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Abstract. Camera-Based Photoplethysmography is a measuring tech-
nique that permits the remote assessment of vital signs by using cameras.
The face is the preferred area of measurement (region of interest: ROI)
that has to be selected automatically for convenient application. Most
works use common face detection algorithm for this purpose. However,
these approaches often fail if the face is partly occluded or distorted. In
this work, we propose an automatic method for ROI detection and track-
ing that does not rely on facial features. First, a Bayesian skin classifier
was applied. Second, the detected areas were refined and tracked by level
set segmentation. We tested our method on videos of 70 patients. The
determined ROIs were used for signal extraction and heart rate (HR)
estimation. The results showed that our method can detect and track
suitable skin regions. We achieved a median HR detection rate of 80%
which was only 6% lower than when applying manually defined ROIs.

1 Introduction

Camera-based photoplethysmography (cbPPG) is an optical measuring tech-
nique that permits the contactless derivation of cardiorespiratory signals by using
normal video cameras [1]. Similar to the common reflective photoplethysmog-
raphy, backscattered light from superficial skin layers is captured over time and
converted into a signal which relates to the cardiac cycle. In addition to the
advantage of a remote application, cbPPG can be operated with only ambient
light and can allow a spatial assessment of the recorded area [2].

For a variety of reasons, the face is the preferred region of measurement for
cbPPG. Therefore, the automatic detection and tracking of suitable facial areas
are essential for a convenient use of this technique. Existing approaches mostly
rely on detection algorithms for the whole face or facial landmarks and subse-
quently involve a tracking based on either re-detection or by using determined
image features [3, 4, 5]. However, faces that are partially occluded, rotated or
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not in a frontal position towards the camera might hinder any valid detection.
To our knowledge, there are only few works related to cbPPG which propose
an automatic detection and tracking method that does not require the initial
registration of facial areas.

In this paper, we present a fully automated approach for the detection and
tracking of face regions that are most suitable for cbPPG. For this approach, no
prior knowledge about the image content is needed. We tested our method for
camera recordings of 70 patients in an intensive care unit. The evaluation was
performed using cbPPG’s detection rate of the heart rate (HR). We compared
the results of our method to results obtained by applying manually annotated
regions of interest (ROIs).

2 Material and methods

2.1 Data and technical setup

For our tests, we analyzed measurements of a study that featured 70 patients (50
male, 20 female, ages 70.3±11.4 years) after cardiac surgery [6]. All participants
were recorded for about 30min using a two-camera system. In this work, we
only considered the RGB camera (IDS UI-3370CP-C-HQ) which was set to a
resolution of 420x320 pixels, a frame rate of 100 fps and a color depth of 12 bit.
During the recording, the patients were usually not conscious but sometimes
woke up and moved their head. The illumination conditions were mainly defined
by the indoor light source and outdoor sunlight. Synchronously to the videos,
we captured reference signals from the clinical monitor system. The study was
approved by the Institutional Review Board of the TU Dresden (IRB00001473,
EK168052013) and each patient gave written consent.

2.2 Image processing

To verify our assumption, we tested common face detection algorithms like the
Viola-Jones method on the videos. These algorithms mostly failed due to pa-
tients’ head position and occlusion caused by fixation tapes as well as intubation
tubes. Therefore, we applied a Naive Bayes classifier to detect suitable skin ar-
eas instead of faces. Following the description of Jones and Rehg [7], we built
two RGB histograms, one for skin color, and one for non-skin color. We used
labeled skin and non-skin images for this purpose that were made available by
this group. The normalization of the histograms on the total number of entries
provided the probability density functions (PDFs) for the classes skin and ¬skin:
p(c|skin), p(c|¬skin). The classifier could then be formulated using the Bayesian
decision rule [8]. An RGB pixel c was set as skin if

p(c|skin)
p(c|¬skin) ≥ θ (1)

We applied the classifier on the first image of each RGB video. For every patient,
the threshold θ was automatically adapted between 0.1 and 10 based on the
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number of detected skin pixels. This adaption allowed us to compensate varying
conditions among the patients. The classifier is generally a good choice due
to its simplicity, the free access of the training data, and because it was often
validated. However, in our case, the results did usually not represent the skin
regions well enough (Fig. 2). Therefore, we applied a segmentation algorithm
based on level set methods to refine the outcome.

Level set methods are able to describe the propagation of a segmentation
contour using an implicit representation [9]. This representation is accomplished
by the level set function Φ(x, y, t), where Φ = 0 defines the contour, Φ > 0
the inside region Ω1 and Φ < 0 the outside region Ω2. For each segmentation
procedure, the contour propagates from an initialization point to an optimal state
that minimizes an appropriate energy function. The minimization is performed
by a gradient descent. We applied a region-based approach by Brox et al. [10]
in which the gradient descent reads to

∂Φ

∂t
= H ′(Φ)

⎡⎣ 3∑
j=1

log
p1j(Ij)

p2j(Ij)
+ ν · div ∇Φ

|∇Φ|

⎤⎦ (2)

For the considered image I (j: color channels) in our study, the segmentation
was initialized by setting Ω1 to the skin classification result. During the seg-
mentation, the first sum term allows to separate Ω1 and Ω2 due to their local
intensities. The PDFs p1j and p2j are modeled using Gaussian distributions and
describe the probabilities that an regional image pixel belongs to Ω1 or Ω2, re-
spectively. For an optimal outcome, p1j is maximal in Ω1 and p2j is maximal in
Ω2. The latter term in the equation is the curvature term which allows to con-
trol the smoothness of the contour (ν is a weighting factor). H(Φ) is a Heaviside
function. We used 300 iteration steps to achieve the final segmentation result
which was defined by Ω1 and represents our ROI (Fig. 2).

Fig. 1. Program sequence of the proposed procedure (ROI: region of interest, HR:
heart rate, R: red, G: green, B: blue). They gray terms represent the transferred data.
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The segmented skin regions in the first RGB images were further tracked in
order to obtain ROIs for the whole videos. We also applied level set segmentation
for this purpose and always used the last segmentation result as initialization
point for the next image. Consequently, the contour quickly stabilized even in
the case of motion or light variations. If the result changed at all between two
images, a maximum of only 50 iteration steps was necessary. The chosen level set
method (combined with the classifier) allowed us to track skin regions with sim-
ilar intensity distributions instead of certain anatomical areas. We hypothesize
that the consideration of these distributions provides a benefit for ROI selection.

2.3 Signal processing and evaluation

In order to extract cbPPG signals, the pixel values within the determined ROIs
were averaged frame by frame. Due to the three color channels (R,G,B), we
obtained three different signals for each patient. All signals were divided into
10 s segments and then detrended and highpass filtered (FIR filter, a cutoff
frequency of 30 bpm, an order of 250). Afterward, a Fast Fourier Transform was
applied and an amplitude spectrum was built for each segment. We detected
the HR in this spectrum by searching for the maximum peak between 30 and
200 bpm. Fig. 1 summarizes the signal and image processing steps.

The detected HRs were compared to reference HRs that were determined
from the electrocardiogram. A camera-based HR was considered correct if it
differed less than 5 bpm. Using this outcome, we could calculate a mean HR
detection rate (HRDR) for each patient and color channel. In a previous work [6],
we worked with the same video data but manually annotated ROIs and only
calculated HRDR values for the green channel. We used these results as the
gold standard to validate our method.

Fig. 2. Skin detection and tracking results for four patients (only contours are shown):
i) skin classification, ii) initial segmentation, iii) tracking to a later point in the video.
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3 Results

The proposed method proved to be applicable to detect and track suitable skin
regions in RGB videos. Besides the face, also regions from the upper body part
were occasionally included. Fig. 2 shows four patients where the skin detection,
segmentation and one tracking result are visualized. The combination of the
classifier and level set segmentation leads to the separation of skin areas (ROIs)
with similarly distributed intensities. We can argue that this distribution plays
a role for the quality of the extracted cbPPG signals when averaging the ROI
pixel values. Patient 3 and 4 in Fig. 2 serve as examples. The light conditions
caused the face to be illuminated differently. Our method only selected the
appropriate part as ROI and therefore caused a better outcome than using the
whole face. We also tested the processing time of our algorithm. Except for the
initial detection and segmentation, it can be operated in real-time (MATLAB).

Fig. 3 shows the results for HRDR of the 70 patients (depicted in boxplots).
When our ROI selection method was applied, the green channel provided the best
rates with a median of 80%. This median is remarkably high considering that
the gold standard, where ROIs were selected manually, yielded 86%. However,
low HRDR values cause a large variance for our method. In comparison to the
green channel, the red and blue channel provided a generally poor outcome with
a median HRDR of 17% and 14%, respectively.

Fig. 3. Results for the detection rate of the heart rate. The first box shows the results
using manually annotated ROI. The other boxes show the results for each color channel
using our method.
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4 Discussion

To some extent, the low HRDR values in the green channel can be explained
by a group of patients where the ROI selection process was unsuccessful. Rea-
sons are: (i) insufficient skin classification, (ii) inclusion of non-skin regions in
the segmentation, (iii) failed tracking because contour did not stabilize enough.
Moreover, the inclusion of non-facial skin regions can also affect the HRDR.
Such regions might hold pulse signals with different characteristics and could
degrade the outcome if they are combined with facial regions. Although we used
the same ROIs for the red and blue channel as we used for the green one, the
results differed significantly. This effect can be partly attributed to generally
low cbPPG signal amplitudes for red and blue and coincides with the fact that
the green channel provides the strongest plethysmographic signal [2]. Neverthe-
less, signals from the red and blue channel still offer valuable information which
should be exploited in future analyses. For example, Poh et al. [3] applied an in-
dependent component analysis to the signals of all three channels and, therefore,
could achieve a better HR detection than just considering the green channel.

In conclusion, our method allows to automatically determine facial ROIs in
videos without using any prior knowledge about the image content. Further-
more, these regions proved to be suitable for cbPPG signal extraction and HR
estimation. This work was funded by the ”Staatsministerium für Wissenschaft
und Kunst (SMWK)” in Saxony, Germany.
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