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Abstract. Blind source separation (BSS) aims at separating useful signal content from distortions. In the con-
tactless acquisition of vital signs by means of the camera-based photoplethysmogram (cbPPG), BSS has
evolved the most widely used approach to extract the cardiac pulse. Despite its frequent application, there
is no consensus about the optimal usage of BSS and its general benefit. This contribution investigates the per-
formance of BSS to enhance the cardiac pulse from cbPPGs in dependency to varying input data characteristics.
The BSS input conditions are controlled by an automated spatial preselection routine of regions of interest. Input
data of different characteristics (wavelength, dominant frequency, and signal quality) from 18 postoperative
cardiovascular patients are processed with standard BSS techniques, namely principal component analysis
(PCA) and independent component analysis (ICA). The effect of BSS is assessed by the spectral signal-to-
noise ratio (SNR) of the cardiac pulse. The preselection of cbPPGs, appears beneficial providing higher
SNR compared to standard cbPPGs. Both, PCA and ICA yielded better outcomes by using monochrome inputs
(green wavelength) instead of inputs of different wavelengths. PCA outperforms ICA for more homogeneous
input signals. Moreover, for high input SNR, the application of ICA using standard contrast is likely to decrease
the SNR. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.3.035002]

Keywords: blind source separation; independent component analysis; principal component analysis; video-based vital signs mon-
itoring; camera-based photoplethysmogram; signal-to-noise ratio.

                                                                                            

1 Introduction
The contactless acquisition of vital signs allows a convenient
medical assessment and enables clinical and out-of-hospital
applications. Various systems and principles for contactless
measurements have been introduced in recent years.1,2 Among
such approaches, the usage of cameras, referred to as camera-
based photoplethysmography or photoplethysmography imag-
ing, is one promising solution to assess the cardiac pulse in a
very user-friendly setting.

The acquisition of the cardiac pulse using cameras was first
demonstrated by Huelsbusch and Blazek.3 Meanwhile, many
researchers have addressed the camera-based photoplethysmo-
gram (cbPPG), most often to assess the heart rate.4–10 The most
important drawback of the technique is its susceptibility to arti-
facts induced by movements and changes in illumination.
Sophisticated image and signal processing techniques are
required to cope with such factors and facilitate the camera-based
assessment of cardiac pulse even under real-world conditions.

Poh et al.6 were the first to use blind source separation (BSS)
algorithms in the context of the cbPPG. Since then BSS algo-
rithms became a core part of signal processing schemes to
extract the heart rate from cbPPG recordings. BSS aims at sepa-
rating the desired signal content (i.e., cardiac pulse) from noise
and artifacts by means of decorrelation and utilizing the concept
of statistical independence. Principal component analysis
(PCA) and independent component analysis (ICA)11 realized
as Joint approximation diagonalization of eigen-matrices

(JADE)12 or FastICA13 are typical BSS techniques that have
been widely applied to cbPPGs.

Common approaches6,14–19 use different color channels [typ-
ically red, green, and blue (RGB)] extracted from regions of
interest (ROI), typically the face, as input to PCA or JADE
ICA. FastICA has also been applied to RGB signals8,19,20 and
achieved a slightly better performance in comparison to other
ICA algorithms.8 Tsouri et al.21 proposed a constrained ICA
for RGB information of a face ROI. Other researchers have fur-
ther developed the idea of applying multispectral cbPPG to
PCA/ICA but have used alternatives to RGB, namely combina-
tions of RGB with orange and cyan channels or chrominance as
well as hue and infrared-based signals, respectively.9,15,22–25

In addition to wavelength-based considerations, more selec-
tive ROI choices, such as reducing the face ROI to a more con-
cise area, have been outlined in the context of PCA/
ICA.8,10,16,19,22,26 These approaches seek to exclude regions that
are not supposed to contribute with useful signals but can intro-
duce distortions, e.g., by mouth movements during speaking/
smiling or blinking eyes.19,27 Approaches, which are described
in literature, typically rely on a spatial preselection and use mul-
tispectral information (RGB) as input to BSS techniques.
Moreover, a monochrome cbPPG, extracted from the forehead,
was used as input for spatio-temporal ICA.26 Wang et al.23 alter-
natively addressed spatial selection without using explicit face
detection. The authors utilized the temporal behavior of pixel
traces to distinguish skin-like areas showing temporally periodic
content from motion-like content. Even Guazzi et al.28 pursued
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the idea of spatially selecting ROIs according to the local dis-
tribution of signal quality.

Despite the frequent multispectral BSS use, there is no con-
sensus on performance improvements by using BSS techniques
with multispectral inputs. In particular, Kwon et al.17 described a
blurred spectral peak after applying RGB ICA as well as an
increased heart rate error. Christinaki et al.8 identified only
subtle improvements but similar heart rate errors with/without
using RGB ICA. Feng et al.10 showed a lack of robustness by
applying standard approaches that use ICAwith RGB channels.

A possible reason for the inadequacy of applied BSS tech-
niques can be the assumption of a linear mixing process13 of
available sources in standard PCA/ICA. In particular, the wave-
length-dependent penetration depth into human skin3 could
introduce nonlinear mixing behavior, which may degrade the
performance of BSS algorithms. Other factors may also impact
the success of BSS techniques in extracting pulsatile signals. For
example, an effect of ROI size was addressed byMannapperuma
et al.29 in the context of multispectral BSS.

Based on BSS’s multiple use and high capacity on the one
hand, conflicting findings and oppositional statements on
the other hand, this contribution investigates the performance
of BSS to enhance the cardiac pulse from cbPPGs in depend-
ency to varying input data characteristics. We use standard BSS
techniques to compare BSS’s application on multispectral as
well as monochrome inputs to identify beneficial conditions
for efficient usage of these techniques. To facilitate an appropri-
ate comparison, we further introduce a spatial ROI selection
based on cbPPG’s signal quality. Finally, this contribution
shall allow for a targeted application of BSS techniques to
cbPPG recordings to achieve a higher signal quality and
make the technique applicable under real-world conditions.

2 Materials and Methods

2.1 Patients and Clinical Setting

The data for this study were gathered within the scientific
project “CardioVisio—Contactless aquisition of vital parame-
ters.” Measurements were carried out at the cardiac surgical
intensive care unit at the Heart Center Dresden, University
Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.
The project was approved by the Institutional Review Board
of the TU Dresden (IRB00001473, EK168052013). Patients
after elective cardiac surgery were included if they gave written,
informed consent prior to surgery. Video data were recorded
during the immediate recovery from surgery after admission
at the intensive care unit.30 Postoperative care followed clinical
standards including mechanical ventilation and external cardiac
pacing by temporal atrial and ventricular wires adjusted to
intrinsic cardiac rhythm and haemodynamic needs. A four-
lead electrocardiogram (ECG) and finger photoplethysmogram
(PPG) were simultaneously recorded at 300 Hz and used to
derive the reference heart rate.

2.2 Video Recording and Selection

Video data were recorded using an industrial camera (IDS UI-
3370CP-C-HQ, IDS Imaging Development Systems GmbH,
Obersulm, Germany, 100 fps, 420 × 320 pixels, RGB 3 ×
12 bit). The camera was placed at a distance of ∼60 to 100 cm
to patients’ faces. Clinical ceiling fluorescent lamps served
as the primary illumination source. However, the luminous

color, intensity, and homogeneity of the illumination varied
across the measurements due to varying patient positions with
respect to the illumination, varying room geometries, and enter-
ing daylight. Therefore, a broad range of illumination character-
istics is covered by the used data.

To use only suitable data for further analysis, we restricted
our analysis to data segments that showed high-quality reference
PPGs to correctly identify the true heart rate. Furthermore, data
segments with severe cardiac disorders were excluded. Only
continuous segments with a minimum length of 500 s (one
per patient) were considered for further processing. Based on
such criteria, overall recordings of 18 patients (13 males and
5 females; 30 min per recording) were selected from a larger
collective of 76 patients. The selected material included a
total of about 6 h video data (average length 1200� 400 s
per patient). The selection did not consider video quality, i.e.,
slight patient motion as well as illumination inadequacies
(changes or insufficient lightning) persisted in the dataset.

2.3 Signal Extraction

The selected video data were processed in windows of 10 s
resulting in 2197 windows (106� 37 per patient). The cbPPGs
were extracted in three ways as depicted in Fig. 1. To allow a
spatial selection of desired ROIs, every video frame was covered
by 25 × 19 overlapping square ROIs (50% overlap at each
direction) of 32 × 32 pixels. The ROI placement is indicated
in Fig. 1(a). The ROI size was chosen since own prior investi-
gations addressing the relationship between ROI size and signal
quality [signal-to-noise ratio (SNR)] using a comparable tech-
nical setup (i.e., camera sensor, image resolution, and camera
distance to subject) showed that no higher signal quality can
be obtained by further increasing the ROI size. [Other investi-
gations,31 which showed an appropriate ROI size for pulse wave
extraction to be larger (100 to 150 pixels ROI side length), used
a higher image resolution.] To compare the spatial ROI selection
to standard ROI selection prior to BSS,6,8,22 manually annotated
ROIs were used to extract the cbPPG of the complete face
(ROIF) and the forehead-cheeks region (ROIFhC), respectively.
See Figs. 1(b) and 1(c) for exemplary ROI annotations. cbPPG
was extracted from each ROIn (with n ¼ 1;2; : : : ; 475) as well
as from ROIF and ROIFhC at every wavelength by averaging its
pixels values4 for each frame. See Fig. 2 for exemplary signals
together with the reference PPG.

2.4 Signal Processing

2.4.1 Preprocessing

Each 10-s cbPPG signal (from ROIn, ROIF, and ROIFhC) was
normalized by a three-step procedure. The signal was linearly
detrended followed by 0.5 Hz high-pass filtering (fifth-order
Butterworth) to limit low-frequency content below an expected
heart rate.32 Furthermore, the signal amplitude was normalized
by subtracting its mean and dividing the result by signal’s stan-
dard deviation. Suchlike preprocessed cbPPGn;color (and
cbPPGF;color, cbPPGFhC;color) were used for further processing.

2.4.2 Definition of Inputs to Blind Source Separation

To evaluate BSSs’ benefit in consideration of varying inputs,
different input sets S were defined. Each input set contained
three input signals to reflect the common number of input
channels when RGB videos are used. The input sets differed
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regarding the wavelength(s) to be used and the frequency con-
tent of chosen ROIs. Regarding the wavelength, we distin-
guished using cbPPGs from the green channel (monochrome
approach) or using RGB channels (multispectral approach).
Regarding the frequency content, we distinguished using ROIs,
which showed equal dominant frequencies and using ROIs,

which showed differing dominant frequencies (“dominant fre-
quency” refers to the location of the global maximum in the
fast Fourier transform of the cbPPG signal from a ROI after
applying a Hanning window and zero padding to 4096 points).
To select three ROIs from ROIn, we further distinguished
between a deterministic choice and a random choice. The

Fig. 1 ROI selection on video frames. White lines indicate ROI borders. (a) Evenly distributed
32 × 32 pixel ROIs with 50% overlap, (b) manually annotated ROI including the face ROIF, and (c) man-
ually annotated ROI including forehead and cheeks ROIFhC.

(a) (b) (c)

Fig. 2 Exemplary signal extraction. Sample signal excerpts [normalized and normalizedþ4 Hz low-pass
filtered (bold signal) versions] and amplitude spectra from different ROIs. (a) 32 × 32 pixel ROI, (b) man-
ually annotated ROI including the face, and (c) manually annotated ROI including forehead and cheeks.
The true heart rate and its harmonic (�5 bpm) are indicated by the colored areas in the back of the
spectra. Colors of the respective spectra are according to the time signals.
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deterministic choice selects three ROIs that showed the highest
signal quality. For the random selection, three ROIs, which pos-
sess the desired frequency content, were chosen randomly (inde-
pendently of its signal quality). To give an example, the
selection “equal dominant frequency + deterministic choice”
means that ROIs were first ordered according to their dominant
frequency. Afterward, the ROIs that showed the highest SNRs
within the desired dominant frequencies were selected. Note that
it has to be defined which dominant frequency is the desired one.
As there is no unambiguous answer to this question, we decided
to create input sets for the three most often occurring dominant
frequencies (i.e., for “equal dominant frequency” always three
different input sets were used). A detailed mathematical defini-
tion of equal/differing dominant frequency and the definition of
signal quality are depicted in Appendix A (a graphical overview
on the selection process is also provided in Fig. 8). Table 1 sum-
marizes the resulting input sets.

2.4.3 Blind Source Separation Processing

Every set S was further processed with PCA and ICA,
respectively.

The PCA was computed without dimension reduction by
conducting the singular value composition of the covariance
matrix of each set.11 Let us consider a set

EQ-TARGET;temp:intralink-;e001;63;480S ¼ ½cbPPG#;color; cbPPG#;color; cbPPG#;color�T ¼ x; (1)

where cbPPG#;color denotes a preprocessed cbPPG of the dimen-
sion 1 ×m (window length m) extracted using ROI#. A trans-
formation B was computed that satisfies

EQ-TARGET;temp:intralink-;e002;63;416Λ ¼ BTE½xxT �B; (2)

with Λ as a 3 × 3 diagonal matrix with squared singular values
(equivalent to the eigenvalues of the covariance matrix) as
diagonal entries and E½xxT � as covariance matrix of x.
Accordingly, the orthogonal transformation matrix B consists of
the covariance matrix’s eigenvectors of S and diagonalizes
E½xxT �. The PCA output yPCA was obtained by

EQ-TARGET;temp:intralink-;e003;326;686yPCA ¼ BTx: (3)

The output yPCA was further normalized (according to the
preprocessing) prior to evaluation.

As representative ICA method, the FastICA algorithm13 was
chosen to compute a transformationW, which aims at statistical
independence of the output yICA

EQ-TARGET;temp:intralink-;e004;326;600yICA ¼ Wx; (4)

because Christinaki et al.8 have shown a superior performance of
FastICA compared to JADE for processing the cbPPG to extract
the heart rate. Prewhitening of x was used. Prewhitening works
according to the PCA while ensuring E½xxT � ¼ I the identity
matrix, which addresses an orthonormal output. The FastICA
was initialized with a fixed random demixing matrix W,
which was used as starting point for every processed segment.
The FastICAwas symmetrically conducted for dimension pres-
ervation between x and y. The standard tanh-nonlinearity was
applied as contrast function, which supports super-Gaussian
source extraction,13 as indicated for the PPG signal by Tsouri
et al.21 Simultaneously, it does not aim at highly super-
Gaussian signals, which is a consequence of Morris et al.33

selecting the PPG component after ICA by using the lowest kur-
tosis of the components.

2.5 Evaluation Metrics

The signal quality of inputs, i.e., of each single cbPPG, and out-
puts, i.e., each independent component/principal component,
was assessed by a spectral SNR, which was proposed by de
Haan and Jeanne.14 The SNR considers the true heart rate
f ¼ fPPG, which is gained from reference recordings. Based
on the true heart rate, a binary mask BMfPPG was defined accord-
ing to

EQ-TARGET;temp:intralink-;e005;326;297BMfPPGðfÞ ¼
(
1 if f ∈ ½fPPG � 5 bpm�
1 if f ∈ ½2 · fPPG � 5 bpm�
0 otherwise

: (5)

BMfPPG sustains the spectral indices of the heart rate as well
as its first harmonic. The precision �5 bpm refers to the accu-
racy demanded for heart rate meters specified in ANSI/AAMI
EC13:2002.32 The SNR was calculated from a given amplitude
spectrum XðfÞ by

EQ-TARGET;temp:intralink-;e006;326;187SNRfPPG ¼ 10 log10

 P240 bpm
f¼30 bpm BMfPPGðfÞ · XðfÞ2P240 bpm

f¼30 bpm½1 − BMfPPGðfÞ� · XðfÞ2

!
:

(6)

For this contribution, the true heart rate fPPG was estimated
by first averaging manually annotated beat-to-beat intervals
from the reference ECG to obtain fECG. Afterward the closest
frequency peak in the amplitude spectrum of the reference PPG
was searched (fPPG ≈ fECG).

Table 1 Definition of input sets S for BSS.

Set
ID Wavelength Frequency content Selection Overall size

MC1 Green Equal dominant
frequency*

Highest
SNR

3× (32 × 32)

MC2 Green Differing dominant
frequencies

Highest
SNR

3× (32 × 32)

MS1 RGB Equal dominant
frequency*

Highest
SNR

3× (32 × 32)

MS2 RGB Equal dominant
frequency*

Highest
SNR

3×
[3 × ð32 × 32Þ]

MCR Green Equal dominant
frequency*

Random
choice

3× (32 × 32)

MSR RGB Equal dominant
frequency*

Random
choice

3× (32 × 32)

F RGB n/a ROIF Whole face

FhC RGB n/a ROIFhC Suitable
regions

Note: See Appendix A for a detailed mathematical description.
*Note that in case of equal dominant frequency, three different input
sets were evaluated for the three most occurring dominant
frequencies.
Set IDs refer to MC: monochrome, MS: multispectral, R: random SNR
and standard ROI sets from F: face and FhC: forehead and cheeks.
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Input sets S were typically formed of cbPPGs with three
different dominant frequencies, respectively, signal qualities
(see Appendix A). Accordingly, one obtains 3 × 3 input signals
as well as 3 × 3 output signals after BSS with respective
SNRfPPG values (SFhC and SF only contain 1 × 3 input and output
signals). Since the automated selection of an appropriate output
component is not in the scope of this contribution (but has been
considered by our group),34 we always selected the best possible
SNR of inputs or BSS outputs for the further evaluation. This
procedure comprises assessing only the highest input and output
SNR out of three dominant frequencies.

2.6 Statistical Assessment

This contribution investigates the performance of BSS to
enhance the cardiac pulse from cbPPG in dependency to varying
input data characteristics. To that end, the results and respective
statistical analyses are broken down into three aspects:

1. Do varying input sets provide differing input SNR?

2. Which benefit can generally be expected from apply-
ing BSS to input sets of varying constitution and
quality?

3. Given an input, which of the applied BSS techniques is
to be preferred?

The first aspect was addressed by a comparison of input
SNRs using one-way analysis of variance (ANOVA). As post-
hoc tests, a selection of 13 pairwise t-tests with Bonferroni–
Holm correction was applied (see Table 2 for the test selection).
We selected pairwise comparisons of the deterministic small-
sized ROIs (Smc1, Smc2, Sms1, and Sms2) plus the tests of the

random small-sized ROI selection matched with Smc1 and Sms1

(i.e., SmcR and SmsR). Moreover, pairwise comparisons of all
deterministic multispectral sets were conducted (Sms1, Sms2,
SFhC, and SF). To avoid the large sample size to determine the
statistical results,35 we calculated subjects’ means and applied
the statistical analysis to the mean values (i.e., n ¼ 18 for
ANOVA and posthoc analysis). Furthermore, the effect size
measure Hedges g,36 including the 95% confidence interval
(CI) of g,37 is used as standardized mean difference between
groups. The interpretation of g is straight forward: given a com-
parable CI, the larger the effect size, the bigger the impact of an
experimental variable.36,38 As contextual information is required
to interpret effect sizes in terms of absolute values,38 we abstain
from interpreting g’s absolute value. To define which effects are
relevant for further discussion, we instead introduce the concept
of CI consistency: an effect is regarded as consistent, if the CI of
a given g is completely positive or negative, respectively
(denoted as consistent effect).

For the second aspect, the comparison of output SNRs does
not suffice the needs for a statement on the BSS performance,
because the BSS performance ΔSNR (difference between out-
put and input SNR) and the output SNR must be assumed to be
heavily dependent on the input SNR. A statement, which bases
solely on output SNRs, thus, might favor the output featuring
the highest input SNR and will not provide a meaningful state-
ment on BSSs’ performance. A dependence on the input SNR
implies using the input SNR as covariate, i.e., analysis of covari-
ance (ANCOVA). A suchlike analysis provides a meaningful
statement on the benefit of applying BSS. However, a poor
input SNR will be favored by this analysis as a large improve-
ment can be obtained while the outcome still might be worse
than using another input. For high input SNRs, on the other
hand, the potential improvement, which can be gained by
BSS, is limited as the output SNR is bounded. For such reasons,
we decided to combine both analyses, ANOVA and ANCOVA.
An ANOVA to the output SNRs and respective posthoc tests
could be used as described before. For ANCOVA, the input
SNR served as covariate. As posthoc tests for ANCOVA,
t-tests with centered mean39 were applied and Hedges g was cal-
culated (again subjects means were used to avoid that large sam-
ple sizes determine the statistical results). The selection of
posthoc tests applied for the first aspect was also used for
the second aspect. For the pairwise comparison of two settings,
one of them was regarded as superior and relevant for further
discussion if ANOVAs and ANCOVAs posthoc test show con-
sistent effects with the same sign (both CI entirely positive or
negative, for a detailed example, see the description of results in
Sec. 3.2). Additionally, the question if a significant ΔSNR could
be achieved by applying a BSS algorithm to a single input was
answered by pairwise t-tests of the differences between output
and input SNRs.

The third aspect was assessed by pairwise t-tests of ICA and
PCA outputs. Again, subject means were used and additionally
Hedges g was considered.

3 Results

3.1 Signal Quality of Input Sets

The ANOVA yields a highly significant difference between
inputs (p < 0.001). Table 2 shows the results of the pairwise
comparison between input sets (i.e., significance from posthoc
test and results on Hedge’s g, the input SNR values can be found

Table 2 Results of the comparison of input sets.

Set ID 1 Set ID 2 p g

MS1 F <0.001 2.01 [1.23, 2.78]

MS2 F <0.001 1.86 [1.15, 2.56]

MS1 MSR <0.001 1.57 [0.95, 2.19]

MS1 FhC <0.001 1.34 [0.77, 1.91]

MS2 FhC <0.001 1.21 [0.71, 1.72]

MC1 MCR <0.001 1.09 [0.60, 1.59]

MC1 MS2 0.06 0.14 [0.03, 0.25]

MC2 MS2 0.06 0.14 [0.03, 0.25]

MS1 MS2 0.06 0.12 [0.01, 0.22]

MC1 MS1 0.01 0.02 [0.01, 0.04]

MC2 MS1 0.01 0.02 [0.01, 0.04]

MC1 MC2 n/a n/a

F FhC <0.001 −0.51 [−0.74;−0.27]

Note: Pairwise results: Bonferroni–Holm corrected p values from post-
hoc pairwise t -tests, effect size g and 95% CIs of g37 in brackets.
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in Table 3). g shows consistent effects between various inputs.
posthoc t-tests confirm significant differences between various
inputs.

The deterministic automated selection of 32 × 32 pixels
input ROIn and respective cbPPGn;color according to
Appendix A provides higher quality cbPPGs compared to ran-
dom selection of ROIn of the same size or standard ROIF and
ROIFhC, respectively. Figure 3 confirms this finding graphically.
Omitting the random selection, an increased ROI size comes
along with a decreased input SNR [for example, on a multispec-
tral input ROI (MS1 < MS2 < FhC < F)]. Regarding the ran-
dom selection of cbPPGn;color, the input signal quality in both
cases, the monochrome and multispectral random case, is sig-
nificantly worse than the one achieved by the deterministic
selection.

3.2 Blind Source Separation Performance on
Different Input Sets

Figure 3 shows boxplots of individually taken BSS perfor-
mances, namely the patient-wise averaged output and input
SNRs including the statistical measure of the pairwise differ-
ence. Especially for a low input SNR, statistically significant
SNR improvements are obtained for both PCA and ICA. PCA

moreover significantly improves the SNR of the monochrome
set MC1 with equal dominant frequencies whereas ICA signifi-
cantly improves the SNR of the monochrome set MC2 with
different dominant frequencies. ICA also shows a highly signifi-
cant SNR improvement on MS2. Figure 4 illustrates a distinct
dependence of the BSS performance, i.e., the obtained SNR dif-
ference ΔSNR, on the input SNR. ANCOVA proves that there
are no significant differences in the strength of that dependence
(i.e., no differences in the slope of separate regression lines with
p ¼ 0.27 for PCA and p ¼ 0.15 for ICA). ANCOVA further
proves highly significant differences in terms of adjusted means
(i.e., significant differences in the intercepts of parallel regres-
sion lines with p < 0.001 for PCA and ICA). ANCOVA posthoc
tests confirm significant differences between various outputs
(see Fig. 5). ANOVA for the output SNR yields a highly signifi-
cant difference between outputs (p < 0.001 for PCA and ICA).
ANOVA posthoc tests confirm significant differences between
various outputs (see also Fig. 5). Figure 5 gives a comprehensive
overview on the posthoc results of ANCOVA and ANOVA
together with Hedges g including its 95% CIs. As stated before,
BSS’s application can be considered as superior in a pairwise
comparison if g and its CI are consistent and show the same
direction (sign of g) for both ANOVA and ANCOVA posthoc
tests.

Table 3 Pairwise comparison between ICA and PCA outputs.

Set ID Input SNR PCA ICA p g

MC1 2.56� 2.50 3.01� 2.21 2.69� 2.37 <0.001 0.14 [0.07,0.20]

MC2 2.56� 2.50 2.10� 2.31 2.92� 2.48 <0.001 −0.33 [−0.53;−0.13]

MS1 2.50� 2.52 2.45� 2.06 2.36� 2.33 0.53 0.04 [−0.08; 0.16]

MS2 2.18� 2.76 2.68� 2.24 2.74� 2.56 0.67 −0.03 [−0.15;0.09]

MCR −0.74� 3.34 −0.86� 2.88 −0.63� 2.94 <0.01 −0.08 [−0.14;−0.02]

MSR −2.33� 3.43 −1.09� 3.13 −1.60� 3.02 <0.001 0.16 [0.09,0.24]

F −4.05� 3.74 1.70� 2.99 2.18� 3.25 <0.01 −0.15 [−0.25;−0.05]

FhC −2.05� 3.97 2.85� 3.01 2.98� 3.16 0.32 −0.04 [−0.12;0.04]

Note: SNR in dB shown as mean� standard deviation, p values from pairwise t -tests and effect size g and 95% CIs of g37 in brackets.

Fig. 3 Boxplots showing input and output SNRs for BSS processing. Patient-wise averaged input and
output SNRs (n ¼ 18) of all sets S according to “selection of inputs to BSS.” Innerbox lines indicate the
median. The maximum whisker length is set to 150% the interquartile range outside the interquartile
borders. No outliers were found by applying this criterion. Significance of differences ΔSNR between
output and input SNRs by pairwise t -tests is indicated between the boxes (in case of significance) denot-
ing p values as: * denotes p ≤ 0.05, ** denotes p < 0.01, and *** denotes p < 0.001.
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As can be seen in Fig. 5, not every pairwise comparison
shows relevant differences. The comparison of ICA results
for ANCOVA and ANOVA for the standard approaches of sets
FhC and F may serve as an example for the interpretation of
Fig. 5. Both sets show significant differences in their input SNR
(y-axis) with a negative effect size g ¼ −0.51 (input SNR of SF

is smaller than input SNR of SFhC). Considering the comparison
of adjusted means, i.e., ANCOVA’s posthoc test, a consistent
effect in favor of SF is found (indicated by the entirely positive
CI of g). Concerning the comparison of the output SNR without
adjustment, i.e., ANOVA’s posthoc test, also a consistent effect,
is obtained. However, this time the CI is entirely negative, which
indicates that SFhC provides a significantly higher output SNR.

Apparently, the lower input SNR of SF, together with
a bounded SNR, favors SF within ANCOVA’s posthoc test.
As example for a pairwise comparison, which shows a relevant
difference, readers may be referred to MC1 versus MCR using
ICA: besides significantly differing input SNRs (with g ¼
1.09, input SNR of Smc1 is higher than input SNR of SmcR),
both ANOVA and ANCOVA show consistent effects, either of
them is positive. It indicates the better performance of ICA on
homogeneous (frequency) inputs of best available SNR com-
pared to homogeneous (frequency) input of random SNR
regardless of the input SNR.

The results depicted in Fig. 5 can be summarized as follows.
Consistent effect size measures, according to the definition

Fig. 4 BSS performance regarding the SNR. SNR changes (output–input) by BSS processing as a func-
tion of the input SNR. Every point depicts the performance of a single 10-s window. Color gradation
indicates single patients.
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(i.e., fully positive, respective negative CI of g), can be found for
both PCA and ICA, for example, assessing the adjusted means
(ANCOVA) of SFhC when compared to high SNR inputs Sms1

and Sms2. Thus, in case of poor input SNRs, PCA and ICA
both can be efficiently applied. However, relevant effects,
according to the definition, i.e., considering ANCOVA and
ANOVA at the same time, are found for PCA with Smc1 >
Smc2 and Smc1 > Sms1 as well as for ICA with Smc1 > Sms1,
Smc2 > Sms1, and Sms2 > Sms1. Accordingly, PCA is considered
performing worse on inhomogeneous frequency inputs com-
pared to homogeneous frequencies. Moreover, PCA and ICA
are considered performing better on monochrome inputs com-
pared to multispectral inputs of the same ROI size. Increasing
the ROI size (from Sms1 to Sms2) also favors ICA performance.

3.3 Blind Source Separation Performance Given an
Input Set

Table 3 shows the input and output SNR for all input sets and
BSS techniques (PCA and ICA). Note that for equal dominant
frequencies, originally three different input sets were available
but only the highest SNR is shown (independently from the used
dominant frequency; in 44%/36%/20% the first/second/third
dominant frequency yielded the highest SNR). Addition-
ally, Fig. 3 shows the according boxplots of input and output
SNRs including pairwise t-test results in case of significance
(p ≤ 0.05). Segment-wise ΔSNR is also shown as a function
of the respective input SNR in Fig. 4.

Comparing the performance of PCA and ICA on a given
input (see Table 3), PCA works significantly better on homo-
geneous inputs Smc1 (dominant frequency and wavelength).
ICA works significantly better on inhomogeneous inputs Smc2

(dominant frequency) as well as for inhomogeneous ROIs (SF).

4 Discussion

4.1 Spatial Selection versus Standard Approaches

In real applications, ROIs for cbPPG extraction have to be
selected by using automated video processing algorithms.
Typically, rectangular ROIs using frontal face classifiers for
detection and (stabilized) tracking of the complete face6 or
selective rectangular ROIs of smaller face parts further using
facial landmarks10,22 are used. Also, nonrectangular and, thus,
more specific ROIs based on facial landmarks27 have been used.
To evaluate our spatial ROI selection, we simulate a perfect
functioning face/face part detection by manually selecting stan-
dard ROIs (see Fig. 1).

As can be seen from the results (see Tables 2 and 3), our
automated spatial selection among small-sized ROIn (Smc1

and Sms1) does not require any face detection and outperforms
the input SNR of selecting ROIs of the whole face or parts of it
(forehead and cheeks) including consistent effect sizes g.
Together with BSS, the output SNR (Fig. 5) shows inconsistent
effects. Thereby, ANCOVA posthoc tests are affected by the
highly differing input SNR while ANOVA posthoc tests show
similar output SNRs between small-sized ROIn and ROIF, and

Fig. 5 ANOVA and ANCOVA posthoc statistics for PCA and ICA output sets. The figure shows pairwise
t -test results (ANOVA) and pairwise t -test results using mean-centered-independent variable (ANCOVA)
of patient-wise averaged (n ¼ 18) SNR outputs. The results are characterized by its effect size g (• for
ANOVA and x for ANCOVA) as well as the 95% CI of g37 stated as line length. Sign of g indicates the
effect direction according to the mean difference obtained by always setting the second set as subtra-
hend. The set comparisons are vertically (y -axis) ordered according to the effect size g of the input com-
parison of the same sets. Significance according to the Bonferroni–Holm corrected p value is denoted by
* p ≤ 0.05, ** p < 0.01, and *** p < 0.001. Consistency of an effect is denoted by = between the set
names, - otherwise.
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ROIFhC. Given comparable output SNRs, an automated estima-
tion of an ROIFhC and ROIF would require a higher effort for
stable automated landmark detection in different subjects.
Our automated spatial selection shows to compete successfully
against even manually annotated ROIs achieving higher input
SNRs and comparable output SNRs.

However, the comparison of deterministic and random selec-
tion of ROIn clearly motivates that assembling homogeneous
input characteristics (wavelength and dominant frequency) for
BSS processing is not sufficient to yield the best BSS outcome.
Both, the deterministic as well as the random selection of ROIs
make use of periodicity in terms of frequently occurring dom-
inant frequencies. However, the random selection does not force
the highest possible SNR of a periodic component, like it is con-
ducted in the deterministic selection. Accordingly, this compari-
son serves as a test, if always the best available signal quality
needs to be selected in context of BSS. According to that, input
and output SNR of the sets MCR and MSR of both BSS algo-
rithms show absolute values below 0 dB (see Tables 2, 3, and
Fig. 3). In addition, the BSS performance as a function of the
input SNR (Fig. 4) shows an inferior performance compared to
deterministic selection of equally sized ROIs in terms of a
broadened area of negative performance (performance below
x-axis), which widely lasts into the range of negative input
SNRs. This finding underlines the necessity to process the best
available input. Consequently, BSS is not necessarily able to
compensate for lower input SNR under comparable conditions
(ROI size and dominant frequency).

4.2 Blind Source Separation Performance

Figures 6 and 7 show examples of selecting cbPPGn;color accord-
ing to the proposed BSS input selection and the further process-
ing of these signals with PCA and ICA for the monochrome
(MC1) and multispectral (MS1) case, respectively. In both cases,
PCA and ICA are able to extract a distinct pulsatile component
in the time domain. Focusing on the markedness of the spectral
peak related to the heart rate in the spectra XðfÞ, it is worth not-
ing that in the monochrome set (Fig. 6) PCA and ICA are per-
forming similar. On the contrary, in the multispectral set (Fig. 7),
PCA shows a decrease in the spectral power of the cardiac pulse
compared to ICA. However, both examples and both BSS algo-
rithms show at least one output component of proper quality
regarding common postprocessing tasks (e.g., heart rate
estimation). Accordingly, even a decrease in signal quality by
application of BSS not necessarily renders postprocessing
impossible. Nevertheless, morphology retention through BSS
should be considered carefully.40

Several researchers have reported that BSS not necessarily
improves the cbPPG quality and outcome. ICA was found to,
if any, only subtly decrease the heart rate error for a small-
sized cheek ROI8 and even (slightly) increase for rectangular
face ROI16,17 compared to the BSS inputs. Moreover, PCA was
found to perform worse on multispectral inputs compared to
FastICA.16 Since movements affect the input signal quality, it
is worth relating these results with the movement conditions
during recording. Christinaki et al.8 allowed for small move-
ments (facial expression) while extracting cheek ROIs, whereas

(a) (b) (c)

Fig. 6 Exemplary BSS performance on monochrome input. Sample signal excerpts [þ4 Hz low-pass
filtered (bold signal) versions] and amplitude spectra according to an automatically selected set
Smc1. (a) BSS input, (b) PCA output, and (c) ICA output. The true heart rate from the reference and
its harmonic (�5 bpm) are indicated by the colored areas in the back of the spectra. Colors of the respec-
tive spectra are according to the time signals.
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face ROIs were extracted from subjects who were asked not to
move.16,17 On the other hand, improvements of Bland–Altman
heart rate measures were shown for facial ROIs,6 while these
improvements turned out to be higher for movement phases
compared to no movement. Accordingly, the beneficial usage of
BSS for cbPPG is rather found in conditions of less signal
quality.

Such findings are in accordance with the results obtained by
our investigations. Considering Fig. 4, which indicates an
inverse relationship between input SNR and BSS performance
(negativeΔSNR), the usage of BSS can even decrease the signal
quality; its application, thus, should be considered with care.
Particularly for small-sized ROIs after deterministic spatial
selection (MC1, MC2, MS1, and MS2), an SNR decrease
mainly appears in case of high-quality inputs (to the right of the
y-axis) and is differently pronounced for different sets. On the
contrary, the standard approaches using the face ROI and the
forehead-cheeks ROI (Fig. 4) are not showing this marked neg-
ative BSS performance, whereas the increase of SNR for good
quality inputs is also limited.

Accordingly, the performance of the compared methods is
limited for high-quality inputs. This behavior might be attrib-
uted to the used contrast. Focusing for instance on MC1 that
consists of inputs, which are as homogeneous as possible, the
decorrelative transformation conducted by PCA is mostly able
to preserve the SNR and shows the lowest number of segments
with negative ΔSNR for high (positive) input SNRs (see Fig. 4).
In comparison, the additional rotation introduced by ICA
decreases the SNR for this set. However, the exclusive usage of

PCA for high-quality inputs is not sufficient if the input is not as
homogeneous as assembled by MC1 as the results of MC2,
MS1, and MS2 show. So far, we used a standard tanh-contrast
for FastICA as well as symmetric optimization for uniformity of
the amount of output signals. One should further test optimized
contrasts for example rather abstaining from super-Gaussian
source optimization as indicated by the cbPPG component
selection of Morris et al.33 or alternatively let the demixing be
guided by an expected cardiac pulse composition.15 Furthermore,
deflationary ICA could be applied for avoiding a model order
violation. Another possibility to avoid undesired SNR decrease,
if no SNR preserving contrast for high input quality is available,
could be an adaptive decision, whether a BSS algorithm should
be applied or not. This decision could be based on the prior SNR
estimate based on peak frequency detection, which is done dur-
ing the selection process of inputs.

4.3 Homogeneity of the Blind Source Separation
Input

In this work, different factors of (in-)homogeneity of input sig-
nal sets to BSS are assessed in a controlled fashion.

First, the sensitivity of BSS algorithms regarding input of
different dominant frequencies is analyzed. The results show
that the ICA can take advantage of input signals comprising con-
tent with different dominant frequencies (MC2) while PCA
shows a significantly worse performance (see Table 3). One
might infer that the concept of statistical independence as
applied for ICA is rather suited to such content compared to the

(a) (b) (c)

Fig. 7 Exemplary BSS performance on multispectral input. Sample signal excerpts [þ4 Hz low-pass
filtered (bold signal) versions] and amplitude spectra according to an automatically selected set
Sms1. (a) BSS input, (b) PCA output, and (c) ICA output. The true heart rate from the reference and
its harmonic (�5 bpm) are indicated by the colored areas in the back of the spectra. Colors of the respec-
tive spectra are according to the time signals.
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concept of decorrelation utilized for PCA. However, in case of a
perfect homogeneous BSS input (MC1) comprising only one
uniform wavelength and dominant frequency, PCA performs
significantly better than ICA. As we used prewhitening prior
to ICA that is similar to PCA, again one might deduce that
the contrast applied for ICA, which is used to additionally trans-
form the prewhithened data, is not well chosen to extract the
cardiac pulse component.

Second, the question of sensitivity of BSS algorithms regard-
ing wavelength homogeneity could clearly be answered for
same ROI sizes and equal dominant frequencies (MC1 and
MS2) in support of the monochrome approach. Both, PCA
and ICA showed a significantly higher output SNR (see
Table 3) by using the monochrome input. Also, consistent
effects are found for both, ANCOVA and ANCOVA on the out-
puts (Fig. 5). Such findings support the idea that wavelength-
dependent penetration depth into human skin imposes a nonlin-
ear problem,3 which BSS cannot consistently handle properly.
However, our results also confirm the better suitability of ICA
compared to PCA for multispectral face ROI input.16

Another result giving insight into BSS input homogeneity is
stated by the comparison between the multispectral sets MS1,
MS2, FhC, and F. While ROI size and input SNR show an
inverse relationship, the output SNR of multispectral PCA
and ICA shows proportionality to the ROI size except for the
rectangular face ROI (see Tables 2 and 3). Up to ROIFhC,
one might assume a homogeneous ROI augmentation since
mostly homogeneous skin regions without marked edges and
regions, which do not necessarily contribute to a distinct cardiac
pulse, are consolidated with ROIFhC. The same skin regions are
principally addressed by the sets MS1 and MS2. The only
exception gives ROIF where also less-suited regions, such as
mouth and nose, are included in the ROI, thus, serving an inho-
mogeneous ROI augmentation. Consequently, homogeneous
ROI augmentations seem to be beneficial for multispectral
BSS, whereas inhomogeneous areas inside ROIs should be
omitted to optimize the extraction of the cardiac pulse. This
behavior could also be found regarding heart rate error measures
after FastICA on 15-s cbPPGs of different ROIs.29 Despite that
investigation neglected the input quality, the FastICA output
showed decreasing heart rate error measures while step-wise
excluding the face surrounding and face borders from the ROI.
On the other hand, heart rate errors of outputs increased again
while assessing ROIs with highly edged face regions mostly
containing nose and mouth structures. Nevertheless, the positive
effect of homogeneity of the input seems to be limited especially
considering monochrome inputs of high signal quality, which
links to the previous discussion on appropriate BSS contrasts.

A future application of the result that only PCA is able to
preserve the SNR in very homogeneous (wavelength and dom-
inant frequency) high-quality inputs of small-sized ROIs could
be the evaluation of ΔSNR of spatially distributed ROIs to
address the spatial homogeneity of the cutaneous microcircula-
tion. Two-dimensional statements of the microcirculation may
provide clinical significance in critical care patients.30

5 Conclusion
In conclusion, we investigated the performance of BSS to
enhance the cardiac pulse from the cbPPG in dependency to
varying input data characteristics. To that end, we developed
an automated spatial selection of small-sized ROIs to locate
the cardiac pulse in video recordings and control the input char-
acteristics. The cbPPGs obtained from this spatial ROI selection

significantly increased the SNR of the cardiac pulse compared to
standard approaches, which select the whole face or anatomi-
cally defined subregions as ROIs. Subsequent BSS application
did not show an unambiguous effect, rather input characteristics
and particular BSS techniques had to be considered for future
BSS usage on cbPPGs. While PCA developed the better perfor-
mance compared to ICA using a very homogeneous input of
same (green) wavelength and dominant frequency, ICA showed
a significantly better performance compared to PCA on inhomo-
geneous inputs. Both, PCA and ICA performed better on mono-
chrome inputs compared to multispectral inputs for the same
ROI size. Algorithms, such as the proposed automated spatial
ROI selection, can help to ensure passing appropriate inputs
to respective BSS routines. Our results indicate, that, regardless
of a subsequent BSS application, the usage of signal character-
istics, such as simple frequency-domain features, can help iden-
tifying beneficial ROI locations to obtain superior cbPPGs
compared to using classical ROI definitions based on face fea-
tures. Furthermore, it turned out that BSS application might suf-
fer from an inverse relationship between input signal quality and
BSS performance, which even can cause a decrease of signal
quality compared to the input data. Future research should
address adaptive cbPPG processing schemes, which invoke
BSS optionally or search for BSS contrasts capable of separat-
ing cbPPGs from noise independently from the input quality.
Notwithstanding this, unsupervised signal processing tech-
niques, such as BSS, should be carefully characterized in con-
text with the measurement techniques and respective signal
characteristics to which they are applied. The introduction of
g in the context of quality assessment and our results allow com-
parisons of other algorithms and datasets in the future.

Appendix: Algorithm for Selection of
BSS Input

Algorithm Input
All available cbPPGn;color signals with n ¼ 1;2; : : : ; 475 and
color ∈ fR;G; Bg serve as input to the input set selection algo-
rithm. The selection is mainly based on evaluating peak frequen-
cies f̂G and its grouping clusters f̃i;G considered as the dominant
frequency, respectively, periodic component of the amplitude
spectrum XðfÞ of a cbPPGn;G.

1. The maximum peak frequency f̂n;G of the amplitude
spectra XðfÞ ¼ FfcbPPGn;Gg between [30, 240] bpm
is estimated for every ROI. The green wavelength is
chosen for this selection according to the suitability
for detecting the cardiac pulse inside this channel.4

2. The histogram Hðf̂GÞ of peak frequencies f̂G for all
475 ROIs is estimated (see Fig. 8 for an example).
Clusters of cbPPGn;G are formed according to peak
frequencies f̂n;G of maximum spread of 10 bpm
(�5 bpm). The cluster width adapts to the signal qual-
ity measure used for evaluation. In case of multiple
possibilities for forming cbPPGn;G clusters due to a
continuous range of peak frequencies f̂n;G with spread
>10 bpm bpm, always the cluster with maximum
amount of cbPPGn;G is formed and the cluster limits
to surrounding clusters are adjusted accordingly. The
clustering according to peak frequencies in general

                         035002-11                    

                                                                                             

                                                                                                                                             



addresses the search for highly periodic components as
we expect the nature of the cardiac pulse.

3. The three largest clusters of cbPPGn;G of
Hðf̂GÞ → f̃i;G with i ∈ f1;2; 3g according to its cen-
tral peak frequency f̃i;G (see Fig. 8) are located.

4. To assess the strength of the periodic component
defined by its peak frequency f̂n;G inside a
cbPPGn;G ∈ f̃i;G with i ∈ f1;2; 3g, the SNR

f̃i
n;G

(i ∈ f1;2; 3g) of the cbPPGn;G is calculated using
Eqs. (5) and (6) while considering the peak frequency

f̂n;G as usable signal frequency estimate fPPG.
Accordingly, SNR

~fi
n;G ¼ SNRfPPG with fPPG ¼ f̂n;G

and f̂n;G ∈ ~fi;G (i ∈ f1;2; 3gÞ.
5. Input sets S are principally formed of ROIs of identical

size so approaches could equally benefit from spatial
averaging. Exceptions are formed by the standard mul-
tispectral approaches using a face or a forehead-cheek
ROI, respectively. Moreover, one multispectral set is
build with larger ROI area to adapt to the area intrinsi-
cally formed by the monochrome approach.

Fig. 8 Selection of ROIs for BSS input. ROI selection based on the three most frequent dominant
frequencies of the green wavelength. ROI assembly (MC# and MS#) based on signal quality inside dom-
inant frequencies.
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Monochrome Approach (Homogenous Frequency Content)
Assemble the green channel from appropriate ROIs inside a cluster f̃i;G to three input sets according to (i ∈ f1;2; 3gÞ

EQ-TARGET;temp:intralink-;secA2;63;714

8><
>:

cbPPGn;Gwith highest SNR
f̃i
n;G subject to f̂n;G¼! f̃i;

cbPPGn;Gwith second highest SNR
f̃i
n;G subject to f̂n;G¼! f̃i;

cbPPGn;Gwith third highest SNR
f̃i
n;G subject to f̂n;G¼! f̃i

9>=
>; → Smc1

i :

Monochrome Approach (Heterogeneous Frequency Content)
Assemble the green channel from appropriate ROIs inside an SNR positioning (of absolute SNRs) j for all three clusters f̃i;G with i
∈ f1;2; 3g to three input sets according to (j ∈ ffirst; second; thirdgÞ

EQ-TARGET;temp:intralink-;secA3;63;623

8><
>:

cbPPGn;G with j highest SNR
f̃1
n;G subject to f̂n;G¼! f̃1;

cbPPGn;G with j highest SNR
f̃2
n;G subject to f̂n;G¼! f̃2;

cbPPGn;G with j highest SNR
f̃3
n;G subject to f̂n;G¼! f̃3

9>=
>; → Smc2

j :

Multispectral Approach (Homogenous Frequency Content)
Assemble the color channels from appropriate ROIs inside a cluster f̃i;G to three input sets according to (i ∈ f1;2; 3gÞ

EQ-TARGET;temp:intralink-;secA4;63;529

8><
>:

cbPPGn;R with highest SNR
f̃i
n;G subject to f̂n;G¼! f̃i;

cbPPGn;G with highest SNR
f̃i
n;G subject to f̂n;G¼! f̃i;

cbPPGn;B with highest SNR
f̃i
n;G subject to f̂n;G¼! f̃i

9>=
>; → Sms1

i :

Multispectral Approach (ROI Area Adaption to Monochrome Approach)
Assemble the color channels from appropriate ROIs inside a cluster f̃i;G containing the area (ROIn) of the three best SNR ROIs obtained
by frame-wise averaging the respective ROIs located as in Smc1

i for three wavelengths each to three input sets according to (i ∈ f1;2; 3gÞ

EQ-TARGET;temp:intralink-;secA5;63;423

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

cbPPGn;R with highest SNR
f̃i
n;G subject to f̂n;G¼! f̃i;

second highest SNR
f̃i
n;G subject to f̂n;G¼! f̃i;

third highest SNR
f̃i
n;G subject to f̂n;G¼! f̃i

cbPPGn;Gwith highest SNR
f̃i
n;G subject to f̂n;G¼! f̃i;

second highest SNR
f̃i
n;G subject to f̂n;G¼! f̃i;

third highest SNR
f̃i
n;G subject to f̂n;G¼! f̃i

cbPPGn;B with highest SNR
f̃i
n;G subject to f̂n;G¼! f̃i;

second highest SNR
f̃i
n;G subject to f̂n;G¼! f̃i;

third highest SNR
f̃i
n;G subject to f̂n;G¼! f̃i

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

→ Sms2
i :

Random Approaches
For testing against choosing only the highest SNRs, assemble
analogous monochrome SmcR

i and multispectral SmsR
i sets with

respective random selection out of available cbPPGn;color subject
to f̂n;G¼! f̃i and i ∈ f1;2; 3g.

Standard Approaches
For testing against standard multispectral BSS processing
for cbPPG, form sets SF and SFhC from cbPPGF;color and
cbPPGFhC;color, respectively.

Algorithm Output
Input sets Smc1

i , Smc2
j , Sms1

i , Sms2
i , SmcR

i , and SmsR
i with i

∈ f1;2; 3g and j ∈ ffirst; second; thirdg (i.e., three input sets,

containing three channels each for the multispectral and mono-
chrome approach) as well as one set SF and SFhC, respectively.

Disclosures
No conflicts of interest, financial or otherwise, are declared by
the authors.

Acknowledgments
The authors thank the Saxon State Ministry of Science and
Culture (SMWK) for funding the project CardioVisio—
Contactless acquisition of vital parameters. All authors report
grants from Saxon State Ministry of Science and Culture
(SMWK) during the conduct of the study. D. Wedekind and
A. Trumpp report grants from Steinbeis Innovation Center
Applied Medical Technology outside the submitted work.

                         035002-13                    

                                                                                             

                                                                                                                                             



References
1. Y. L. Zheng et al., “Unobtrusive sensing and wearable devices for health

informatics,” IEEE Trans. Biomed. Eng. 61(5), 1538–1554 (2014).
2. C. Brueser et al., “Ambient and unobtrusive cardiorespiratory monitor-

ing techniques,” IEEE Rev. Biomed. Eng. 8, 30–43 (2015).
3. M. Huelsbusch and V. Blazek, “Contactless mapping of rhythmical phe-

nomena in tissue perfusion using PPGI,” Proc. SPIE 4683, 110–117
(2002).

4. W. Verkruysse, L. Svaasand, and J. Stuart Nelson, “Remote plethysmo-
graphic imaging using ambient light,” Opt. Express 16(26), 21434–
21445 (2008).

5. G. Balakrishnan, F. Durand, and J. Guttag, “Detecting pulse from head
motions in video,” in Proc. of the 26th IEEE Computer Vision and
Pattern Recognition Conf. (CVPR), Portland, Oregon, pp. 3430–
3437 (2013).

6. M. Poh, D. McDuff, and R. Picard, “Non-contact, automated cardiac
pulse measurements using video imaging and blind source separation,”
Opt. Express 18(10), 10762–10774 (2010).

7. H. Wu et al., “Eulerian video magnification for revealing subtle changes
in the world,” ACM Trans. Graphics 31(4), 1–8 (2012).

8. E. Christinaki et al., “Comparison of blind source separation algorithms
for optical heart rate monitoring,” in Proc. of the 4th Mobihealth,
Athens, Greece, pp. 339–342 (2014).

9. Y. Hsu, Y. Lin, and W. Hsu, “Learning-based heart rate detection from
remote photoplethysmography features,” in Proc. of the 39th Int. Conf.
on Acoustics, Speech, and Signal Processing (ICASSP), Florence, Italy,
pp. 4433–4437 (2014).

10. L. Feng et al., “Motion artifacts suppression for remote imaging photo-
plethysmography,” in Proc. of the 19th Int. Conf. on Digital Signal
Processing (DSP), Hong Kong, China, pp. 18–23 (2014).

11. P. Comon, “Independent component analysis, a new concept?” Signal
Process. 36(3), 287–314 (1994).

12. J. Cardoso, “High-order contrasts for independent component analysis,”
Neural Comput. 11(1), 157–192 (1999).

13. A. Hyvärinen, “Fast and robust fixed-point algorithms for independent
component analysis,” IEEE Trans. Neural. Networks 10(3), 626–634
(1999).

14. G. de Haan and V. Jeanne, “Robust pulse-rate from chrominance-based
rPPG,” IEEE Trans. Biomed. Eng. 60(10), 2878–2886 (2013).

15. G. de Haan and A. van Leest, “Improved motion robustness of remote-
PPG by using the blood volume pulse signature,” Physiol. Meas. 35(9),
1913–1926 (2014).

16. B. Holton et al., “Signal recovery in imaging photoplethysmography,”
Physiol. Meas. 34(11), 1499–1511 (2013).

17. S. Kwon, H. Kim, and K. Suk Park, “Validation of heart rate extraction
using video imaging on a built-in camera system of a smartphone,” in
Proc. of the 34th Annual Conf. of the IEEE Engineering in Medicine
and Biology Society (EMBC), San Diego, California, pp. 2174–2177
(2012).

18. M. Poh, D. McDuff, and R. Picard, “Advancements in noncontact, mul-
tiparameter physiological measurements using a webcam,” IEEE Trans.
Biomed. Eng. 58(1), 7–11 (2011).

19. M. Lewandowska et al., “Measuring pulse rate with a webcam: a non-
contact method for evaluating cardiac activity,” in Proc. of the Federate
Conf. on Computer Science and Information Systems (FedCSIS),
Szczecin, Poland, pp. 405–410 (2011).

20. F. Zhao et al., “Remote measurements of heart and respiration rates for
telemedicine,” PLoS One 8(10), e71384 (2013).

21. G. Tsouri et al., “Constrained independent component analysis
approach to nonobtrusive pulse rate measurements,” J. Biomed. Opt.
17(7), 077011 (2012).

22. D. McDuff, S. Gontarek, and R. Picard, “Remote detection of photo-
plethysmographic systolic and diastolic peaks using a digital camera,”
IEEE Trans. Biomed. Eng. 61(12), 2948–2954 (2014).

23. W. Wang, S. Stuijk, and G. de Haan, “Exploiting spatial-redundancy of
image sensor for motion robust rPPG,” IEEE Trans. Biomed. Eng.
62(2), 415–425 (2015).

24. C. Lueangwattana, T. Kondo, and H. Haneishi, “A comparative study of
video signals for non- contact heart rate measurement,” in Proc. of the

12th Int. Conf. on Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology (ECTI-CON), Hua
Hin, China, pp. 1–5 (2015).

25. L. Yang et al., “Motion-compensated non-contact detection of heart
rate,” Opt. Commun. 357, 161–168 (2015).

26. Y. Sun et al., “Motion-compensated noncontact imaging photoplethys-
mography to monitor cardiorespiratory status during exercise,”
J. Biomed. Opt. 16(7), 077010 (2011).

27. H. Tasli, A. Gudi, and M. Uyl, “Remote PPG based vital sign measure-
ment using adaptive facial regions,” in Proc. of the 16th Int. Conf. on
Image Processing (ICIP), Paris, France, pp. 1–5 (2014).

28. A. R. Guazzi et al., “Non-contact measurement of oxygen saturation
with an RGB camera,” Biomed. Opt. Express. 6(9), 3320–3338 (2015).

29. K. Mannapperuma et al., “Performance limits of ICA-based heart rate
identification techniques in imaging photoplethysmography,” Physiol.
Meas. 36(1), 67–83 (2015).

30. S. Rasche et al., “Camera-based photoplethysmography in critical care
patients,” Clin. Hemorheol. Microcirc. 64(1), 77–90 (2016).

31. L. Tarassenko et al., “Non-contact video-based vital sign monitoring
using ambient light and auto-regressive models,” Physiol. Meas. 35(5),
807–831 (2014).

32. ANSI/AAMI, “Cardiac monitors, heart rate meters, and alarms,”
EC13:2002, American National Standard (2002).

33. D. Morris et al., “Determining pulse transit time non-invasively using
handheld devices,” Patent application WO2014137768A1 (2014).

34. D. Wedekind et al., “Automated identification of cardiac signals after
blind source separation for camera-based photoplethysmography,” in
Proc. of the 35th Int. Conf. on Electronics and Nanotechnology
(ELNANO), Kyiv, Ukraine, pp. 422–427 (2015).

35. B. Lantz, “The large sample size fallacy,” Scand. J. Caring Sci. 27(2),
487–492 (2013).

36. C. O. Fritz, P. E. Morris, and J. J. Richler, “Effect size estimates: current
use, calculations, and interpretation,” J. Exp. Psychol. Gen. 141(1),
2–18 (2012).

37. H. Hentschke and M. Stüttgen, “Computation of measures of effect size
for neuroscience data sets,” Eur. J. Neurosci. 34(12), 1887–1894
(2011).

38. S. Nakagawa and I. C. Cuthill, “Effect size, confidence interval and stat-
istical significance: a practical guide for biologists,” Biol. Rev. 82(4),
591–605 (2007).

39. E. C. Hedberg and S. Ayers, “The power of a paired t-test with a cova-
riate,” Social Sci. Res. 50, 277–291 (2015).

40. F. Andreotti et al., “An open-source framework for stress-testing non-
invasive foetal ECG extraction algorithms,” Physiol. Meas. 37(5), 627–
648 (2016).

Daniel Wedekind is a PhD student at the Institute of Biomedical
Engineering, TU Dresden. He received his diploma degree in electri-
cal engineering from the TU Dresden in 2013. His current research
interests include practically relevant questions of the application of
blind source separation for contactless vital signs monitoring.

Alexander Trumpp is a PhD student at the Institute of Biomedical
Engineering, TU Dresden. He received his diploma degree in mecha-
tronics engineering from the TU Dresden in 2013. His current studies
focus on camera-based vital sign monitoring, both from a research
and application point of view.

Sebastian Zaunseder received his PhD in Electrical Engineering
from TU Dresden, Germany in 2011. Subsequently, he joined the
Institute of Biomedical Engineering of TU Dresden, where he is cur-
rently head of the group Biosignals. His research interests include
contact-free measurement systems, processing of biomedical signals
and images to acquire robust information on vital signs, investigations
on the cardio-respiratory autonomic modulation and research related
to sleep.

Biographies for the other authors are not available.

                         035002-14                    

                                                                                             

                                                                                                                                             

http://dx.doi.org/10.1109/TBME.2014.2309951
http://dx.doi.org/10.1109/RBME.2015.2414661
http://dx.doi.org/10.1117/12.463573
http://dx.doi.org/10.1364/OE.16.021434
http://dx.doi.org/10.1364/OE.18.010762
http://dx.doi.org/10.1145/2185520
http://dx.doi.org/10.1016/0165-1684(94)90029-9
http://dx.doi.org/10.1016/0165-1684(94)90029-9
http://dx.doi.org/10.1162/089976699300016863
http://dx.doi.org/10.1109/72.761722
http://dx.doi.org/10.1109/TBME.2013.2266196
http://dx.doi.org/10.1088/0967-3334/35/9/1913
http://dx.doi.org/10.1088/0967-3334/34/11/1499
http://dx.doi.org/10.1109/TBME.2010.2086456
http://dx.doi.org/10.1109/TBME.2010.2086456
http://dx.doi.org/10.1371/journal.pone.0071384
http://dx.doi.org/10.1117/1.JBO.17.7.077011
http://dx.doi.org/10.1109/TBME.2014.2340991
http://dx.doi.org/10.1109/TBME.2014.2356291
http://dx.doi.org/10.1016/j.optcom.2015.08.017
http://dx.doi.org/10.1117/1.3602852
http://dx.doi.org/10.1364/BOE.6.003320
http://dx.doi.org/10.1088/0967-3334/36/1/67
http://dx.doi.org/10.1088/0967-3334/36/1/67
http://dx.doi.org/10.3233/CH-162048
http://dx.doi.org/10.1088/0967-3334/35/5/807
http://dx.doi.org/10.1111/scs.2013.27.issue-2
http://dx.doi.org/10.1037/a0024338
http://dx.doi.org/10.1111/j.1460-9568.2011.07902.x
http://dx.doi.org/10.1111/brv.2007.82.issue-4
http://dx.doi.org/10.1016/j.ssresearch.2014.12.004
http://dx.doi.org/10.1088/0967-3334/37/5/627

