which is strictly necessary to ensure a
faithful representation of the spins as composite Majorana
fermions. Hence, this drawback results in a larger window of
stability for a spin liquid phase.

B. Antiferromagnetic Kitaev model

The antiferromagnetic Kitaev model is examined in two
steps within the upper half of the h1 − h3 plane. The phase
diagram is substantially different from K < 0 case. As noted
before in [59,64], this can be understood as due to the differ-
ence in effective magnetic fields acting on the spins [59,64].
We first obtain the Chern number map as shown in Fig. 3.
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FIG. 4. Characterizing quantities of the antiferromagnetic Kitaev model: (a) The average magnetic moment, |M| = |mA + mB|/2 within
the upper h1 − h3 plane in units of |K|. The subscripts A and B are sublattice indices. The radial direction is the field strength. (b) The energy
gap, 	Egap for cuts along the [111], [001], and h3 = 0 directions as shown on plot a with red, purple and green lines respectively. (c) The
MF contracted Wilson loop expectation value, 〈Ŵ〉 = 26〈Sx

1Sy
2Sz

3Sx
4Sy

5Sz
6〉 on a honeycomb plaquette. The maximum value, 〈Ŵ〉 = 1 indicates

a fractionalized KSL phase and thereby act as an order parameter.

We support this result by three additional results: The aver-
age magnetic moment |M| = |mA + mB|/2 [Fig. 4(a)], the
energy gap 	Egap [Fig. 4(b)] and the mean-field Wilson
loop expectation value on a honeycomb plaquette, 〈Ŵ〉 =
26〈Sx

1Sy
2Sz

3Sx
4Sy

5Sz
6〉 [1] [Fig. 4(c)]. Note that the Wilson loop

〈Ŵ〉 allows to quantify the existence of an emergent gauge
field, which is the direct signature of fractionalization where
the spins fractionalize into local gauge fields (X,Y , and Z)
and itinerant Majorana fermions (ci). We calculate 〈Ŵ〉 by
a MF contraction 〈Ŵ〉 ≈ 〈ibα

1bα
1〉〈−icic j〉 + ..., where the in-

dices i, j stands for the sublattices A and B, respectively.
For a two-site unit cell, the MF correlations for the six sites
forming the honeycomb plaquette are not independent, but
〈Ŵ〉 ≈ X 2Y 2Z2 where the c-type Majoranas have paired to
unity, c2

i = 1 [85]. We omit all contractions, which reflect
local magnetic moments, e.g., ∼ 〈ibα

i ci〉 to capture the gauge
flux only.

We first consider the overall quantitative response of the
AF Kitaev model, as shown in Fig. 4. The KSL phase sta-
bilized in the h → 0 limit crosses through an intermediate
region with increasing field strengths and ultimately reaches
a polarized phase. As shown in Fig. 4(a), |M| gradually in-
creases and saturates at high-fields along all magnetic field
directions. In parallel, the Wilson flux 〈Ŵ〉 [see Fig. 4(c)]
decays with increasing field strength irrespective of the field
orientation.

We first consider the evolution along the [111] (ê3) di-
rection, where h1 = h2 = 0. The role of the field direction
is clearly visible in the topological index of the GS, the
Chern number, ν in Fig. 3 (also see Appendix B and Fig. 8
for energy-band diagrams). The fermionic vacuum becomes
topologically nontrivial (ν = −1) and an energy gap opens
proportional to hxhyhz/|K|3 [see the red-dashed curve on
Fig. 4(b)]. At larger field strengths, there are two band touch-
ings at h ≈ 0.7 |K| and 0.8 |K|. Hence, four topologically
distinct phases are encountered as a function of the field
strength with the Chern numbers: ν = 0 → −1 → 2 → 0. At
h ≈ 0.7 |K|, three additional Dirac cones are generated at
the M points of the Brillouin zone, changing ν by 3 units

ν = −1 → 2, with a noteworthy difference to Ref. [86] where
the change is again in 3 units yet ν = −1 → −4 (w.r.t the
Chern number sign convention of this paper). A scenario with
a Chern number transfer of 3 is possible with an equal number
of Dirac cones to be involved in this transition where each
Dirac cone can transfer at most one unit of Chern number [87]
via gap closure and reopening. The resulting even valued
Chern number phase is supposed to have Abelian anyons [1].
In the high-field limit, eventually two Dirac cones annihilate
each other (at gamma point) at h ≈ 0.8 |K|, resulting in ν

from 2 to 0 with a polarized phase. The region with ν = 2
is extended to the h1 �= 0 region as well as the corresponding
finite energy gap in Fig. 4(b). The topological GS with a Chern
number ν = 2 has also been identified in Refs. [62,88] but
both these references have confined themselves only to [111].
It has been asserted that this phase supports multiple Abelian
anyonic species [88]. The conjectured “multispecies anyon”
region extends mainly to positive θ angles as seen in Fig. 3.
Along the negative θ direction, the ν = 2 region is replaced by
a phase with ν = 1. These phases and others are also identified
by the 	Egap map in Fig. 4(b).

The [001] field direction has already been investigated first
in [60,81]. It was suggested that the ground state remains a
gapless spin liquid until it reaches the field-polarized phase.
The results of Nasu et al. [60] relied on a mean-field de-
coupling between “chains” of Wigner-Jordan strings, while
Hickey and Trebst [81] employed numerical diagonalization
of a small system. Similarly, we observe consecutive opening
and closure of the energy gap in attenuating fashion until
h ≈ 0.7 |K| with the Chern number ν = 1 [see the green
curve on Fig. 4(b)]. Interestingly, ν does not change sign until
h � 0.7 |K| and then it becomes ν = −1 for 0.7 < h/|K| <

0.8. At h ≈ 0.8 |K|, the system enters a trivial phase with a
vanishing Chern number. In this respect, our MF approach
provides a different field evolution along the [001] direction
as compared to the literature.

An interesting transition occurs upon sweeping the mag-
netic field direction between the [001] and [111] directions
(see Fig. 3) for two magnetic field strength limits. At high
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field strengths, [001] and [111] directions are adiabatically
connected with ν = 0. Yet, at lower fields, the two directions
are topologically distinct as [001] direction yields a gapless
state [60,81]. We observe that the states in the vicinity of
the [001] direction are topologically equivalent to the [111]
direction with an energy gap and the same Chern number
ν = −1 in contrast to θ = 35o where there is a topological
transition. This transition was not noted before.

Before closing this section, we comment on the field
directions θ = ±60o and θ = ±90o typically explored in ex-
periments [57,58]. The experimentally accessible fields up to
50 Tesla allow α-RuCl3 to cross all the phase boundaries. We
therefore indicate the θ = ±60o directions with red arrows
in Figs. 2 and 3, whereas θ = ±90o refers to the h1 axis.
It is clear that the field orientation dependence of κxy could
be used to trace a AF type Kitaev term in real materials
keeping in mind the material specific additional couplings.
The change in κxy is expected to be in integer multiplies of 1/2
in units of π

6 k2
BT [1]. Moreover, the topological transitions are

accompanied by sign changes in κxy before the system reaches
the high-field polarized phase.

IV. KITAEV-GAMMA (K-�-�p) MODEL

A. Kitaev-gamma (K-�-�p) model in zero field

In order to bridge the gap between experiments and the-
ory, it is indispensable to include the additional terms readily
present in candidate materials. The relevant terms are the
off-diagonal exchange term is �, �p as well as the Heisen-
berg coupling J . In the following, we consider less-frequently
studied � and �p terms [65–67,89–93], as they are sufficient
to capture the ZZ-γ phase. The Hamiltonian for the additional
terms is

H�,�p =
α−bond∑
〈i j〉,βγ

|εαβγ |[�Sβ
i Sγ

j + �p
(
Sα

i Sβ
j + Sα

i Sγ

j

)]
. (8)

The typical strengths of � and �p are understood in various
materials yet, there is no agreement [32] on precise values.
For α-RuCl3 [76], the magnitudes are estimated as � ∼ |K|
and a small, negative �p with |�p| 
 |K|. For convenience,
we partially relax the restriction on �,�p to characterize the
GS in a larger parameter space for positive � and negative �p

values.
Inspired by α-RuCl3, we investigate the GS phase diagram

for the K-�-�p model again within the mean-field theory
scheme. The decoupling of the quartic pieces in the Hamil-
tonian along with the off-diagonal spin-spin interactions now
takes a more general form, Sα

j Sβ

l , i.e., on the γ bond, the
spin-spin interaction and its mean-field decoupling read

−ibα
i bβ

j icic j ≈ 〈
ibα

i ci
〉
ibβ

j c j + ibα
i ci

〈
ibβ

j c j
〉 − 〈

ibα
i ci

〉〈
ibβ

j c j
〉

− 〈
ibα

i bβ
j

〉
icic j + ibα

i bβ
j

〈 − icic j
〉

− 〈
bα

i bβ
j

〉〈 − icic j
〉

(9)

≡ mα
Aibβ

j c j + mβ
Bibα

i ci − mα
Amβ

B − 
αβ
γ icic j + wγ ibα

i bβ
j

−
αβ
γ wγ + 	α

γ icib
β
j + 	̄β

γ ibα
i c j − 	α

γ 	̄β
γ (10)

The additional MF parameters 
αβ
γ = 〈ibα

i bβ
j 〉γ as well as

	α
γ = 〈ibα

i c j〉γ and 	̄α
γ = 〈icibα

j 〉γ (see Appendix A) act as
a way to destabilize the Kitaev spin liquid phase. Clearly, the
bond operators ibγ

i bγ
j on the γ bond, which commute with the

pure Kitaev Hamiltonian are no longer constants of motion
when � and �p are nonzero.

The mean-field equations for the total Hamiltonian
HK��p = HK + H��p − Hλ are solved for a four-site unit cell
(see the green dashed rectangle in Fig. 1) so as to capture the
relevant phases such as the ZZ-γ phase. In limiting to only
four-site unit cells, we have also excluded states with larger
unit cells [73] or incommensurate [39] order. At this point, it
is underlined that we have limited our investigations to the ZZ
phases to be ZZ-z only. It is known [44] that different zigzag
phases can be favored under external fields, depending on
the field directions. The energetic competition between these
states is delicate and we prefer to leave that investigation to
future work.

We fix the Kitaev coupling to be of ferromagnetic type
(K < 0) and examine the phase diagram in �-�p space in the
zero field. Figures 5(a)–5(d) show the average magnetic mo-
ment (|M| = |∑4

i=1 mi|/4 where the index i extends over the
four-site unit cell), the staggered magnetic moment (|Mstag| =
|m1 + m2 − m3 − m4|/4), the Wilson flux and the energy
gap (	Egap), respectively. The parameters � and �p cover
of only the experimentally relevant ranges for α-RuCl3 with
� ∈ [0, 0.62] and �p ∈ [−0.3, 0] in units of |K|. We identify
four different phases, which are characterized below: KSL,
K�SL, F, and the ZZ-z phases. The F [73] and the ZZ-z phase
are distinguished by the directions of the magnetic moments
as well as by the vanishing Wilson flux [Fig. 5(c)] and the
finite energy gap [Fig. 5(d)]. KSL and K�SL phases have zero
magnetic moments and gapless structure (	Egap = 0) and dif-
fer only in their average Wilson loop. Yet, the curve separating
KSL phase and K�SL phase should not be considered as a
sharp boundary because the average Wilson flux is neither 1
or 0 but has a decaying form. The characteristic directions
of the magnetic moments for each phase as summarized in
Fig. 6(e).

Focusing on Fig. 5(a) first, there is an extended KSL region
for small |�p| values. With increasing � values, there is a
smooth crossover to a phase referred to as K�SL [65,90].
It is also a gapless phase with zero Wilson flux average W .
For the region where � < 0.3|K| and �p < −0.15|K|, a fer-
romagnetic phase emerges. This phase can be understood by
considering the spins as classical vectors for each sublattice,
e.g., Sα

A = sin θA cos φAx̂ + sin θA sin φAŷ + cos θAẑ. Exploit-
ing translational invariance, the energy (per unit cell) then
reads

E = 3(2�p + �) cos θA cos θB + (K − (2�p + �))

× ( cos θA cos θB sin θA sin θB cos(φA − φB)). (11)

The minimization w.r.t. {(θA, φA), (θB, φB)} implies all spins
to align along the [111] direction.

Relevant to the candidate materials, there is a wide region
in the �, �p parameter plane with a ZZ-z phase as shown in
Figs. 5(b) and 5(d). It is a gapped, topologically trivial and
magnetically ordered phase [94]. The average magnetization
|M| vanishes while the staggered magnetization is saturated
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FIG. 5. The zero-field phase diagram of the K-�-�p model for fixed ferromagnetic Kitaev term, K < 0. (a) Average total magnetization per
four-site unit cell, |M| = |∑4

i=1 mi|/4. Two distinct regions are readily identified with either vanishing magnetization in the Kitaev spin liquid
(KSL), the zigzag z phase (ZZ-z), the Kitaev-� spin liquid phase (K�SL) and a saturated polarization in the ferromagnetic phase (F). All the
phase boundaries are shown even if they cannot all be inferred from |M|. (b) The staggered magnetization, |Mstag.| = |m1 + m2 − m3 − m4|/4
reveals the ZZ-z phase. (c) The Wilson loop expectation value 〈Ŵ〉 in the mean-field factorization as a measure for the total strength of the
emergent gauge field. A finite Wilson loop signals the fractionalization of spins into itinerant Majorana fermions as well as composite Majorana
bond operators as gauge fields, and thereby distinguishes between the KSL and the K�SL phase, i.e., 〈Ŵ〉 = 0 in O and ZZ-z phase. (d) The
energy gap is finite for the ZZ-z phase and the P phase and quantitatively different for each phase with zero Chern number. 	Egap = 0 in the
KSL and the K�SL phase.

|Mstag| = 1. For a four-site unit cell, the ZZ-z region is ex-
tended to larger � and �p magnitudes. |Mstag| has thus the
same value as one would find by assuming from the outset
that the magnetic moments are purely classical instead of
quantum mechanical. Though our method should be capable
in capturing quantum mechanical spin fluctuations and hence
a ZZ-z phase with |Mstag| < 1 is in principle allowed, such a
phase is not realized within the employed mean-field scheme.

B. Kitaev-gamma (K-�-�p) model with magnetic field

In this section, we explore on the magnetic field response
of the K-�-�p model in � − h space for the smallest value
�p = −0.17|K|, which stabilizes an experimentally relevant
ZZ-z phase.

At zero field and with increasing �, there are four phases
encountered: The P phase, the KSL phase, the K�SL phase
and the ZZ-z phase. We first orient the magnetic field along
the experimentally often studied direction with θ = 60o in the
ac plane [57]. In Fig. 6, we present the phase diagram in which
PF denotes a partially fractionalized phase. All the identified
phases in � − h space, shown in Fig. 6(a), are also illustrated
with their local moment vectors in Fig. 6(e).

The P phase in which the magnetization points along the
[111] (θ = 0o) direction for small � values was made evident
already by the classical spin argument in Eq. (11). It is the
phase labeled by (3) in Fig. 6(e). A finite field with θ = 60o

tilts the spins out of the [111] direction. A large enough field
strength always takes the system into the P phase, although the

critical strength depends on the value of �. Also, the direction
of the spins lies between θ = 0o and θ = 60o.

At larger � values for fixed �p = −0.17|K|, the ferromag-
netic phase is replaced by a KSL phase and it extends to larger
field strengths. Because this region has a finite magnetization
at any finite h, it can only be identified by a suppressed Wilson
flux and a finite energy gap in Figs. 6(b) and 6(c), respectively.
Depending on the strength of �, KSL can undergo a phase
transition to either the P phase or the ZZ-z phase. There is a
small area within the ZZ-z phase with a suppressed Wilson
flux in the vicinity of the KSL region where the K�SL phase
seems to be stabilized. It is then replaced by the ZZ-z phase at
much smaller field strengths.

Moreover, before the polarized phase, we indeed observe
an intermediate phase with a reduced magnetic moment [see
Fig. 6(a)], which we dubbed as the partially fractionalized
(PF) phase. Even if it seems to be disconnected from the
extended KSL region and has a vanishing Wilson flux [see
Fig. 6(c)], this phase supports finite fractionalization. We
plot the fractionalization order parameter

√
X 2 + Y 2 + Z2,

e.g., X = 〈ibx
jb

x
l 〉x, [see Fig. 6(f)] showing that the total spin

fractionalization is finite within the PF phase (see Fig. 9 for
additional indicators along θ = −60o). It is a gapped phase
[see Fig. 6(d)] and exists for a wide range of � values.

The antisymmetrized thermal Hall conductivity κA
xy =

(κxy − κyx )/2 is routinely measured in the THC experiments
(see e.g., [57–59]). Near zero temperature, the linear T co-
efficient of κA

xy is proportional to the total Chern number ν

of the occupied fermionic bands. Hence, we now discuss ν

obtained in our mean-field theory for the K-�-�p model in
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FIG. 6. K-�-�p model in a tilted magnetic field for θ = 60o w.r.t. c axis for K < 0 and �p = −0.17|K| in �-h space. (a) The total magneti-
zation per four-site unit cell, |M| = |∑4

i=1 mi|/4. (b) The staggered magnetization per four-site unit cell, |Mstag| = (|m1 + m2 − m3 − m4|/4).
The staggered definition is used to distinguish the ZZ-z phase. Using plots (a) and (b), one can identify four different phases: KSL, ZZ-z, PF
(partially fractionalized or intermediate), and P phases. Note that, the ZZ-z phase and the P phase regions have trivial topology, ν = 0. (c) The
Wilson flux expectation per plaquette. The finite region denoted with yellow-orange colors indicates the KSL states, whereas the remaining
regions is either highly suppressed with the absence of fractionalization or negative values indicating another polarized phase. (d) The energy
gap for the ground state. It reveals a detailed information on how to distinguish each phase. The energy gap vanishes for the KSL while
partially suppressed for the intermediate PF phase. (e) The magnetic moment vectors for the four-site unit cell. The points with their numbers
are indicated on plot (a). (f) The total spin fractionalization order parameter for the bond-correlations,

√
X 2 + Y 2 + Z2 where say X is defined

as 〈ibx
jb

x
l 〉x . This plot makes evident that the PF phase hosts fractionalized bond correlations for larger magnitudes of the magnetic field.

a magnetic field. Firstly, at h = 0 in Fig. 5, the ZZ-z phase
is a collinear phase, which can be mapped back to itself by
a time-reversal operator and a translation by a lattice vector.
Naturally, it indicates a trivial Chern number. Within the PF
phase, the system is connected with the P phase at high mag-
netic fields without a gap closure, it has ν = 0 in spite of finite
spin fractionalization. The linear T coefficient of κA

xy is thus
expected to vanish, but a contribution from thermal excitations
across the relatively small gap is possible. Also, for the P
phase at large magnetic fields, the spins are polarized and the
correlations between the Majorana fermions are completely
local, giving only topologically trivial bands and hence also
ν = 0. We have numerically verified ν = 0 for the ZZ-z phase
and the P phase.

We now extend the analysis of the K-�-�p model to arbi-
trary field directions. The absolute magnetization in arbitrary
magnetic field (in the a-c plane) is shown in Fig. 7, where
Mabs = 1

4

∑4
i=1 |mi|. We set the couplings as K < 0, � =

0.5|K|, �p = −0.17|K| such that the GS is the ZZ-z phase.
The radial direction is the magnetic field strength and θ is the
polar angle w.r.t. the c axis. The ZZ-z phase is stable for small
field strengths in all directions. The field extended ZZ-z phase
is also seen in other studies [44,73], if � is comparable to
the Kitaev coupling. It is known [44] that the ZZ-z phase is
more stable to out-of-plane magnetic field, since the spins can
tilt more easily towards the field direction. For � < |K|, Mstag

tends to a more acute angle with the x − y plane (θ = 35o),
with a small out-of-plane z component. In the presence of a
magnetic field pointing closer to the z direction (θ = −55o),
the ZZ-z phase is hence more stable in comparison to the
field directions within the x-y plane (θ = 35o). In this re-
gard, the THC experiment on α-RuCl3 has revealed that the
magnetic field responses for θ = ±60o directions are not sym-
metrical but the system has a wider intermediate region for
θ = +60o [58]. We indeed verify a wider intermediate region
(less stable ZZ-z phase) for θ = 60o compared to −60o. On
the contrary, for the field directions closer to the x-y plane (θ
is around 35o or −150o), the ZZ-z phase is highly unstable
and paves the way for the intermediate PF phase. Because the
magnetic field is not along [111], the rotational symmetry is
already broken and we therefore cannot address the nematic
phases reported in literature [73].

V. CONCLUSIONS

We developed a Majorana mean-field theory for com-
plicated Kitaev materials. It holds a good basis for the
investigation of expensive Hamiltonians to hunt for spin
liquids to complement time and resource consuming numer-
ical approaches within large parameter spaces. One such
model that a MF Majorana theory is applied [95] is the
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FIG. 7. (a) The absolute magnetization per site in h1 − h3 space:
Mabs = 1

4

∑4
i=1 |mi|. The model parameters are chosen to host a

ZZ-z GS for K < 0, � = 0.5|K| and �p = −0.17|K| in zero field.
Four different phases are identified: The zero-field ZZ-z (1) phase
extends up to a critical field strength extending to point (2) with a
wider range along the h1 = 0 line. The partially fractionalized PF
(3) phase is stable within a confined region extending to point (4) at
intermediate field strengths. Finally, the P phase (5) takes over at high
field strengths. The corresponding magnetic moment vectors of each
site in a four-site unit cell are labeled from 1 to 5 in the lower panel.
The orientations of the vectors follow the field directions. (b) The to-
tal spin fractionalization for the bond correlations,

√
X 2 + Y 2 + Z2,

highlighting the fractionalization in the PF phase.

two-dimensional J1-J2 Heisenberg model, which could have
applicability to cuprates.

We sum up this work by referring back to the initially posed
questions. Regarding the phase diagram of the AF Kitaev
model in a magnetic field: We identified an additional topo-
logically nontrivial ground state with Abelian anyons (even

Chern number ν = ±2) in addition to the ν = ±1 vacuum
mainly referred to in the literature as the source of the half-
quantized THC. The magnetic field response is sensitive to the
magnetic field orientation and strength upon, which several
topological transitions are encountered for fields in the a-c
plane. We emphasize that the gapless phases are hard to trace
and demand for special numerical care (e.g., for fields in the
[001] direction).

Regarding the role of the additional off-diagonal �-�p

terms in the modeling of real materials, we have shown that
the pure Kitaev picture changes dramatically for comparable
strength of � ∼ |K| in favor of a K�SL as the gauge-flux
expectation value per plaquette vanishes, W = 0. At finite �p

and not too small �, the zigzag phase emerges. At a finite
magnetic field, the K�SL phase gave way to the zigzag phase.
Starting from these phases at zero field, a magnetic field of
suitable strength is able to drive the system towards partial
spin fractionalization. The latter phase however is different
from the Kitaev spin liquid as indicated by the Wilson flux.
Further investigation of the properties of this phase with par-
tial fractionalization region is left to the future.

Comparing our results with the theoretical results readily
available in the literature, we not only found a qualitatively
satisfying agreement for all limits of K, �, �p, and h but we
made two important contributions, the topologically distinct
sectors of the pure AF Kitaev model in different magnetic
field orientations and the coexistence of magnetic moments
and fractionalization dubbed as the PF phase for K-�-�p-h
model. Additionally, our findings also capture the asymmetry
in the magnetic field response measurements in Ref. [58]
for θ = ±60o magnetic field orientations in a straightforward
way.

It is worth talking about typical magnetic field strengths
and the relevance of the numbers obtained in this paper to
experiments. In Fig. 6, the magnetic field direction along
θ = 60o, the PF phase is stabilized mainly for h ∈ [0.05, 0.12]
(in units of |K|). Matching the energy scales for the Kitaev

FIG. 8. The energy band diagram for the AF Kitaev model under [111] magnetic field. Leftmost plot is h = 0 KSL limit whereas the
rightmost plot is the polarized limit (h = K ). There are two critical field strengths at hc = 0.7K, 0.8K where Dirac cones occur and leading to
a topological transition.
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coupling and the magnetic field coupling term, �h · �S = K ,
one can get a rough estimate on the magnetic field scale.
0.05kB|K| � BgJμB jeff � 0.12|K| yields a window for the
magnetic field strength B ∈ [4, 9.4] T. Note that Kitaev cou-
pling is estimated to be roughly 100K [96]. Also, jeff = S =
1/2, kB is the Boltzmann constant, μB is the Bohr magneton
and gJ ≈ 2 is the Lande factor for jeff . In Fig. 7, the width of
PF phase is varying as a function of magnetic field direction.
The critical field for melting the ZZ-z phase can go up to 16+
Tesla for [111] direction and even larger for small and negative
θ values. These findings are verified with the literature [96]
(and references therein such as Ref. [97]) and show that the
Majorana MF theory predicts sensible results.

This paper raises several questions to be addressed in a next
step as a natural extension, in particular about the character
of the intermediate phase. A detailed study of the nature
of the excitations of this partially fractionalized phase could
provide valuable information relevant for spectroscopic sig-
natures. Aside from the current materials of interest, there is
an extended region [98] with � > 0 and �p > 0 in spin liquid
phases are stabilized. Actually, preliminary results premise an
even larger extended region of stabilized KSL phase for � < 0
and �p > 0. Even an additional region stabilizing a ZZ-z
phase in � − �p space is possible, which could potentially
provide an alternative materials scenario. A finite temperature
response of the K − � − �p model in arbitrary magnetic field
is indispensable for conclusions with regards to thermal Hall
conductivity experiments. Thermodynamical functions need
to be calculated for a wide regime of K − � − �p − h − T
parameters. Additionally, we aim at analytical evaluations for
the thermodynamics of the antiferromagnetic Kitaev model
in a [001] magnetic field with closed form expressions in
leading orders of h and T . And it has to be explored how
our conceptually simple and comprehensive formalism can be
applied to comply with the recently observed oscillations [59]
in the longitudinal thermal conductivity as a function of the
inverse magnetic field.
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APPENDIX A: KITAEV SPIN LIQUID (KSL):
MEAN-FIELD APPROXIMATION

Before we start, let us define our convention for the sym-
bols used in the Appendix: ρ, θ, η are used for x, y, z type
Pauli matrix indices (unlike the main manuscript where we
used α, β, γ ). α, β, γ symbols are instead used to distinguish
Majorana fermions and take the values {±4,±3,±2,±1}.
Negative values are for sublattice A and positive values are
reserved for sublattice B, respectively. Finally, the symbol λ

is used for two different purposes: A Lagrange multiplier or a
subscript index in the diagonal reciprocal space basis.

For the Kitaev model in Eq. (1), a solution attempt by
Jordan-Wigner slave fermions leads to a quartic interaction
term on the z bonds [60,99]. However, this approach is not
very useful for arbitrary field directions where one has to deal
with Pauli strings [60]. We therefore stick to Kitaev’s original
representation [1]. Accordingly, each spin is represented by
two Majorana fermions—as real fermionic field. Consider the
following mapping (with h̄ = 1):

2Sρ
j = σ

ρ
j = ibρ

j c j, ρ ∈ {x, y, z}, (A1)

{
bρ

i , bθ
j

} = 2δρ,θ δi, j,
{
bρ

i , c j
} = 0, (A2)

(
bρ

i

)2 = c2
i = 1. (A3)

Each spin component is thus a composite object consisting of
two Majorana fermions. However, the size of the Hilbert space
is thereby doubled and it is required to impose the following
quartic constraint at each site to ensure the equivalence and
the reality of each vector in the enlarged Hilbert space,

D̂ j = bx
jb

y
jb

z
jc j = 1. (A4)

In the new representation the Kitaev Hamiltonian is written as

HK = 1

4

∑
jl,ρ−bond

Kρbρ
j b

ρ

l c jcl . (A5)

The spectral decomposition of HK is obtained by using
the constants of motion, the bond operators ûρ

jl ≡ ibρ
j b

ρ

l ,
[HK , ûρ

jl ] = 0. In other words, each bond gauge field is a
constant of motion and the Hilbert space can be segmented
into the gauge sectors of each bond. Choosing all gauge-sector
eigenvalues as ûρ

jl = +1 for Kρ > 0, the gauge fields are
“frozen” and decoupled from itinerant fermions. Then, the
Hamiltonian becomes quadratic,

HK = − i

4

∑
jl,ρ−bond

Kρc jcl . (A6)

The itinerant fermion dispersion [1] is

ε(q) = ±|Kxeiq·rx + Kyeiq·ry + Kzeiq·rz |, (A7)

which is identical to the graphene with Dirac cones when
Kα = K . The bond vectors [in ê1, ê2, ê3 basis as shown in
Eq. (2)] are rx = −2(2a1 − a2)/3, ry = −2(2a2 − a1)/3 and
rz = (2a1 + a2)/3. The Bravais vectors of the honeycomb
lattice are a1 =

√
3a
2 (1,

√
3) and a2 =

√
3a
2 (−1,

√
3) with a

being the lattice constant. However, this approach is highly
sensitive to proper gauge choices in each sector, therefore
it is very limited for extensions to other interactions, which
are readily present in real materials. Moreover, the additional
emerging exchange couplings demand a more all-inclusive
approach in which fractional and conventional magnetism can
be treated on an equal footing. A mean-field decoupling of
Majorana fermions [60–64,78–80] in this respect is a suitable
method for two reasons: Firstly, a decoupling scheme pro-
vides the desired competition between the conventional and
the anomalous pairings. Secondly, the main disadvantage of a
typical mean-field (MF) method, i.e., the loss of correlations,
is partially resolved because the fractionalized excitations are
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already included through replacing the spin operators by com-
posite Majorana operators.

Kitaev type spin-spin interaction has a quartic form in Ma-
jorana representation. The bond operators ûα

jl are not frozen
in a more general setting, e.g., in the presence of the exter-
nal field, additional off-diagonal spin-spin interactions. It is
therefore more appropriate to decouple a general spin-spin
interaction on an arbitrary bond η, e.g., Sρ

j Sθ
l as follows:

−ibρ
j b

θ
l ic jcl ≈ 〈

ibρ
j c j

〉
ibθ

l cl + ibρ
j c j

〈
ibθ

l cl
〉 − 〈

ibρ
j c j

〉〈
ibθ

l cl
〉

− 〈
ibρ

j b
θ
l

〉
ic jcl + ibρ

j b
θ
l

〈 − ic jcl
〉

− 〈
bρ

j b
θ
l

〉〈 − ic jcl
〉

≡ mρ
Aibθ

l cl + mρ
Bibθ

j c j − mρ
Amθ

B − 
ρθ
η ic jcl

+wηibρ
j b

θ
l − 
ρθ

η wη. (A8)

Assuming isotropic bond strengths, Kα = K , the MF de-
coupled magnetic Kitaev mean-field Hamiltonian reads

HK = K

4

∑
jl,ρ−bond

(
mρ

A − 2hρ

K

)
ibα

l cl +
(

mρ
B − 2hρ

K

)
ibρ

j c j

−
ρρ
ρ ic jcl + wρ ibρ

j b
ρ

l − mρ
Amρ

B − 
ρρ
ρ wρ. (A9)

Corresponding MF parameters are

mρ
A = 〈

ibρ
j c j

〉
, mρ

B = 〈
ibρ

l cl
〉
, (A10)

wρ = −〈
ic jcl

〉
ρ
, 
ρθ

η = 〈
ibρ

j b
θ
l

〉
η
. (A11)

Note that mρ
A,B are components of the local magnetic moments

on sublattices A and B whereas wη = w is the same on all
bonds. 
ρθ

η are the indicators of fractionalization defined on
the bond η. For simplicity, we use shorthand notations for

ηη

η , e.g., 
xx
x = X . While the aim is to obtain a quadratic

Hamiltonian, there is an issue regarding the quartic constraint
on Majorana fermions. The strategy is to rewrite the constraint
in terms of two-fermion operators. Multiplying both sides
with any two of the four fermion operators, one can rewrite
the single quartic constraint in Eq. (A4) as three quadratic
constraint relations,

bzc + bxby = 0, (A12)

bxc + bybz = 0, (A13)

byc + bzbx = 0, (A14)

where the site index is dropped for simplicity. Based on these
relations, the constraints can be introduced into the Hamilto-
nian with three Lagrange multipliers,

HMF = HK − Hλ, Hλ = i

2

ρ,θ,η∈{x,y,z}∑
j

λρ

(
bρ

j c j + ερθη

2
bθ

j b
η
j

)
,

(A15)

where we omitted any spatial dependence of λ
ρ
i = λρ . The

constrained mean-field Hamiltonian must satisfy the saddle
point condition

∂〈HMF〉
∂λρ

= ∂Etot (λ)

∂λρ
= 0, (A16)

which is equivalent to the quadratic constraints to hold for
expectation values,

〈ibzc〉 = −〈ibxby〉, (A17)

〈ibxc〉 = −〈ibybz〉, (A18)

〈ibyc〉 = −〈ibzbx〉. (A19)

For the evaluation of 〈HMF〉 we consider the general Hamil-
tonian (H) of the form

H = −i
∑
jα,lβ

ε jα,lβc jαclβ (A20)

on a periodic lattice. Here c jα operators, unlike c j , in-
cludes all types of Majorana fermions (bx, by, bz, c). j, l
labels are unit cells indices for sublattices A and B, re-
spectively. The sub-indices α, β represent the Majorana
flavors (e.g., c j,{−4,−3,−2,−1} ∈ {bx

j, by
j, bz

j, c j} and c j,{1,2,3,4} ∈
{bx

l , by
l , bz

l , cl}) within the corresponding sublattices. ε jα,lβ

is necessarily anti-symmetric under the interchange jα ↔
lβ. This Hamiltonian can be diagonalized using the
transformation

c jα =
√

2
∑
q,λ

u jα,q,λαq,λ (A21)

where
√

2 is used to ensure the correct factor in the an-
ticommutation relations. The coefficients ujα,q,λ satisfy the
eigenvalue equation,

Eq,λu jα,q,λ = −iε jα,lβulβ,q,λ. (A22)

q labels the wavevector and λ ∈ {±4,±3,±2,±1} labels
eight different solutions at each q. The eigenvectors imply a
plane-wave form

u jα,q,λ = 1√
N

eiq·r j ũαλ(q). (A23)

Here, N is the number of unit cells, r j is the position vector of
the sublattice A site j, and r j = j1a1 + j2a2. For convenience
we choose

∑
α |ũαλ(q)|2 = 1. Equations (A20) and (A21) im-

ply that the operators αq,λ satisfy the commutation relation

[αq,λ, H] = Eq,λαq,λ. (A24)

Explicitly, αq,λ = 1√
2

∑
j,α u∗

jα,q,λc jα can be derived from
Eq. (A20). Equation (A21) transforms H into

H = 1

2

∑
q,λ

Eq,λα
†
q,λαq,λ. (A25)

Taking the complex conjugate of Eq. (A22) tells that the
eigenvalues come in pairs: If ulα,q,λ is a solution with eigenen-
ergy Eq,λ, then ulα,−q,−λ = u∗

lα,q,λ (belonging to wavevector
−q) has eigenenergy −Eq,λ, and the associated operator
α−q,−λ is equivalent to α

†
q,λ. Rewriting the diagonalized

Hamiltonian in Eq. (A25) in terms of positive energy oper-
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ators only, we obtain

H = 1

2

Eq,λ>0∑
q,λ

[Eq,λα
†
q,λαq,λ − Eq,λαq,λα

†
q,λ]

=
Eq,λ>0∑

q,λ

Eq,λα
†
q,λαq,λ − 1

2

Eq,λ>0∑
q,λ

Eq,λ (A26)

where the sums extend over only the positive energy eigen-
states. αq,λ operators satisfy the usual anticommutation
relations {αq,λ1 , α

†
q′,λ2

} = δq,q′δλ1,λ2 . The ground state, there-
fore, is defined as αq,1|GS〉 = 0. This representation is useful
for finite temperature extensions.

Specifically for this paper, ε jα,lβ corresponds to the mean-
field parameters in Eq. (A10) and Eq. (A11) entering the
mean-field Hamiltonian HMF in Eq. (A9). The Hamiltonian
has an 8 × 8 matrix representation Hq in momentum space.
Our convention is

HMF =
∑

q

�†
qHq�q, (A27)

where �q = (bx
q, by

q, bz
q, cq, b̄x

q, b̄y
q, b̄z

q, c̄q) indicates the
Fourier transformed Majorana operators. The momentum
space operators with(out) a bar on top belong to the
sublattice-B (A), e.g., bα

l ↔ b̄α
q (bα

j ↔ bα
q). Yet, we generalize

this convention to cqα operators where each operator in �q
is represented by α index, where α ∈ {±4,±3,±2,±1}. Hq
can be diagonalized as �†

qHq�q = Dq where the matrix �q
has the form

�q = (|q,−4〉...|q,−1〉|q, 1〉...|q, 4〉). (A28)

|q, λ〉 = α
†
q,λ|0〉 denotes 8-component vectors where ujα,qλ =

〈 jα|q, λ〉. Thereby the matrix elements of �q are ũαλ(q) in
Eq. (A23) with α, λ being the entries for rows and columns,
respectively.

The mean-field analysis is concluded by the self-
consistency relations for the MF parameters. For bond
correlations, self-consistency requires

〈ic jαclβ〉 = 2i

N

Eq,λ>0∑
q,λ

eiq·rγ ũαλ(q)ũ∗
βλ(q), (A29)

where the site indices j, l determine the bond direction rγ =
r j − rl . The self-consistency cycle is completed via the de-
pendence of ũαλ(q) on the MF parameters.

The values of α, β, γ for each MF parameters are provided
below. Regarding the bond correlations,

X → α = −4, β = 1, γ = x,

Y → α = −3, β = 2, γ = y,

Z → α = −2, β = 3, γ = z,

wγ → α = −1, β = 4, γ ∈ {x, y, z} with a “–” sign

Regarding the local correlations (e.g., magnetic moments),

〈ic jαc jβ〉 = 2i

N

Eq,λ>0∑
q,λ

ũαλ(q)ũ∗
βλ(q). (A30)

The parameters are defined as

mx
A → α = −4, β = −1, mx

B → α = 1, β = 4,

my
A → α = −3, β = −1, my

B → α = 2, β = 4,

mz
A → α = −2, β = −1, mz

B → α = 3, β = 4.

The remaining MF parameters [e.g., in Eq. (A17)] can be
handled with a similar straightforward approach.

We used a two-site unit cell for pure Kitaev models under a
magnetic field whereas a four-site unit cell for K-�-�p model
in a crystal. The Bravais lattice vectors for a two-site unit cell,
a1, a2 are shown below Eq. (A7) and the four-site unit-cell
vectors ã1, ã2 are chosen as ã1 = a1 − a2 and ã2 = a1 + a2.
Regarding the four-site unit cell, it can be argued if the BZ
backfolding in a reduced BZ poses a problem for a ground
state with a two-site periodicity due to the redundant energy
level crossings at the BZ boundary. Yet, it is a well-known fact
that the energy level crossings in the reciprocal space does not
have a topological origin and the energy eigenstates are equiv-
alent compared to the case where there is no back-folding in
a two-site unit cell. The Brillouin zone integrals are approx-
imated as 10000+ meshpoint sums for the Brillouin zone,∫

BZ d2k ≈ ∑
i(	k)i. The Chern number for a two-site unit

cell is calculated [82] for a simpler rhombic Brillouin zone
choice. It is because the Wilson loops at the boundaries of the
BZ could pose problems due to the complicated periodicity of
the honeycomb shaped BZ. Moreover, one has the freedom to
choose any set of unique q points in the reciprocal space as the
basis vectors. The initial configurations for the MF parameters
as well as the Lagrange multipliers are set to various distinct
values such that the minimization procedure can capture all
possible phases, e.g., P, ZZ-z, PF and spin liquid phases.
The ground state is the lowest energy configuration satisfying
convergence conditions w.r.t the MF parameters and their total
mean squared error threshold in the gradient descent scheme.
The threshold is 10−6 for stable regions, 10−4 for the phase
boundaries with stronger variations in MF parameters. We
also checked the performance of the mean-field method in
magnetic fields. Neither the magnetic field strength nor the
magnetic field angle changes the performance of the mean-
field method.

APPENDIX B: THE ENERGY-BAND EVOLUTION
ALONG [111] DIRECTION

Here, we provide the energy band evolution for the AF
Kitaev model under a magnetic field along [111] direction.
An infinitesimal field strength gaps the system with a Chern
number ν = −1. At an intermediate field strength, h = 0.7K ,
there are three Dirac cones occur at M-points of the Brillouin
zone as well as a Chern number transfer by 3 unit, where the
ground state Chern number is ν = 2. Then, two Dirac cones
merge and annihilate at Gamma point at larger field strengths
with a topologically trivial P phase.

APPENDIX C: THE DETAILS OF THE K-�-�p MODEL
IN A MAGNETIC FIELD

In Fig. 9, we plot the bond correlations (X,Y and Z)
and the itinerant Majorana correlations (wα) for the K-�-�p
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FIG. 9. The spin fractionalization order parameters for the K-�-�p model, averaged over the four site unit cell, as function of field strength
h and the off-diagonal spin interaction strength �. Field direction is along θ = −60o. The bond-correlations X , Y , and Z (e.g., X = 〈ibx

jb
x
l 〉x)

are given in the first row whereas the itinerant Majorana correlations wα , wx = 〈ic jcl〉x are shown in the second row. A nonzero value indicates
spin fractionalization.

model in a θ = −60o magnetic field in � − h space with
fixed �p = −0.17|K|. The extended KSL regime is visi-
ble as a hill-shaped region at the bottom left corner of
each plot. In the intermediate PF regime, the residual frac-
tionalization is visible along the supported by the finite

bond correlations for X,Y as well as wx and wy through-
out the PF regime. Because the field direction is close to
[001] direction, the hybridization between bz and c Majorana
fermions strongly suppresses the fractionalization along the z
bonds.
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