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Non-invasive Fetal ECG Signal Quality
Assessment for Multichannel

Heart Rate Estimation
Fernando Andreotti , Felix Gräßer, Hagen Malberg, and Sebastian Zaunseder

Abstract—Objective: The noninvasive fetal ECG (NI-
FECG) from abdominal recordings offers novel prospects
for prenatal monitoring. However, NI-FECG signals are cor-
rupted by various nonstationary noise sources, making the
processing of abdominal recordings a challenging task. In
this paper, we present an online approach that dynamically
assess the quality of NI-FECG to improve fetal heart rate
(FHR) estimation. Methods: Using a naive Bayes classifier,
state-of-the-art and novel signal quality indices (SQIs), and
an existing adaptive Kalman filter, FHR estimation was im-
proved. For the purpose of training and validating the pro-
posed methods, a large annotated private clinical dataset
was used. Results: The suggested classification scheme
demonstrated an accuracy of Krippendorff’s alpha = 0.65
in determining the overall quality of NI-FECG signals. The
proposed Kalman filter outperformed alternative methods
for FHR estimation achieving 75.6% accuracy. Conclusion:
The proposed algorithm was able to reliably reflect changes
of signal quality and can be used in improving FHR esti-
mation. Significance: NI-ECG signal quality estimation and
multichannel information fusion are largely unexplored top-
ics. Based on previous works, multichannel FHR estimation
is a field that could strongly benefit from such methods.
The developed SQI algorithms as well as resulting classifier
were made available under a GNU GPL open-source license
and contributed to the FECGSYN toolbox.

Index Terms—Fetal ECG, signal quality, data fusion,
Kalman filter, naive Bayes.

I. INTRODUCTION

THE non-invasive fetal ECG (NI-FECG) derived from ab-
dominal surface electrodes offers novel diagnostic pos-

sibilities for prenatal medicine by enabling long-term moni-
toring of the fetal cardiac activity. Despite its straightforward
applicability, the NI-FECG signal is usually corrupted by many
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F. Gräßer, H. Malberg, and S. Zaunseder are with the Institute of
Biomedical Engineering, Technische Universität Dresden.

Digital Object Identifier 10.1109/TBME.2017.2675543

interfering sources, most significantly by the maternal ECG
(MECG). The presence of additional highly non-stationary noise
sources (e.g. muscular/uterine noise, electrode motion, etc.) fur-
ther affects the signal-to-noise ratio (SNR) of the fetal signal,
making the detection of the fetal QRS (FQRS) complexes a chal-
lenging signal-processing task, in which erroneous detections
are unavoidable. Nonetheless, with the developments in signal
acquisition and processing techniques over the last decades,
the NI-FECG has regained the attention of several research
groups [1]–[3]. This increasing interest culminated on Phys-
ionet/Computing in Cardiology Challenge (PCINCC) 2013 [2]
on the topic accurate FQRS detection and FHR estimation. Dur-
ing the PCINCC 2013, various approaches for improving fetal
heart rate detection were presented e.g. [4]–[6]. While most
available FQRS detection methods are simple re-parametrized
single-channel adult QRS detectors, FHR estimates are often
based on heuristic rules for how a smooth FHR tracing should
appear. Aside from that, multichannel FQRS/FHR information
is often fused using simple majority voting or weighted average
algorithms.

Despite the large progress over the recent years, particularly
in case of low/varying SNR, present methods are still unable of
producing reliable FQRS complexes. Therefore, the current state
of NI-FECG research raises two relevant issues: 1) how can the
quality of NI-FECG be quantified in scenarios of low/varying
SNR? 2) how can one fuse the information of multiple NI-FECG
channels when segments/channels containing erroneous detec-
tions are present? The first point relates to the usage of signal
quality indices (SQIs), as previously addressed by many works
on adult ECG monitoring [7], [8]. However, due to the pres-
ence of an additional pseudo-periodic signal (i.e. the MECG),
conventional SQIs are expected to underperform. To the best
of our knowledge, there is currently no contribution directed
at NI-FECG quality estimation available in the literature. Re-
garding the latter question, given that suitable NI-FECG SQIs
are at one’s disposal, adult ECG approaches could be trans-
ferred to NI-FECG applications. A sophisticated framework that
incorporates signal quality information in multichannel data-
fusion is the Kalman Filter (KF) [9]. The filter makes use of
both measurement and its intrinsic model in attributing adap-
tive weights to each channel’s estimates, being applied in adult
heart rate (HR) assessment by [10]. For a complete review on
SQIs and their KF associated use, the reader is referred to Oster
et al. [11].
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Fig. 1. Breakdown view of available data and annotation procedures
carried out in this study. The line thickness represents the number of
recordings used.

In this contribution, we aim at characterizing extracted NI-
FECG signals by using signal quality measures. For this pur-
pose, numerous novel quality indices specifically designed for
dealing with NI-FECG recordings are proposed. These SQI met-
rics are thoroughly evaluated concerning their ability to mirror
the overall quality of NI-FECG signals by using a Naive Bayes
classifier. The resulting quality estimates are evaluated using
manually annotated clinical data and are further incorporated
into a multichannel KF framework for improving fetal heart
rate (FHR) estimates. The developed SQI algorithms as well
as resulting classifier were made available under a GNU GPL
open-source license and contributed to the FECGSYN toolbox
[12], [13] (available at www.fecgsyn.com).

II. MATERIALS AND METHODS

A. Data and Annotation Procedure

Data was acquired at the Department of Obstetrics and Gyne-
cology at the University Hospital of Leipzig (local ethics com-
mittee approval 348-12-24092012). A total of n = 259 mul-
tichannel recordings from 107 singleton pregnancies (diverse
pathophysiological states and gestational weeks ranging from
17 to 39 weeks) were collected. Each record consisted of ap-
proximately 20 min on 1 maternal chest lead and 7 abdominal
channels, as previously described in [4]. The electrode configu-
ration consists of 4 external derivations (forming a larger circle
around the maternal abdomen) and 3 internal (around the navel
with reference electrode placed about the fundus of the uterus -
see [4]). Two different annotations procedures were performed,
detailed in Fig. 1 and further described in the following sub-
sections.

1) Signal Quality Annotation: Five equidistant 5 s seg-
ments were extracted from each recorded abdominal channel
for further annotation. The total of 9,065 segments (7 channels
× 5 segments × 259 recordings) was carefully annotated by
four experts for their FECG amplitude (4 classes - see Table I)
and SNR levels (5 classes). Two observers annotated every seg-
ment, while the other two annotated in a complementary manner
72.6% and 37.0%, respectively, so that at least 3 annotations
were available for each segment. A subset of 500 segments was
annotated twice by every observer to evaluate intra-observer
reliability. Preliminary results from the authors [14] showed a
good intra-rater (> 0.65) and inter-rater (> 0.63) agreement on
average (using Krippendorf’s coefficient, further explained in
Section II-D). A consensus was obtained for each segment us-
ing majority voting for each FECG amplitude and SNR criteria.
For avoiding biases, ties were decided by randomly choosing

TABLE I
DEFINITION FOR FETAL PEAK VISIBILITY CONSENSUS, BASED ON FECG

STRENGTH AND SNR CONSENSUS

SNR† FECG‡ Meaning Overall
consensus

4,5 4 FECG clearly distinguishable, A
4,5 3 FECG clearly distinguishable, B
3 4 good SNR
5 2 FECG distinguishable, adequate SNR C
3 3 adequate SNR
3,4 2 FECG distinguishable, low SNR D

d.c. 1 No FECG distinguishable E
1,2 d.c.

Scoring was done visually, on a segment basis, one-channel at a time with the
respective MECG chest lead serving as reference.
† 1 = unacceptable; 2 = bad; 3 = adequate;4 = good; 5 = excellent
‡ 1 = not present; 2 = low; 3 = moderate; 4 = high amplitude
d.c. Don’t-care term

Fig. 2. Histogram showing overall annotated consensus for signal qual-
ity (see Table I). Both complete dataset and FQRS annotated subset are
presented. “Complete dataset” refers to 9,065 segments annotated by
experts, while “FQRS annotated subset” depicts the 7×5×24 = 840 seg-
ments from the 24 recordings that had their FQRS complexes annotated
(as explained in Fig. 1).

one of the most voted alternatives. Further, an overall fetal peak
visibility consensus was defined (see Table I), which is used in
this work as gold-standard measure for the NI-FECG quality.
For further reference, in our clinical database there was a class
imbalance with the following relative frequencies for overall
consensus: A (0.72 %), B (3.40 %), C (6.92 %), D (10.04 %)
and E (78.93 %) – see Fig. 2. The amount of observations in
class E, e.g. refers to segments which showed low quality. This
number does not necessarily reflect the overall quality of our
multichannel recordings, since individual channels are likely
to contain different signal qualities. Nonetheless, as previously
described, the exploratory clinical study herein presented com-
prised patients at diverse gestational weeks including those dur-
ing which the well-known FECG quality degrading effect of the
vernix caseosa is present.

2) Fetal QRS Annotation: To validate the results for
FHR estimation, a subset of the clinical dataset containing 24
recordings, where FQRS complexes were partially visible in
at least one channel, were selected. These recordings were an-
notated by one and further corrected by another two experts
for their individual FQRS and maternal QRS (MQRS) loca-
tions. The subset contained recordings with mixed quality as
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reported in Fig. 2. This annotation procedure was carried out
for each complete recording (i.e. approximately 20 min each)
[4]. During the annotation procedure, experts had access to all
7 abdominal channels and the maternal chest lead. Annotators
were asked to simultaneously make use of at least 2 abdominal
channels (interchangeable during annotation) and the MECG
lead in annotating visible FQRS complexes. As shown in Fig. 2
and discussed in [14], abdominal channels presented different
qualities depending on several pathophysiological and record-
ing variables such as fetal position, presence of the vernix, and
electrode configuration. Therefore, fetal complexes may only
be visible on a portion of the available channels. In cases where
the FQRS were temporarily not clearly distinguishable in any
channel, up to 2 consecutive peaks were annotated, if the ex-
pert could extrapolate their positions (e.g. during fetal/maternal
overlaps). Longer periods without distinguishable fetal peaks
were marked as a region of signal loss, where no FQRS anno-
tation was placed. Annotation was performed on preprocessed
abdominal signals (using simple bandpass filters as described in
[4]) to avoid the bias by extraction methods on the annotation
procedure. The annotated subset totalized 448 min (3.7 % ex-
cluded due to signal loss) and over 67,000 fetal complexes, with
average FHRref across these recordings ranging from 139.1
to 154.4 bpm and standard deviation between 3.9 and 11.1 bpm.
The FHR trace derived from these annotations was regarded as
reference (FHRref ) for evaluating the FHR estimates.

B. Automated Signal Quality Assessment

Improving signal quality estimation leads to a desirable in-
crease on specificity of built-in signal processing techniques
[11]. This topic’s importance was confirmed by the recent
PCINCCs that dealt with the determination of ECG’s clini-
cal acceptability (in 2011 [15]) and false alarm reduction (in
2015 [16]). Both competitions have in common that top-scoring
entries ([7], [17]) made use of SQIs to improve the specificity
of their results. One of the most significant works using SQI
metrics was proposed by Li et al. [10], who suggested various
SQIs for both ECG and blood pressure (BP) signals. As later
described by the same authors [18], based on earlier works,
which made use e.g. of the Karhunen-Loéve transform [19] or
standard noise measurement methods [20], Li et al. [10] devel-
oped four SQI metrics: 1) the ratio of power in various bands
of the spectrum, 2) the degree of agreement between different
QRS detectors, 3) the degree of agreement between beat de-
tection on different leads, and 4) the kurtosis of the ECG [18].
Since then, SQI metrics have been successfully applied in adult
ECG [7], [8], [17], [21], BP [17], [21], [22] and PPG signals
[23]–[25]. In contrast to the PCINCC 2011, [18] emphasized
the need for multilevel signal quality classification approaches,
rather than classifying ECGs as ‘acceptable’ or ‘unacceptable’.
Despite the abundance of works in adult ECG analysis, SQIs
have not been conveyed to the context of NI-FECG. To resolve
this issue, in this work we assume that the following signals are
available:

i) maternal chest lead;
ii) reliable maternal MQRS annotations obtained as de-

scribed in Section II-A2;

iii) N channels of preprocessed abdominal signals (Butter-
worth bandpass filters with a pass band of 3-100 Hz band
were applied as in [13]);

iv) N extracted NI-FECG signals from (iii). In this con-
tribution, the extraction was performed using the TSpca

technique explained in [13].
These input signals do not impose any restriction to our anal-

ysis since they are readily accessible after the FECG extraction
is performed. In the following sections, the SQIs derived from
these signals are presented, as well as a classification algorithm
for combining those different metrics into one overall SQI value
for each 5 s segment.

1) Feature Extraction - Signal Quality Indices: The
SQI metrics used are summarized in Table II. The met-
rics were divided into four classes of algorithms: time,
frequency, detection-based methods and FECG-specific ap-
proaches. Amongst those metrics are adaptations of adult ECG
SQI algorithms (derived from the literature), two indices pro-
posed by the authors within a previous work [4] (i.e. cSQI and
xSQI) and four novel indices that are specific for NI-FECG
analysis. These proposed novel FECG-specific indices, namely
mxSQI , mpSQI , mcSQI and miSQI , are intended to esti-
mate how well the MECG suppression performs.

The conformity measure (cSQI), proposed in [4], is based on
the construction of an averaged FECG template beat by simple
coherent average. With that FECG template at hand, cSQI is
the average value for the correlation coefficient between each
available beat and the FECG template within a segment. The
extravagance (i.e. xSQI [4]) is a measure of contrast between
the detected FQRS complex and the embedded noise. By using
a window of ±25 ms length around location of the individ-
ual FQRS, the FECG peak amplitude is compared against the
power of the signal within three times that window length. The
mxSQI is the analogous of xSQI with focus on the amplitude
of the MQRS peaks in comparison to the surrounding residu-
als of the extraction procedure. This metric uses the extracted
abdominal signal and MQRS reference locations to estimate
the strength of MECG residuals on the estimated FECG signal.
The metric is obtained as mxSQI = 1 − xSQI

∣
∣
M QRS,F EC G

.
The mpSQI makes use of the magnitude-squared spectrum for
the residuals and the median reference maternal HR (MHR) for
each segment. Similarly to the approach in [27], the aim is to
evaluate the relative power of MHR and its harmonics on the
frequency-domain as an index for left-over maternal residuals.
In order to do so, the MQRS fundamental frequency and its Nf

first harmonics (within an empirically defined ±0.3 Hz band)
were compared with the power of up until the fifth harmonic
(mpSQIa ) or all peaks within the [0.5, 10] Hz band (mpSQIb ).
The spectral coherence (or magnitude-squared coherence) is
yet another metric that measures the cross-correlation between
two frequency spectra that outputs values between [0, 1]. In this
work, we aim at applying this measure to assess the extraction
performance by using the involved signals, henceforth named
mcSQI. We evaluated two variants of the mcSQI . The first
measure (mcSQIa ) assesses the similarity between the MECG
chest-lead and extracted FECG on the [0, 100] Hz band, whereas
the second metric (mcSQIb ) focuses on evaluating whether
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TABLE II
SUMMARY OF FETAL SQI METRICS USED IN THIS CONTRIBUTION

“Cat.” refers to category and “Mult.” to the method requiring multiple channels or not (including MECG chest lead). Except for the time domain metrics, all other output belong to
R ∈ [0, 1]. For implementational details please refer to the open-source code [12].

the extraction method has included artifacts on higher frequent
spectrum of the extracted signal. The last proposed metric, i.e.
miSQI, is based on the iSQI [10] and on the premise that in cases
where the FECG extraction performs poorly, the MQRS resid-
uals have larger amplitudes then the FQRSs themselves. As a
consequence, the sub-optimal extraction leads to MQRS peaks
being detected (instead of FQRS), which could be assessed
by using the iSQI-like algorithm to compare the detected ex-
tracted abdominal signal and MQRS reference. Therefore, the
metric is calculated using a ± 50 ms acceptance interval as:
miSQI = 1 − iSQI

∣
∣
M QRS,F QRS

.
Since both detection-based SQIs and miSQI metric (pre-

sented in Table II) make use of FQRS detectors, their outcomes
are dependent on the FQRS detectors’ performance. In this
work, five publicly available QRS detectors were applied in
generating fetal SQIs:

1) maxsearch (available from [28], using an expected FHR
of 138 bpm as input parameter) searches for an absolute
maximum within a pre-defined window. The overall ac-
curacy of this detector on the FQRS annotated subset (see
Fig. 1) using F1 measure [26] was of F1 = 64.8%.

2) jqrs (available from [6]) implementation of the [29]
peak energy detector specific for FQRS detection,
based on filtering, adaptive thresholding as well as for-
ward and backward search. Average performance of
F1 = 52.9%.

3) P&T algorithm (available from [30]) alternative imple-
mentation of the Pan-Tompkins algorithm [29]. Average
performance of F1 = 49.2%.

4) gqrs (available on PhysioNet [31], [32]) QRS matched
filter with a custom-built set of heuristics (such as search
back). Input signal was resampled before usage to match
faster FHR. Average performance of F1 = 55.0%.

5) wqrs (available on PhysioNet [31]–[33]) detector based
on low-pass filtering, a nonlinear curve length transfor-
mation and adaptive thresholding. Input signal was re-
sampled before usage to match faster FHR. Average per-
formance of F1 = 50.5%.

For further reference, the numbers listed above were used
to describe variants of SQI metrics to which they are pertained,
e.g. bSQI12 represents the bSQI evaluated using the maxsearch
algorithm [28] and jqrs [6] detectors. Therefore, some of the 14
main features listed in Table II have in fact 2, 5 or 5×(5 − 1)/2
subtypes, leading to a total of 45 features. Every feature was
used in the following classification step.

2) Classification - Bayesian Probabilistic Classi-
fier: The classification aims at generating a combined signal
quality estimate based on the various SQI features available (de-
scribed in the preceding section). The resulting SQI is further
used within a KF framework to improve FHR estimates. For
the purpose of classification, a Naive Bayes classifier was em-
ployed. By using the prior and attribute probability densities, the
posterior probability for a given class can be modelled. During
classification, the class with maximum posterior probability is
usually selected [34]. However, in this contribution, we made
use of the posterior probabilities to transform the classified val-
ues into continuous valued outputs for the following processing,
later described in Section II-C.
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In order to assess the expected classification performance of
the trained Naive Bayes model, i.e. the efficiency in assigning
the signal quality based on the used SQIs to the appropriate
class, a 10-fold cross validation was performed. Here, all 9,065
observations in the dataset were used to generate training and
test sets, respectively. The final Naive Bayes classification model
was trained using all available observations as training set. To
avoid the trained classifier to be bounded by the training data’s
class imbalance, the prior class probabilities were assumed to be
equal for all classes during performance assessment and when
training the final classifier.

C. Improved FHR Estimation

Regarding multichannel HR consensus, there are generally
two types of possible combinations, namely channel selection
or fusion. In channel selection, the lead with the best quality is
selected. For example, Johnson et al. [17] applied SQI metrics on
10 s segments of the adult multimodal data during the PCINCC
2014, selecting the channel with highest SQI as output HR. As
described by Oster and Clifford [11], several methods have been
proposed for fusing multichannel HR estimates using SQI-like
metrics. Amongst those are simplistic weighted averages and
computationally demanding machine learning approaches. The
use of KF is motivated by its well-defined paradigm, which has
the advantage of incorporating knowledge of the FHR dynam-
ics as well as the amount of uncertainty in its measurement
and intrinsic model. Through their innovation, KF methods can
identify trends and abrupt changes in the underlying features
not requiring an intensive training period [11]. The use of KFs
in improving heart/respiratory rate measures was firstly sug-
gested by [10], [35]. The algorithm can be divided into two
stages, namely single-channel HR estimation (using the unfil-
tered FHR estimates and the classified fetal SQI as input) and
multichannel data fusion (using Kalman filtered single-channel
estimates, fetal SQI and the innovation signal as byproduct of
the KF algorithm). Those steps are briefly explained in the fol-
lowing sub-sections.

1) Single-Channel Kalman Filtering: With both infor-
mation at hand (i.e. FHR rough estimates and combined SQI),
the KF algorithm is applied on a channel basis to improve the
single-channel FHR estimates. For the purpose of modelling
FHR dynamics, first-order AR models were often applied in the
literature [10], [35]. For completeness, we generalize this model
with a pth order AR process, which allows the system to have
memory. However, in this contribution we restrict ourselves on
the first-order model (i.e. p = 1). An univariate pth order AR
process is described as [25], [36]:

ak =
∑p

i=1ϕi,k · ak−i + wk ,

ak = ϕT
k
· [ak−1 , · · · , ak−p ]

T + wk ,
(1)

where p denotes the order of the AR model, ϕi,k are the time-
dependent AR coefficients, and wk is an additive zero-mean
white Gaussian noise process. By applying this modelling into
a KF framework, one aims to obtain a linear regression of the
p previous FHR measures (FHRk−1 · · ·FHRk−p ) to estimate

the current FHRk , represented in (2):

̂FHRk = [FHRk−1 · ϕ1 + FHRk−2 · ϕ2

+ ... + FHRk−p · ϕp ] . (2)

Equations (1)-(2) can be modelled into KF’s space-state rep-
resentation as in (3):

xk = A · xk−1 + wk ,

y
k

= H · xk + vk .
(3)

The state variable xk ∈ Rp×1 is defined as the signal of interest
(i.e. the FHR p previous estimates), the measurement vector
y

k
∈ Rq×1 contains the observations (rough FHR values), wk

is the process noise and vk the observational noise. The filter
noise covariance matrices are defined by w ∼ N (0,Qk ) and
v ∼ N (0,Rk ). The state transition matrix A is the p × p matrix,
describing the expected dynamics of our state (see (4)), while
the observational matrix H is a q × p null matrix, except for its
first element which is unitary.

xk =
[
FHRk , FHRk−1 , · · · , FHRk−p+1

]T

and A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ϕ1 ϕ2 . . . ϕp−1 ϕp

1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
...

0 0 . . . 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4)

The KF’s gain is mostly influenced by its defined process and
observational noise covariance matrices (Qk and Rk ). In order
to integrate the information on the signal quality, Li et al. [10]
proposed modulating the KF’s measurement covariance matrix
as described in (5).

Rk ≡ R0 · exp(1/SQI2
k − 1) (5)

where SQIk (with SQI ∈ [0, 1]) denotes the time-dependent
estimated signal quality and R0 is the initial value of mea-
surement covariance matrix, which is signal dependent. The
employed nonlinear weighting function leads to Rk → R0 (if
SQIk → 1) and Rk → ∞ (if SQIk → 0). The adaptive covari-
ance matrix enhances the influence of cleaner estimates on the
filter’s outcome, providing the filter with a more rapid response
to sudden changes in the signal quality [11]. In this work, to
obtain continuous SQIk values, we propose the use of pos-
terior probabilities P+ (i, k) obtained from the previously de-
picted classifier. Thus, the continuous-valued SQI output is gen-
erated by SQIk =

∑

{i=A,B ,...,E } P+ (i, k) ∗ Ci,k , where Ci,k

represents the numerical coded values for each annotation class
i = {A,B, ..., E} presented in Table I. The coding Ci ∈ [0, 1]
was defined based on the cumulative distributive function of
each class, as further shown in Table III. The initial values for
the measurement and process covariance matrices, were empir-
ically determined using a grid-search algorithm (as in [25]) on
the first minute of each annotated dataset, for avoiding over-
training. The calibration procedure resulted on R0 = 10−3 and
Q0 = 1.
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TABLE III
STATISTICS OF ESTIMATED SQIk VALUES ON SQI ANNOTATED SET

Class C i mean(SQIk ) ± std(SQIk )

A 1.00 0.97 ± 0.09
B 0.97 0.84 ± 0.26
C 0.80 0.60 ± 0.34
D 0.47 0.50 ± 0.33
E 0.00 0.08 ± 0.21

C i represents the continuous coded values attributed
to each class, mean() and std() represent the aver-
age and standard deviation operations, respectively.

2) Multichannel Data Fusion: After obtaining a
Kalman filtered FHR estimate for each available channel, a sen-
sor data fusion step takes place. This multichannel consensus
is obtained by using both KF innovation (νk ≡ y

k
− Hx̂k |k−1)

and consensus SQI signal such that:

θk =
N∑

s=1

⎛

⎝

∏N
i=1,i �=s σ2

k,i
∑N

i=1

(
∏N

j=1,j �=i σ2
k,j

) · xk,s

⎞

⎠ (6)

where θk represents the resulting FHR estimate from the pro-
posed fusion approach, xk,s is the current FHR estimate for each
available channel s at time-step k and σ2

k,s ≡ (νk,s/SQIk,s)
2 .

This approach was likewise proposed by [10]. For demonstrating
the usefulness of innovation signals, the proposed fusion scheme
was compared with a simpler approach, namely the weighted
average of individual Kalman filtered channels by using solely
their SQI values as follows:

θw
k =

∑N
s=1 SQIk,s ·xk,s
∑N

s=1 SQIk,s

. (7)

D. Performance Metrics

1) Classification Accuracy: Cohen’s κ [37] coefficient
is a widely used statistic for reporting classification accuracy. κ
has the advantage of correcting for the expected agreement that
occurs by chance alone. The κ coefficients are usually reported
in the following categories of agreement [37]: “very good” (0.8
to 1.0), “good” (0.6 to 0.8), “moderate” (0.4 to 0.6), “fair” (0.2
to 0.4) and “poor” (< 0.2). However, κ is a measure of nomi-
nal agreement that for ordinal-scaled data, such as in this work,
causes κ to penalize minor miss classifications (between two ad-
jacent classes, e.g. B and C) with the same weight it penalizes
e.g. classifying a value as A instead of E. To cope with those
“less/more serious” classification errors, the Krippendorff’s al-
pha coefficient (α) [38] was suggested. Krippendorff’s coef-
ficient can be used for any number of raters (not only two), is
applicable for different kinds of variables (e.g. nominal, ordinal,
interval), and can be used for incomplete or missing data [38].
For this reason, both κ and α are reported in this contribution.

2) FHR Estimation Performance: In this contribution,
we aim at window-based FHR estimates (i.e. ̂FHRk ) with a
5 seconds moving median window with 1 second overlap. The
choice for 5 s window coincides with the length of the segments
on the annotated training set, so that the values delivered by the
fetal SQIs are similar.

TABLE IV
CONFUSION MATRIX FOR THE 10-FOLD CROSS VALIDATION PROCEDURE

EXPLAINED IN SECTION II-B2

The heartbeat detection rate (HDR) has been applied in adult
HR detection as accuracy metric. HDR assesses the percentage
of the HR values within± 5 bpm tolerance (for adults) [39] of the
reference HR annotations, regarded as true positives (TP). On
the fetal case, we allowed a tolerance of ± 10 bpm to reflect the
higher FHR (accelerations and decelerations of the FHR are usu-
ally defined by changes greater than 15 bpm [40]). SQI results
are given in percent by dividing the number of TP by the total
number of segments (Ns), as HDR = 100 · TP/Ns [%] [25].

As for precision metric, the distance between FHR test and the
reference values are commonly applied in the literature. Its use
is particularly relevant when some averaging window is applied
in producing the RR estimates. In this work, the straightforward
root mean square error (RMSE) between ̂FHRk and FHRref

was evaluated [25].

III. RESULTS

A. SQI Evaluation

Table III reports the average and standard deviation statis-
tics for the estimated SQIk values compared to the anno-
tated reference. The overall classification accuracy in predict-
ing the 5 classes using a Naive Bayes classifier was on aver-
age κ = 0.44 ± 0.03 (i.e. moderate) and α = 0.65±0.04 (good).
The resulting confusion matrix for the cross validation proce-
dure is presented in Table IV). Fig. 3 illustrates the behaviour of
some features as well as the resulting continuous-valued SQI,
when muscular noise is present.

B. FHR Evaluation

The single channel FHR results before and after applying
Kalman filter, as well as multichannel outcomes are presented
in Table V. For evaluating the information obtained from the
different leads, this procedure was divided into a 3-channel (i.e.
using the internal leads configuration), 4-channel (i.e. circular
lead system around abdomen) and 7-channel (i.e. all leads).
An ideal best possible result is shown by always selecting the
channel with maximal HDR and minimal RMSE before and
after KF processing. An example of the FHR estimation using
KF algorithm and classified SQI is shown in Fig. 4.

IV. DISCUSSION

In this study, a large dataset of annotated NI-FECG signals
was used as gold standard. A subset of recordings contain-
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Fig. 3. Segment of clinical data showing a sudden muscular artefact at
time 952.5 s. On the top the preprocessed channel is presented, in the
middle the extracted fetal signal and below the respective SQI features.
“abdECG” denotes the preprocessed abdominal ECG channel.

ing FQRS location annotations with 448 min duration and dis-
tinct FECG signal qualities was selected for assessing the per-
formance of FHR estimation. Despite being larger than most
datasets available in the literature for FHR analysis, one limita-
tion of our data is the large disparity on the number of obser-
vations on each signal quality class, where most data has bad
or low signal quality. Additionally, the very reduced number of
fetal/maternal arrhythmic events and ectopic beats contained in
the training data limits the applicability of the developed classi-
fier in clinical practice. Future studies should address this issue
by collecting a large dataset, in order to cover a representative
spectrum of relevant arrhythmic situations. A further limitation
is the fact that the quality of the NI-FECG recordings was an-
notated using abdominal recordings (prior to extraction of the
FECG), while most SQIs (used to train the classifier) are based
on the extracted FECG signals. Therefore, the annotation labels
presented in Table I merely reflect if the FECG complexes can
be visualized, but not if the FECG is separable/attainable from
the abdominal mixture. The separability issue is a relevant topic,
particularly when applying Blind Source Separation techniques,
that remains for further works. However, such analysis would
require the simultaneous recording of a gold-standard such as
fetal a scalp electrode to guarantee that segments classified as
being of good quality are in fact classified based on underlying
FECGs. Consequently, the training data depends on the extrac-
tion method used, which is not ideal. Nevertheless, the method
of choice for this work, i.e. TSpca , is simple enough and should
not produce any major distortion between the annotated and

extracted signals. Furthermore, the authors recognize that the
defined overall consensus (see Table I) is a subjective concept
and may be sub-optimal. However, it was a necessary step for
the analysis. Another possibility would be to have two separate
sets of SQIs and classifiers, one dealing with the signal SNR
and another with the amplitude of the FQRS peaks. Regarding
the length of the segments used in this work, although some SQI
algorithms may benefit from longer segments (e.g. for building
FECG templates or estimating spectral content), the 5 s interval
was considered as appropriate for the trade-off between window
length and online capability of the proposed algorithm. Further
works should focus on expanding these SQI indexes and apply-
ing them on a beat-to-beat basis. An exemplary framework for
this purpose would be the FQRS detector based on evolutionary
computing, previously proposed by the authors in [4].

The Naive Bayes classifier obtained good classification re-
sults during cross validation using Krippendorff’s α coefficient,
i.e. the most suitable metric considering the ordinal dataset used.
Meanwhile, Cohen’s κ produces moderate results, since it is a
nominal agreement measure. Visual inspection of Table III and
the confusion matrix (Table IV) confirms that most false classifi-
cations fall within neighbouring classes. The misclassifications
appear to increase in better quality signals, which can be con-
firmed by grouping labels into ‘acceptable’ (labels ‘A’, ‘B’, and
‘C’) and ‘unacceptable’ (‘D’ and ‘E’) from Table IV. By do-
ing so, an accuracy, sensitivity and positive predictive value of
92.1%, 49.3%, and 87.8% would be attained, respectively. This
low sensitivity is likely to occur due to the significantly lower
number of signals in classes A to C used in training. Further-
more, considering this class imbalance, the dimension of the
dataset at hand (i.e. 45 features) in comparison with the num-
ber of available samples (i.e. 9065 segments) may affect the
classification task unfavourably. Reducing the dimension by ap-
plying feature subset selection methods [41] has the potential to
improve the classifier’s performance. Moreover, it is important
to mention that the Naive Bayes classifier assumes the features
to be normally distributed and conditionally independent given
a class, which is a strong assumption that does not hold for
our data. Nevertheless, studies have shown [34] that Bayesian
classifiers perform quite well in practice even when attribute
dependencies are present. Furthermore, its use is justified by the
transparent conversion from discrete to continuous-valued clas-
sification results, which was necessary for the further process-
ing. The authors are aware that the underlying class distribution
highly impacts the trained classifier in terms of prior class prob-
ability. However, the assumption having uniform class distribu-
tion is important for obtaining greatest generalization potential
with the available data. Unfortunately, there is no annotated
clinical database currently available to serve as a standard for
comparing our classification results and provide further insights
into the signal quality distribution.

Fig. 3 provides an initial intuition on the behaviour of dif-
ferent types of SQI features. From this figure it is visible that
most features produce lower values in the presence of muscular
noise, while iSQI2 and FECG-specific metrics (i.e. mxSQI ,
mpSQIb , mcSQIb and miSQI2) output higher values dur-
ing this period. On the other hand, pSQI does not detect
significant changes on the signal. All together, the resulting
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TABLE V
COMPARISON FHR ACCURACY AND PRECISION, IN TERMS OF HDR AND RMSE

HDR results (in %) RMSE results (in bpm)

Method 3 channels 4 channels 7 channels 3 channels 4 channels 7 channels

average of individual rough FHR estimates – i.e. mean (F H Rk ) 54.4± 16.2 58.5± 14.5 56.7± 13.5 15.5± 4.7 14.3±4.2 14.8± 4.0
average of individual filtered channels using KF – i.e. mean (xk ), from (3) 59.1± 14.4 63.9± 12.1 61.8± 11.5 14.4± 4.2 13.1± 3.7 13.6± 3.6
multichannel fusion using weighted average – i.e. θw

k , from (7) 61.8± 18.0 71.6± 16.6 75.0± 14.1 13.9± 5.0 11.4± 4.2 10.8± 4.0
multichannel fusion using proposed KF approach – i.e. θk , from (6) 64.2± 16.0 73.8± 15.0 75.6± 13.4 13.3± 4.6 10.8± 4.1 10.5± 4.0
theoretical best individual unfilitered channel – i.e. max / min (F H Rk ) 59.3± 17.4 69.3± 17.7 71.2± 16.7 14.2± 5.0 11.5± 4.9 11.1± 4.7
theoretical best individual KF channel – i.e. max / min (xk ) 65.0± 14.6 75.7± 13.0 77.0± 12.3 13.0± 4.5 10.1± 4.1 9.8± 4.0

Results presented as average ± standard deviation. The best mean results in each category are underlined. Theoretically best achievable results are shown at the bottom of
the table, by taking the maximum/minimum results amongst different channels for each segment using the reference.

Fig. 4. Multichannel FHR estimation by means of Kalman filtering using
one external and one internal channel. Above FHR estimation is shown
with the reference FHR ( ), estimated multichannel FHR ( ),
single channel rough FHR estimates ( and ) and the respective single
channel Kalman filtered estimates ( and ). In the middle and
below are presented the SQI and innovation values for the 2 channels
used, respectively.

continuous-valued SQI showed to be very sensitive to such arte-
facts and clearly detected the abrupt change in quality. In order
to obtain a further insight into the importance of individual
variables independent from the applied classifier, the RELIEFF
filter method [42] was applied (see Fig. 5). This algorithm, often
employed for feature selection, assigns weights to the individ-
ual features according to their class separation capabilities. The
number of nearest class hits and misses for the algorithm con-
sidered during weight computation was set to k = 50 nearest
neighbours of each class (approximately the number of obser-
vations on the lowest frequent class) and prior was defined as
uniform, so that our analysis does not depend on the presented
class distribution (as fetal signal quality may depend on several
factors, e.g. gestational week). From Fig. 5 it is evident that
time and frequency metrics (see Table II) showed little impor-
tance, which can be explained by the well-known similarities
and spectral overlap between abdominal ECG/MECG/FECG.
Detection-based algorithms such as bSQI , rSQI , cSQI and

Fig. 5. Bar graph showing the feature importance using RELIEFF. The
different background colors on the graphic denote the different groups
of SQI metrics presented in Table II, while the 10 features with highest
results are emphasized.

xSQI (particularly when using maxsearch or jqrs detectors)
were relevant. While applying bSQI , it is particularly important
to use a combination of a more and other less predictive detector,
e.g. maxsearch/wqrs (similar to the results obtained in [17]).
This result goes along with the authors’ previous works and
top scoring entry on the PCINCC 2013 [4], where features like
cSQI , xSQI , and rSQI were responsible for accurate FQRS
detections. The proposed FECG-specific features (latter group
in Fig. 5) showed modest importance. Amongst these, mpSQIb

was deemed as most important by RELIEFF in the latter SQI
category (see Fig. 5) that can be confirmed by its moderate re-
action to the presence of noise (on Fig. 3). Despite being a vital
part of machine learning, the aforementioned feature selection
step was not included into this study’s methodology because
the focus of this contribution was the development of FECG-
specific SQIs, rather than fine-tuning the classification method
applied. Moreover, such additional step would imply further as-
sumptions about the data or the classification algorithm used,
which would reduce this work’s generalizability.

The overall modest FHR accuracy results (see Table V),
demonstrate how challenging FHR estimation on clinical data
really is. Behar et al. [26] compared several extraction methods,
including TSpca , using 42 min of manually annotated abdom-
inal signals from the Physionet’s Non-Invasive Fetal Electro-
cardiogram Database [31] and 40 min of a private commercial
database using a scalp electrode recording as reference. Results
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Fig. 6. HDR and RMSE average results for FHR estimation after ex-
cluding segments with SQI lower than a given threshold (x-axis). Above
the amount of data loss, in the middle HDR and below RMSE results for
the remaining segments.

for FHR accuracy applying TSpca were 68.7 % and 73.9 % for
each dataset (using a ±5 bpm acceptance interval). Differently
from many FHR studies that regard periods of “signal loss”, in
this contribution, segments/recordings with general bad quality
were not discarded. In long-term recording scenarios, removing
portions of data with bad signal quality from further analy-
sis is desirable because FHR estimates during periods of low
SQI would disregard the current measurements and follow the
filter’s dynamic equations (first-order AR process), therefore,
delivering unreliable results. The manner with which selection
of inadequate segments may be performed is another complex
topic, which deserves its own study. Nonetheless, Fig. 6 pro-
vides initial insights on the potential that such application may
have.

The multichannel estimation of FHR using Kalman filter
showed the best performance both in terms of HDR and RMSE
(see Table V). The filter’s performance monotonically grew with
the increase in the number of available leads, which shows how
powerful the method is in incorporating additional information.
Meanwhile, the average result from single channel estimation
(with or without KF) does not show this trend. Large differences
were found between the 3 and 4-lead (i.e. internal or external)
schemes. The latter performed better, which can be attributed to
a lower presence of noise for greater inter-electrode distance be-
tween exploring and indifferent electrodes. After the calibration
procedure, the smaller value obtained for the initial observa-
tional noise covariance matrix R0 = 10−3 compared to Q0 = 1
shows that the filter tends to “trust” its observations associated
with the SQI metrics. Additionally, Fig. 4 provides a qualita-
tive example using both external and internal leads with varying
channel qualities. As it can be seen from this figure, the individ-
ual rough FHR estimates are inherently inaccurate. However,
if the quality is sufficient in some channels, the proposed KF
approach is able to reliably reflect the true FHR. Therefore, it
is clear that the KF innovation in association with the proposed

SQI metrics is able to improve FHR estimation, as it did in
estimating adult heart rates [10].

In this work, we implemented multiple KFs running paral-
lel for estimating each of individual channel FHR. The multi-
channel fusion was considered as an additional step following
this single-channel estimation. Oster and Clifford [11] proposed
combining both single-channel FHR estimation and data fusion
steps into a single step, rather than implementing multiple KF
and combining those later on. This is performed by considering
the consensus amongst those different sensors as an additional
Kalman state and allowing the transition and observational ma-
trices (Ak and Hk ) to be time-variant and dynamically include
the previously defined weighting factors σ2

k,s (see (6)).

V. CONCLUSION

In this contribution multiple fetal SQI metrics were inves-
tigated and applied in a Naive Bayes classifier for estimat-
ing the quality of fetal signals in 5 s segments. This classifier
was then used in association with a Kalman filter algorithm to
improve online FHR estimation from multichannel non-invasive
fetal ECG recordings. Results indicate a set of SQI features that
have more importance in our classification and suggests that
the proposed SQI-Kalman filter fusion produces accurate FHR
estimates. Furthermore, for instigating reproducible research in
NI-FECG field, the attained classifier as well as SQI algorithms
used in this study were released as part of the FECGSYN tool-
box under http://www.fecgsyn.com/.
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