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Heart rate from face videos under realistic 

conditions for advanced driver monitoring 

Abstract: The role of physiological signals has a large 

impact on driver monitoring systems, since it tells something 

about the human state. This work addresses the recursive 

probabilistic inference problem in time-varying linear 

dynamic systems to incorporate invariance into the task of 

heart rate estimation from face videos under realistic 

conditions. The invariance encapsulates motion as well as 

varying illumination conditions in order to accurately 

estimate vitality parameters from human faces using 

conventional camera technology. The solution is based on the 

canonical state space representation of an Itô process and a 

Wiener velocity model. Empirical results yield to excellent 

real-time and estimation performance of heart rates in 

presence of disturbing factors, like rigid head motion, talking, 

facial expressions and natural illumination conditions making 

the process of human state estimation from face videos 

applicable in a much broader sense, pushing the technology 

towards advanced driver monitoring systems. 
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1 Introduction 

During the last years, the task of measuring skin blood 

perfusion and heart rate measurements from facial images 

became inherent part of several top conferences. 

Interestingly, most contributions focus on how to cope with 

motion like head pose variations and facial expressions since 

any kind of motion on a specific skin region of interest will 

destroy the underlying blood perfusion signal in a way that 

no reliable information can be extracted anymore. Figure 1 

illustrates the disturbing influence of head motions on the 

raw pulse signal. 

1.1 Related work 

The term Photoplethysmography, short PPG, dates back to 

the late first half of the 20th century, when Molitor and 

Kniazak [1] recorded peripheral circulatory changes in 

animals. One year later, Hertzmann [2] introduced the term 

Photoelectric Plethysmograph as he observed "the amplitude 

of volume pulse as a measure of the blood supply of the 

skin". With the ongoing fast development of semiconductor 

technology, the last three decades has seen large progress in 

the PPG instrumentation. PPG sensors have been explored 

extensively, including the ring finger, wrist, brachia, earlobe, 

and external ear cartilage. Advancement to the classical PPG 

is the camera based Photoplethysmography Imaging (PPGI) 

method introduced by the pioneering work of Blazek [3]. 

Since his first published visualisation of pulsatile skin 

perfusion patterns in the time and frequency domain, 

classical signal processing methods are applied commonly to 

extract reasonable information out of the perfusion signals 

[4][5][6]. Hülsbusch [4] realized that motion of the skin area 

of interest inherently induces artifacts into the extracted 

signal. Therefore, canceling motion artifacts during signal 

processing became an important aspect for reliable skin 
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Figure 1: A Typical scenario where heart rate estimation becomes 
challenging, rigid head motions. In the first 250 frames the user is 
in a resting state and the fine pulsation of blood flow is visible on 
the averaged green channel of skin pixels. After 300 frames the 
user starts to move his head and the pulse signal gets lost. 
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blood perfusion measurements. From the basic early idea of 

compensating the motion of the skin area of interest by 

optical flow methods directly in the image plane [4], Poh et 

al. [6] regarded the problem solution for facial videos as a 

blind source separation task using Independent Component 

Analysis (ICA) over the different color channels. De Haan 

and Jeanne [10] proposed to map the PPGI-signals by linear 

combination of RGB data to a direction that is orthogonal to 

motion induced artifacts. A recent alternative, which does not 

require skin-tone or pulse-related priors in contrast to the 

channel mapping algorithms, determines the spatial subspace 

of skin-pixels and measures its temporal rotation for signal 

extraction [11]. We go beyond the state of the art and 

propose a holistic classical interpretation of the blood 

perfusion phenomena. 

2 Methodology 

The underlying system of measuring heart rates from face 

regions using conventional camera technology is modelled 

upon a diffusion process. The entire process itself is divided 

into independent single processes; the heart frequency, the  

 

 

illumination and the users head movement and facial motion. 

The periodic event of heart frequency is expressed in form of 

a stochastic resonator  
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with  

                                (2) 

representing the solution of a second order differential 

equation with respect to the classical mechanics of circular 

motion [13]. The white noise component        reflects small 

changes in amplitude and phase. The major advantage of 

such a stochastic representation of a resonator is, even when 

the frequency has discontinuous the signal is always 

continuous. Figure 2 shows a single stochastic oscillator with 

time-varying frequency and amplitude. The illumination as 

well as the head movement and facial motion are expressed 

as a Wiener process 
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whereby a violation of the smoothness criterion yields to a 

generalized Poisson (e.q. Cox) process  
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describing the time varying jump frequency and magnitude 

of pixel intensities. Figure 3 shows a simulated trajectory of 

a Wiener process and its realization modulated by a Poisson 

process. 

The general solution of the corresponding stochastic 

differential equations  

 
       

  
                        (5) 

is given by Itô's lemma [12].  

 

Figure 2: A simulated trajectory of a stochastic oscillator with 
frequency trace in a range typical for a human in resting state. 

 

 

Figure 1: A simulated trajectory of a Wiener process and its 
realization modulated by a Poisson process with jump frequency 
1.95 and magnitude 35. 

 



The discrete-time approximation yields to [14] 
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with           , the Wiener process      with spectral 

density    and the covariance of the stochastic integral 

     

            

 
  

        (7) 

with            , which results to the discrete-time model 
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with process noise 
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and measurement noise 
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If the resonator's fundamental frequency is known, the 

solution yields to a general time-discrete linear dynamic 

system [9]. However, since the resonator's fundamental 

frequency is unknown, the problem is given as latent state of 

the frequency. This results in a Markov process, whereby the 

latent states are time-discrete linear dynamic systems. The 

closed form solution to this problem is described by Bloom 

and Bar-Shalom [8]. The advantage of this kind of 

formulation is that the case of non-uniform sampling as well 

as missing observations is naturally included in the model. 

The basic idea of methodology is inspired by the work of 

Särrkä [7]. 

3 Experiments 

To evaluate the proposed model, empirical data is collected 

under natural environmental conditions with a typical low-

cost opto-electronical sensor device, a Logitech HD C270 

webcam, as well as reference ground truth measurements 

using a common finger pulseoximeter, a CMS50E PPG 

device. 25 users were asked to perform video recordings in 

two sessions resulting in a total amount of 50 videos. The 

first session is selected to be even-tempered without any kind 

of larger head or body movements and facial expressions. 

During the second session, participants were free to move 

their head naturally while remaining seated. Typical 

movements included tilting the head sideways, nodding the 

head, looking up/down and leaning forward/backward. Some 

participants also made facial expressions, or started to talk. 

There reflecting typcial driver behaviour. The recording 

illumination environment was chosen as daylight scenario 

without any additional lighting. The duration of each session 

is approximately one minute. The frame rate was fixed to 15 

fps in average and the corresponding time stamps for each 

frame were captured too. The finger pulseoximeter data for 

each session and participant was stored for later comparison. 

For every video recording a standard face finder was used to 

determine the analysis region of interest. The extracted 

averaged gray intensity feature was feed into the vector 

valued representation of the diffusion process on a frame by 

frame basis. On every estimated pulse trace a spectral peak is 

determined by the Lomb periodogram. The frame duration 

was set to 10 seconds with 90 percent overlap. The 

correlation and Bland-Altman plots for the resting and head 

motion condition are reported in the following figure 5 and 

figure 6 respectively. To obtain further insides about the 

potential strength of the diffusion process model, the 

approach is compared against the recently published Spatial 

Subspace Rotation (SSR) [11] and the baseline ICA approach 

Figure 2: Comparison of an estimated pulse signal under rigid 
head motions and the corresponding spectrogram for the ICA [6], 
the SSR [11] and the diffusion process method. These estimates 
are based upon the video illustrated in figure 1. 

 

 

Figure 5: Correlation and Bland-Altman plots of PPGI diffusion 
process estimated heart rate against CMS50E PPG reference of 
25 users in resting state. 
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[6]. Figure 4 compares an users estimated pulse signal under 

rigid head motions and the corresponding spectrogram for the 

three methods. The heart rate for the ICA methods nearly 

gets lost completely. For the SSR method the frequency trace 

is better visible but cannot compete against the diffusion 

process model where the heart rate is very clear over the 

entire sequence of head movements. The detailed correlation 

coefficients and squared errors of prediction for all 

approaches are provided for the two data sessions in Table 1. 

ICA performs worst and is not able to provide reliable heart 

rate information during head motion. Although SSR performs 

better it cannot compete against the robustness of the 

diffusion process. 

 

Table 1: Pearson's correlation coefficient and squared errors 

of prediction of  ICA, the SSR and the diffusion process (DP) 

method under different scenarios. 

Type Resting Head Rotation 

ICA 0.61/7.8 0.21/14.6 

SSR 0.78/4.8 0.47/7.6 

DP 0.95/3.6 0.87/3.9 

4 Conclusion 

In this work, we have presented a holistic signal 

interpretation of heart rate estimation from face videos under 

realistic simulated driving conditions. The closed form 

solution of the corresponding stochastic differential equations 

yields to a diffusion process where the exact estimate of the 

source separated heart rate signal is obtained via the posterior 

distribution of the process. We compared the model against 

two common approaches on face videos under resting as well 

as head and facial motion scenarios under natural 

illumination conditions.  Measurements on a 25 user 

experiment showed clearly superior robustness of the 

diffusion process modelling, although the uncertainty of 

prediction still gets slightly increased during natural head 

motion. We conclude that an entirely invariant process model 

still depends on a more robust feature representation. 
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