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Abstract
Over the past decades, many studies have been published on the extraction 
of non-invasive foetal electrocardiogram (NI-FECG) from abdominal 
recordings. Most of these contributions claim to obtain excellent results in 
detecting foetal QRS (FQRS) complexes in terms of location. A small subset 
of authors have investigated the extraction of morphological features from 
the NI-FECG. However, due to the shortage of available public databases, the 
large variety of performance measures employed and the lack of open-source 
reference algorithms, most contributions cannot be meaningfully assessed.

This article attempts to address these issues by presenting a standardised 
methodology for stress testing NI-FECG algorithms, including absolute data, 
as well as extraction and evaluation routines. To that end, a large database 
of realistic artificial signals was created, totaling 145.8 h of multichannel 
data and over one million FQRS complexes. An important characteristic 
of this dataset is the inclusion of several non-stationary events (e.g. foetal 
movements, uterine contractions and heart rate fluctuations) that are critical 
for evaluating extraction routines. To demonstrate our testing methodology, 
three classes of NI-FECG extraction algorithms were evaluated: blind 
source separation (BSS), template subtraction (TS) and adaptive methods 
(AM). Experiments were conducted to benchmark the performance of eight 
NI-FECG extraction algorithms on the artificial database focusing on: FQRS 
detection and morphological analysis (foetal QT and T/QRS ratio).
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The overall median FQRS detection accuracies (i.e. considering all non-
stationary events) for the best performing methods in each group were 
99.9% for BSS, 97.9% for AM and 96.0% for TS. Both FQRS detections and 
morphological parameters were shown to heavily depend on the extraction 
techniques and signal-to-noise ratio. Particularly, it is shown that their 
evaluation in the source domain, obtained after using a BSS technique, should 
be avoided. Data, extraction algorithms and evaluation routines were released 
as part of the fecgsyn toolbox on Physionet under an GNU GPL open-source 
license. This contribution provides a standard framework for benchmarking 
and regulatory testing of NI-FECG extraction algorithms.

Keywords: foetal ECG (FECG), foetal QRS (FQRS), morphological 
analysis, benchmark, blind source separation (BSS), template subtraction, 
adaptive filtering

(Some figures may appear in colour only in the online journal)

1. Introduction

Cardiotocography (CTG) has been the standard for assessing foetal cardiac activity since the 
1960s. Despite its wide usage, randomised medical studies (Samueloff et al 1994, Bailey 2009) 
have casted doubt on CTG’s efficacy in improving neonatal outcome. The foetal electrocardio-
gram (FECG), on the other hand, presents a viable alternative that can be recorded invasively 
or non-invasively. Invasive FECG technology uses a needle-like electrode attached to the foe-
tal scalp, however, this technique presents three major drawbacks: (1) restricted usability (dur-
ing labour only); (2) associated risk of infection; and (3) reduced number of available leads 
(usually one—which prevents a three-dimensional analysis of the myocard electrical activity 
(Behar et al 2014b)). The latter technique, i.e. non-invasive FECG (NI-FECG), makes use of 
surface electrodes placed onto the maternal abdomen and is usually applied from 20th week 
of gestation onwards. NI-FECG’s undemanding recording setup comes at cost of a generally 
lower signal-to-noise ratio (SNR) for the FECG signal, since FECG overlaps both in time and 
frequency domain with the maternal ECG (MECG) and various noise sources (e.g. muscular 
artefacts). Extracting the foetal signal from the abdominal mixture remains a challenging task, 
which has hindered NI-FECG’s further usage in the clinical practice.

A number of methods have been proposed to process abdominal mixtures (see Behar 
et al (2016) for a detailed review). However, due to the lack of annotated public databases and 
defined protocols for assessing these algorithms, available studies may be biased and of ques-
tionable reproducibility. The PhysioNet/Computing in Cardiology Challenge 2013 (Clifford 
et al 2014), here referred to as ‘Challenge’, addressed the topic of NI-FECG extraction. A few 
records of Challenge’s database consisted of simulated abdominal signals using the synthetic 
foetal ECG synthetic simulator (  fecgsyn—Behar et al (2014c)).

The present contribution aims at providing a standardised evaluation procedure for 
NI-FECG signal processing algorithms. For this purpose, a large simulated dataset was gener-
ated using the fecgsyn and three experiments were conducted: (1) assessing how the success 
of blind source separation algorithms is changing with the number of input recorded abdomi-
nal channels; (2) benchmarking a series of open-source state-of-the-art extraction methods, 
in terms of FQRS detection accuracy; (3) investigating the accuracy of morphological para-
meters evaluation (i.e. foetal QT-interval and T/QRS ratio) in the presence of non-stationarities 
and using different separation techniques. For the sake of standardisation and reproducibility, 
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the extraction routines, simulated data and the complete evaluation protocol used in this 
contrib ution were made freely available under a GNU GPL license5. The framework extends 
our previous works on the fecgsyn, offering fellow researchers uncomplicated data generation, 
evaluation and benchmarking of tools for evaluating their new algorithms.

2. Methods

2.1. Data simulation

Simulated data was generated using the fecgsyn (Behar et al 2014c). The fecgsyn is an exten-
sion of the original ECG model introduced by McSharry et al (2003) and later adapted for 
NI-FECG by Sameni et al (2007). The simulator represents maternal and foetal hearts as 
punctual dipoles with different magnitudes and spatial positions. Differently from the previ-
ous works on the simulator, this current version obtains foetal–maternal mixtures by treating 
each abdominal signal component (e.g. foetal/maternal ECG or noise signals) as an individual 
source, whose signal is propagated onto the observational points (‘electrodes’, see figure 1). 
This improved encapsulated design proposed by Behar et al (2014c), enables the modelling of 
a number of non-stationary physiological phenomena that affect the morphology and dynam-
ics of the abdominal ECG by rotating, translating and modulating each available source. In 
this study, we are particularly interested in investigating the output of NI-FECG processing 
methods in the presence of such non-stationarities.

A total of seven physiological events (i.e. described in table 1) was considered. For each 
case, the heart dipole models (for mother and foetuses) were generated ten times by ran-
domly selecting one of the nine vectorcardiograms available in the fecgsyn toolbox. Five 
different levels of additive noise were included (0, 3, 6, 9, and 12 dB). Simulations were 
repeated five times, re-generating noise signals on every iteration, to obtain a more repre-
sentative database. Overall a total of × × × =7 10 5 5 1750 synthetic signals were produced. 
Each simulation consisted of 5 minutes abdominal mixtures projected onto 34 channels 

5 Available at www.physionet.org/physiotools/ipmcode/fecgsyn/.

Figure 1. Side (a) and upper (b) view the of volume conductor. Positions for foetal 
(small sphere, blue) and maternal (larger sphere, red) hearts are shown.
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(32 abdominal and two MECG reference channels), totaling 145.8 h of multichannel data and 
1.1 million foetal peaks. Several parameters were required whilst generating these events. 
The most relevant ones are summarised in table 2, which summarises the ranges for the most 
relevant ones used in this study (for more details the reader may refer to Behar et al (2014c)).

2.2. NI-FECG extraction techniques

Despite the large number of NI-FECG extraction methods that have been proposed in the 
literature, very few studies provide open-source code for their algorithms. The Challenge pro-
moted a considerable advance in the field by making a dataset and evaluation algorithms 
freely available, while some participants could voluntarily open-source their own code. Aside 
from the Challenge, another valuable source for NI-FECG algorithms is the Open-Source 

Table 1. Scenarios used for simulating pregnancy’s pathophysiological events.

Case Description

Baseline Abdominal mixture (no noise or events)
Case 0 Baseline (no events)  +  noise
Case 1 Foetal movement  +  noise
Case 2 MHR /FHR acceleration / decelerations  +  noise
Case 3 Uterine contraction  +  noise
Case 4 Ectopic beats (for both foetus and mother)  +  noise
Case 5 Additional NI-FECG (twin pregnancy)  +  noise

Note: noise refers to muscular noise added as two independent sources situated on the lower half 
of the conductor volume. MHR/FHR represent the maternal/foetal heart rates.

Table 2. Model parameters used within this work, based on Behar et al (2014c).

Parameters Definition Range/type Unit

fs Sampling frequency 250 Hz

SNRfm Signal to noise ratio of the 
FECG relative to MECG

( )−N 9, 2 dB

SNRmn Signal to noise ratio of the 
MECG over noise

{0, 3, 6, 9, 12} dB

f hr Foetal heart rate ( )N 135, 25 bpm

mhr Maternal heart rate ( )N 80, 20 bpm

facc Foetal heart rate acceleration/
deceleration

( )N 30, 10 bpm

macc Maternal heart rate acceleration/
deceleration

( )N 20, 10 bpm

fres Foetal respiration frequency ( )N 0.90, 0.05 Hz

mres Maternal respiration frequency ( )N 0.25, 0.05 Hz

mheart Maternal heart position in polar 
coordinates

{ π2 /3, 0.2, 0.4} —

f heart Foetal heart position in polar 
coordinates

{U(- /π 10, /π 10), U(0, 0.1)  +  0.25, 
U(-0.4, -0.2)}

—

Note: ( )µ σN , 2  represents a normal distribution with mean μ and variance σ2 and ( )U a b,  an uniform distribution 
between a and b. mheart was allowed to vary its position up to 1% of the conductor’s volume in any direction.
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Electrophysiological Toolbox (OSET) (Sameni 2010), which contains several algorithms for 
filtering, detecting and extracting foetal signals and was released under a GNU GPL license. 
In this contribution, some exemplary techniques have been included as a benchmark for other 
researchers, who can use them to compare their own algorithmic performance. In this work, 
we have selected extraction algorithms based on the following criteria:

(i) algorithm availability: in order to enable the integration of those algorithms in the open-
source toolbox, extraction methods should be freely available under a license compatible 
with the GNU GPL v.3.0;

(ii) performance in the Challenge: the top-scoring entries in the Challenge were considered 
since they provided a fair comparison between several researchers and reflect the state-of-
the-art of NI-FECG analysis;

(iii) input restrictions: aiming at a fair comparison between the algorithmic requirements, 
extraction methods were provided with a maternal QRS (MQRS) reference, up to one 
MECG reference lead and one or more preprocessed abdominal channels;

(iv) output restrictions: we focused on the best possible results for every extracted channel/
component. Therefore, any channel/component selection steps were not taking into con-
sideration when performing FQRS detection or morphological analysis;

(v) initialisation window: in this work, we allowed all extraction methods an initialisation 
time of up to 60 s. After this period, algorithms can be run online. For the sake of an 
objective comparison, no offline smoothing filter was applied.

Extraction methods may be divided into four main categories, namely blind source separa-
tion (BSS), template subtraction (TS) and adaptive methods (AM), or combination of those 
(so-called hybrid methods). The following sections  briefly describe those classes of algo-
rithms with exemplary applications from the literature.

2.2.1. Blind source separation. BSS techniques attempt to decompose the multichannel 
abdominal mixture into different components without a priori knowledge about the signal 
itself. In contrast, the sources present in the mixture are separated according to the statistical 
properties of the data, e.g. correlation or independence. Some of the widely used BSS methods 
in NI-FECG analysis are principal component analysis (PCA—Bacharakis et al (1996)), sin-
gular value decomposition (Callaerts et al 1990, Kanjilal et al 1997) and independent comp-
onent analysis (ICA—Zarzoso et al (1997), De Lathauwer et al (2000)). In case additional 
information is required (e.g. MQRS locations) methods are referred to as semi-BSS, e.g. the 
periodic component analysis (πCA—Sameni et al (2008)). In this contribution, ICA and PCA 
were applied due to their recurrent usage in NI-FECG analysis, including top-scoring entries 
in the Challenge (Behar et al 2014a, Varanini et al 2014).

PCA is a simple and non-parametric method that aims to identify a meaningful basis to 
re-express a data set. PCA is often used for visualisation, dimensionality reduction and source 
separation. It assumes linearity (i.e. the mixture of signals are a linear combination of the 
sources), that (large) variance represent interesting structure (i.e. assessing second-order sta-
tistics) and that the different available sources can be well separated by projecting those onto 
the orthogonal principal components. These assumptions enable an analytical solution to the 
PCA problem (Shlens 2014).

ICA was introduced by Herault and Jutten (1986), later being more clearly stated by 
Comon (1994). The purpose of ICA is to find a linear transformation that minimises the 
statistical dependence between the components present in the given input data. In the con-
text of NI-FECG, ICA attempts to obtain a demixing matrix that separates the multivari-
ate abdominal signal into its additive sub-components, including foetal and maternal ECGs. 
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In this contribution, two different ICA algorithms were evaluated, namely JADE (Cardoso 
and Souloumiac 1993) and FAST-ICA (Hyvärinen 1999). JADE was applied using its default 
parameters. FAST-ICA’s maximal number of iterations was set to ×N1000 ch (where Nch is the 
number of channels), using a hyperbolic tangent non-linearity contrast function. Both sym-
metric and deflationary FAST-ICA approaches were evaluated.

BSS techniques generally assume that the signal mixture is stationary, i.e. the statistical 
properties of the signal do not vary over time. For clarity, BSS extraction of the NI-FECG using 
ICA and PCA are further referred to as BSSica and BSSpca, respectively. The mixing matrices 
for BSS techniques were estimated on every 60 s and used for processing the data in the follow-
ing 60 s. This was done in order to allow the methods to partially cope with non-stationarities 
and be in conformity with the algorithm initialisation window requirement imposed.

2.2.2. Template subtraction. TS rely on building an average MECG cycle (the so-called ‘tem-
plate’) by means of coherent averaging several maternal beats. This procedure heavily depends 
on accurate maternal QRS detection. After being constructed, templates are adapted and sub-
tracted from each maternal cycle, leaving residual FECG and noise. A variety of TS techniques 
have been described in the literature (Cerutti et al 1986, Martens et al 2007, Ungureanu et al 
2007, 2009, Vullings et al 2009, Di Marco et al 2013, Zaunseder et al 2013, Andreotti et al 
2014, Behar et al 2014a, Lipponen and Tarvainen 2014). In this contribution, three methods 
were used. The first, TSc (Cerutti et al 1986), simply adapts the template to each beat using a 
scalar gain. The TSc was used during the Challenge by Podziemski and Gierałtowski (2013), 
Behar et al (2014a). The second, TSpca (Kanjilal et al 1997), stacks MECG cycles, selects some 
of the principal components and, next, a back-propagation step takes place on a beat-to-beat 
basis, thus producing MECG estimates every cycle. TSpca was applied during the Challenge by 
Behar et al (2014a) and Lipponen and Tarvainen (2014). The last method, i.e. TSekf, is based 
on the extended Kalman filter as introduced for NI-FECG extraction by Sameni (2008). In 
contrast to the previous two methods, TSekf performs a continuous and adaptive sample-by-
sample estimation of the MECG. Compared with the other approaches, TSekf is more adaptive, 
thus theor etically allowing a better estimation of the MECG in highly non-stationary scenarios. 
TSc and TSpca implementations were obtained from Behar et al (2014a), templates were built 
using 20 cycles and updated on every cycle. Meanwhile, the presented implementation of TSekf 
was adapted from the Challenge entry by Andreotti et al (2014), based on the works of Sameni 
(2008), (2010), and uses the first 30 MECG cycles for initialisation.

2.2.3. Adaptive methods. AM make use of one (or more) maternal reference channel(s), in 
order to estimate its projection onto each abdominal signal. Some of the methods that have been 
proposed in the literature include Strobach et al (1994), Widrow et al (1975), Rodrigues (2014), 
Behar et al (2014b), Ma et al (2016). In this work, three AMs using a single reference lead (chan-
nel 33—see figure 1) were applied: the least mean square (AMlms—Widrow et al (1975)), the 
recursive least square algorithm (AMrls) and the echo state neural network (AMesn—Behar et 
al (2014b)). AMlms and AMrls assume a linear relationship between reference and abdominal 
projected MECG, while AMesn handles non-linearities. AM were not widely applied during the 
Challenge due to the lack of MECG reference leads. One exception was Rodrigues (2014), who 
made use of a Wiener filter, using three out of the four available abdominal leads as reference. 
Due to the lower scores obtained during the Challenge and multi-lead reference scheme, this 
method was excluded from this analysis. Moreover, Ma et al (2016) recently proposed multi-
reference AMs which were outperformed by the AMesn. An extensive review and performance 
evaluation on AM algorithms for NI-FECG extraction can be found in Behar et al (2014b), whose 
algorithmic implementation were adopted in this contribution for AMlms, AMrls and AMesn.
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2.2.4. Hybrid extraction. Hybrid methods are composed by combining methods from differ-
ent classes (as presented in the previous sections). One example is the deflation procedure 
introduced by Sameni et al (2010). This general procedure transforms multichannel abdomi-
nal signals into the source-domain (by means of any BSS method), next the MECG interfer-
ence is removed from the source-domain components by means of TS techniques, lastly, 
the denoised sources are back-propagated to the observational domain. This procedure is 
repeated a number of times until the output signals satisfy some predefined measure of signal 
separability. Sameni et al (2010) themselves applied the framework in NI-FECG extraction 
using a πCA and TSekf combination. These technique are out of the scope of the comparison 
performed in this paper due its low scores obtained during the Challenge (Haghpanahi and 
Borkholder 2014).

2.3. Statistical assessment

The fecgsyn toolbox provides the exact locations of the FQRS complexes as well as the prop-
agated FECG signals, i.e. prior to the mixture with MECG and other noise sources. Therefore, 
the toolbox enables the assessment of both FQRS detection accuracy and the extraction 
method’s ability to conserve FECG’s morphological features. Both aspects were exploited 
throughout this work, whose respective performance evaluation are described in the following 
sections.

2.3.1. FQRS detection. In order to detect FQRS complexes, an adapted version (Behar et al 
2014a) of the Pan and Tompkins algorithm (Pan and Tompkins 1985) was used. In accordance 
with the (ANSI/AAMI/ISO EC57 (1998/(R)2008)) guideline, sensitivity (SE) and positive 
predictive value (PPV) were reported as:

=
+

=
+

SE
TP

TP FN
PPV

TP

TP FP

where TP, FP and FN are the number of true positives (correctly identified FQRS), false pos-
itives (falsely detected non-existent peaks) and false negatives (missed FQRS detections), 
respectively. The classical adult acceptance interval6 is 150 ms (ANSI/AAMI/ISO EC57 
(1998/(R)2008)), however, to account for the higher FHR a matching window of 50 ms was 
used as in Andreotti et al (2014), Behar et al (2014b) and Zaunseder et al (2013). To sum-
marise the results in the context of binary classification the F1 accuracy measure, firstly sug-
gested for FQRS detection by Behar et al (2014b), was used. F1 is defined as:

= ⋅
⋅
+

=
⋅

⋅ + +
F 2

PPV SE

PPV SE

2 TP

2 TP FN FP
1

notice that FN and FP equally affect the F1 accuracy measure.
Beyond the presented metrics for evaluating FQRS’s window-based accuracy (i.e. SE, PPV 

and F1), a distance measure is necessary to discriminate between precise and imprecise detec-
tions, i.e. if any jitter occurs. This information is not captured by window-based metrics. In 
order to measure this distance, the mean absolute error (MAE) was used. MAE consists of the 
absolute time difference between the reference annotation (di) and detected annotation (d̂i). 
Only annotations considered as TP were considered for the MAE calculation, to make the 
criterion independent from the detection accuracy. Therefore, MAE is expressed as:

6 i.e. the temporal difference allowed between an existent beat and an algorithmic detection, in which the latter is 
counted as correct detection (TP).
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2.3.2. Morphological analysis. Several studies and commercial NI-FECG equipment claim 
to obtain accurate FHR tracings (Behar et al 2016). However, beat-to-beat FQRS detection 
is only part of the potential benefits of NI-FECG over CTG. In adult electrocardiography, 
changes in the QT-interval are associated with myocardial ischemia (Murabayashi et al 2002) 
and sudden cardiac death (Piccirillo et al 2007). Early works on extracting morphological 
information from NI-FECG recordings have been published by Behar et al (2014d), Clif-
ford et al (2011) and Reinhard et al (2014). These recent advances are very exciting, but the 
studies are still limited in number, population size and (patho) physiological conditions. To 
date, the STAN monitor (Neoventa Medical, Mölndal, Sweden) is the only commercial equip-
ment performing morphological analysis of the foetal ECG in clinical environments (Clifford 
et al 2014). STAN provides FHR readings, a proxy measure for the ST segment deviation 
(the T/QRS amplitude ratio) and evaluates whether biphasic ST segments are present or not 
(Wolfberg 2012). However, for NI-FECG recordings, it is unclear how robust these mea-
sures are, particularly when accompanied by: (i) noise/artefacts; (ii) foetal movements; 
(iii)  different electrode configurations; (iv) undesired distortions caused by extraction algo-
rithms. Moreover, even when using the STAN as silver standard, it is not possible to assess 
how well the morphology of the foetal signal is preserved. This because the reference (inva-
sive FECG) is based on a different lead, therefore, representing another projection of the 
cardiac electrical activity.

In this contribution, a standard analysis of morphology extraction techniques using simu-
lated data is presented. The proposed standard enables research groups to directly compare 
their methodologies. For this purpose, two morphological parameters (see figure  2) were 
assessed: foetal QT (FQT) interval, i.e. the distance between Q-onset and T-offset, and the 
T/QRS ratio (FTQRS), which is the height of the T-peak compared to the isoelectric line over 

Figure 2. Experiment 3 schematics showing: (a) exemplary template beat with QT 
interval, foetal T-wave amplitude (FTh), FQRS amplitude and the defined isoelectric line 
(starting 185 ms after R-peak); (b) signal processing steps for morphological analysis.
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the QRS amplitude (shown in figure 2). Details of the algorithmic implementation of the men-
tioned measures are described in the following section.

2.4. Experiments

Three experiments were conducted and are explained in detail within this section. Experiment 
1 evaluated the performance of BSS techniques regarding the number of abdominal channels 
used and the presence of non-stationarities. Experiment 2 assessed FQRS detection accuracy 
for each of the selected NI-FECG extraction technique. Experiment 3 analyzed the impact of 
noise and the extraction procedures on the estimation of morphological parameters, such as 
FQT interval and FTQRS ratio.

Abdominal signals were preprocessed using low and high-pass Butterworth filters. A low-
pass cutoff frequency of 100 Hz was used in all experiments. The first two experiments used 
a third-order low-pass and fifth-order high-pass filters with cutoff at 3 Hz. Meanwhile experi-
ment 3 made use of a seventh-order low-pass filter and eighth-order high-pass filter with cut-
off at 0.5 Hz, in order to preserve most of the foetal T-wave (both with 20 dB attenuation at the 
stop-band and 0.1 dB gain at the pass-band). The high-pass cutoff frequency applied in experi-
ment 3 as well as the choice for zero-phase filtering were based on Kligfield et al (2007).

2.4.1. Experiment 1. The first experiment focused on preliminary considerations relevant to 
the usage of BSS techniques in the following experiments. In this experiment BSSpca and BSSica 
were applied, foetal R peak detection results were reported using the F1 measure. Several com-
binations of channels were used comprising two (11 and 22), four (1, 11, 22 and 32), six (1, 8, 
11, 22, 25 and 32), eight (1, 8, 11, 14, 19, 22, 25 and 32) and 16 (1, 3, 6, 8, 9, 11, 14, 16, 17, 19, 
22, 24, 25, 27, 30 and 32), as depicted in figure 1. The pre-selected electrode configurations 
were designed to span across the matrix of electrodes presented. When increasing the number 
of inputs (e.g. from two to four electrodes) all the channels from the previous iteration were 
maintained. This was done to avoid that our results depend on the quality of individual leads, 
i.e. if a new ‘geometry’ would have been chosen for each iteration, information would depend on 
other factors than only the number of electrodes. In order to demonstrate the highest achiev-
able accuracy by each individual technique, the channel (or ‘source’) with highest F1 was 
selected for every 1 min epoch and gross statistics were reported. The evaluation process pre-
sented does not take into account the permutation indeterminacy problem (Acharyya et al 
2010), which is characteristic of BSS techniques. As a consequence, the challenge of comp-
onent selection that affects the benchmark results was not addressed.

2.4.2. Experiment 2. This experiment consisted of comparing different NI-FECG extraction 
techniques (described in section 2.2) in stationary and non-stationary scenarios by means of 
F1 and MAE. The experiment aims at obtaining an overview of how the presence of non-
stationary mixtures affect extraction methods. The number of electrodes, as well as the imple-
mentation of the BSSica algorithm, used in this analysis were decided considering results from 
the previous experiment. Single-lead extraction methods (i.e. TS and AM) were applied to 
all available leads. In order to produce a fair comparison between BSS and the remaining 
techniques (TS and AM), as in experiment 1, results only consider the lead/component with 
the highest F1. Gross statistics were calculated in a similar fashion to the first experiment for 
evaluating agreement (F1) and distance (MAE) measures.

2.4.3. Experiment 3. This last experiment aims to assess how accurate morphological fea-
tures (described in section 2.3.2) can be obtained. The experiment took into consideration the 
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presence of noise and effects of the different NI-FECG extraction methods on the estimated 
morphological measures. In this experiment, all extraction methods from experiment 2 were 
used, since an accurate FQRS detection does not necessarily imply that the FECG morph-
ology is best preserved. For providing a meaningful pathophysiological analysis and clearer 
presentation of the results, we concentrate on a subset of the database containing Baseline and 
case 0 (noise only). These cases are similar in the sense that the Baseline can be considered as 
a case 0 with infinite SNR, since no noise is present.

Figure 2 depicts the evaluated features and signal processing key-steps for the morphologi-
cal analysis. After performing the extraction (analogously to experiment 2 with a 0.5–100 Hz 
pass-band filter), foetal ECG templates were built for each channel using the FQRS refer-
ence annotations. The reference FQRS was used, in order to make this experiment independ-
ent from the FQRS detection accuracy obtained throughout the previous two experiments. 
Templates were built on a minute basis, hence five templates per channel were produced for 
each recording. These templates were created as in Oster et al (2015), which can be sum-
marised as: (i) derivation of phase information [ ]π π∈ − ,  with QRS peak assigned to /π− 3; 
(ii) individual beats are stretched/compressed into a pre-defined number of bins (250 bins); 
(iii) beats were clustered by calculating the normalised cross-correlation between individual 
beats; (iv) the cluster with highest number of members was selected; (v) beats within this clus-
ter were averaged, resulting in a template. The most relevant parameters used for the template 
generation are the minimal number of cycles for a mode to be considered relevant (defined as 
30) and the threshold for the correlation coefficient (starting at 0.90, decrementing with a 0.05 
step and a minimal value of 0.60). Similar approaches have been proposed in the literature 
(Lagerholm et al 2000, Christov et al 2006, Starc and Schlegel 2006) to minimise averaging 
errors due to ectopic beats or false positive detections. If a template could not be built for 
either test or reference signal, the segment was discarded.

Each template was segmented using the ecgpuwave (Jané et al 1997), which is freely 
available in the WFDB toolbox (Goldberger et al 2000, Silva and Moody 2014). ecgpuwave 
attempts to return the fiducial points, i.e. locations for Q-onset, T-offset as well as T-peak. 
Reference FQRS, reference and extracted FECG signals were given as input to ecgpuwave. 
ECG signals were upsampled at 500 Hz and normalised to 2 mV to match ecgpuwave’s adult 
ECG parametrisation for sampling frequency and amplitude. A simple heuristic treatment was 
given to ecgpuwave’s output as follows: (i) if any of these fiducials are missing for a given 
template, no morphological analysis was carried out; (ii) if the T-wave was detected as bipha-
sic, the T-peak with maximum absolute value was selected; (iii) templates with FQT  <  100 ms 
or FQT  >  500 ms were excluded due to physiological infeasibility (Behar et al 2016). The iso-
electric line, required for determining foetal T-wave height (FTh), was defined as the median 
amplitude of the segment starting 185 ms after the R-peak and finishing at the end of the 
template (see figure 2) as in Clifford et al (2011). This alternative definition is due to the gen-
erally low FTh amplitude. Lastly, in order to assess the fidelity of the extracted morphological 
parameters, the absolute error between reference and extracted FECG was evaluated using 

FQT (
∼
FQT) and the FTQRS ratio (

∼
FTQRS), see figure 2.

3. Results

3.1. Results for experiment 1: BSS techniques and number of sources

Preliminary tests showed a continuous decrease in F1 when the number of input sources Nch 
exceeds eight. This decrease in accuracy is justifiable, since ICA assumption of square mixing 
does not hold when the number of channels is greater than the number of underlying sources. 
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The issue of determining the number of optimal underlying sources, referred to as model order 
selection problem, is well documented in the literature (Penny et al 2000, James and Hesse 
2005). In order to partially overcome this difficulty, a PCA dimension reduction step was applied. 
The PCA step was designed to only keep principal components featuring 99.9% of the data 
variance, thus disregarding components with small eigenvalues. For instance, by including the 
dimension reduction step and using =N 16ch  average ICA, F1 increased from 95.3% to 97.3%. 
In this example the number of final components ranged between three and eight depending on 
the dataset and simulated case.

Figure 3 shows the F1 results of BSSpca and various BSSica algorithms with respect to 
the number of available abdominal channels. Best average results using eight channels were 
BSSpca (97.40%), BSSica with FAST-ICA (97.22%—both deflationary and symmetric) and 
BSSica with JADE (97.46%). For this reason, JADE was selected to represent BSSica tech-
niques in experiments 2 and 3. Since for ⩾N 8ch , little increase in F1 was achieved, further 
experiments only used the 8 channels electrode configuration.

3.2. Results for experiment 2: Benchmarking of various extraction methods

A case-by-case overview on the performance of each method is shown in table 3. The highest 
median F1 for each category of methods was achieved by BSSica (99.9%), AMesn (97.9%) and 
TSpca (96.0%). MAE results for most methods were similar, except for TSekf, which obtained 
the best median results with 3.8 ms. Figure 4 provides detailed view considering both metrics 
(F1 and MAE) for each technique, cases and SNR levels. Using a Kruskal–Wallis test, we 
found a significant effect of the SNR for most of the methods (see figure 4). Furthermore, by 
using a two-tailed Friedman test we evaluated the effect of the different cases and methods 
considering each SNR level separately. Regarding F1, low SNRs (i.e. {0, 3} dB) exhibited 
extremely significant ( p  <  0.001) differences between cases; highly significant ( p  <  0.01) 
for intermediate SNRs ({6, 9} dB); whereas for a high SNR (12 dB) no significant difference 
was found ( p  >  0.05). Regarding MAE, extremely significant differences were found in most 
SNR levels ({0, 6, 9, 12} dB) aside from for =SNR 3 dB, where it was highly significant. 

Figure 3. BSSpca and BSSica performance with respect to the number of abdominal 
channels. ICA’s performance was assessed using two different algoritmic implementations 
(JADE and FAST-ICA). Two variants of FAST-ICA, namely symmetric or deflationary, 
were evaluated, median results were very similar for these variants. A PCA dimension 
reduction step was used before the usage of BSSica, as specified in section 2.4.1.
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Similarly, the effects of different methods were tested and indicated extremely significant dif-
ferences on every SNR level for both F1 and MAE. At last, a post hoc test was performed using 
the Sign test for evaluating paired differences between methods (shown in figure 5).

Figure 4. Detailed F1 results for experiment 2 using different extraction methods. For 
each case (x-axis) there are five boxplots, one for each SNR level (improving from left 
to right), portrayed using different colour contrasts (the darker its contrast, the higher 
is the SNR). A Kruskal–Wallis test was performed to evaluate statistically significant 
differences across different SNR levels, where ∗ indicates p  <  0.05, *** p  <  0.01 and 
*** p  <  0.001. Outliers were omitted for visualisation purposes. Bas = baseline case; 
(a) BSSica; (b) BSSpca; (c) TSc; (d) TSpca; (e) TSekf; (f) AMlms; (g) AMrls; (h) AMesn.
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Figure 5. Post hoc analysis for experiment 2, performed using the Sign test across 
extraction methods. The first row shows tests regarding F1, while the second MAE. 
For this analysis, the Baseline case was excluded due to its independence of the 
SNR level. Black squares accuse highly significant differences ( p  <  0.01) and white 
non-significant ( p  >  0.5). (a) SNR = 00 dB. (b) SNR = 03 dB. (c) SNR = 06 dB. 
(d) SNR = 09 dB. (e) SNR = 12 dB.
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3.3. Results for experiment 3: morphological analysis

Figure 6 shows exemplary selected independent components (output from BSSica) around 
segments where the mixing matrix was updated. The dataset presented in this figure includes 
a highly non-stationary event (case 1—foetal movement) and demonstrates the expected dif-
ficulties of analysing the morphology in case such non-stationarities would to be considered 
in our morphological analysis. Due to the current state of signal processing techniques to 
foetal morphological analysis, several beats were excluded either during template generation, 
segmentation using ecgpuwave or due to distortions by the extraction methods. The percent-
age of excluded beats increased with an decrease in the SNR level ranging from 8 to 78% for 
TS methods, 19 to 48% for AM, meanwhile it was relatively constant for BSS (14–20%). For 
performing a fair comparison on the morphological trustworthy, only segments on which tem-
plate beats could be obtained across all methods were used in our further analysis. Therefore, 
the number of usable beats monotonically decreased from 69.7% on the baseline case to 
11.6% on case 0 (with 0 dB noise).

Figure 7 exhibits the correlations between FQT intervals and FTQRS obtained in the FECG 
reference and extracted channels in the presence and absence of noise. In this figure the meth-
ods with best coefficient of determination (r2) from each class of methods are presented. The 
median FQT/FTQRS was taken across all channels and segments which could be obtained for 

all methods. An overview on the results in terms of 
∼
FQT and 
∼
FTQRS for different methods, 

SNR levels and cases (baseline and case 0) is presented in figure 8. Similarly to the analysis in 
the previous experiment, the difference between median results were statistically tested (see 
figure 8). In this figure, a Kruskal–Wallis test was performed in evaluating if differences in 

the median 
∼
FQT and 
∼
FTQRS results for the various SNR levels were significant. It has to be 

kept in mind that the percentage of missing templates due to failed segmentation or failure in 
construction is not represented on these plots and increase with a decreasing SNR.

Figure 6. Two exemplary segments are portrayed during which BSSica’s mixing 
matrix is updated (i.e. at 60 s and 180 s—dashed line) for a dataset containing foetal 
movement. Depicted above are the abdominal mixtures for channel 14, below are the 
selected components with highest F1, eight channels were used as input. The plots on 
the first row depict abdominal mixture and FQRS locations (marked with ○), the ones 
in the inferior row show the selected BSSica components.
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4. Discussion

4.1. Experiment’s results

In experiment 1, BSSica showed superior F1 results for a small number of channels than BSSpca 
(see figure 3). Similar findings using real data were obtained by Behar et al (2014a), where 
ICA outperformed PCA’s FQRS detection accuracy by 10%. Moreover, JADE produced 
slightly better results than FAST-ICA. However, as the number of channels increases, part-
icularly for ⩾N 16ch , PCA’s average accuracy steadily increased, indicating a decrease in 
the number of outliers. This consistent increase on average performance by PCA might be 
due to the energy threshold chosen for the dimension reduction step, i.e. a fixed threshold at 
99.9% of the data’s variance might provide adequate performances for eight channels but not 
for ⩾N 8ch . The results for all BSS methods drastically improved by using >N 2ch . This out-
come suggests that by increasing Nch, one increases the chances to find a FECG component. 
An important consideration was the dimensionality reduction step. This step substantially 
improved the convergence of the FAST-ICA algorithm and promoted an increase ICA’s per-
formance for >N 8ch  (instead of a sharp decrease as preliminary tests have shown). Therefore, 
this highlights the fact that applications using BSS techniques in clinical data should carefully 
consider the model order selection problem. Another aspect to be considered is that the longer 
the evaluated segment (in our case 1 min), the weaker the assumption of stationarity becomes. 
In instances where an algorithm is applied on a long segment, BSS techniques are expected to 
underperform. Meanwhile, if this segment is too short, it may not contain sufficient statistical 

Figure 7. Differences in measured FQT interval (first row) and FTQRS (second row) 
between extracted channels/components (FQT/FTQRS test) and reference propagated 
FECG signal (FQT/FTQRS reference). Extraction methods with highest coefficient of 
determination (r2) for each category are shown: (a) BSSica, (b) TSc and (c) AMesn. 
Results are shown for the baseline (lighter colors, solid lines) and case 0 with =SNR 0 dB 
(darker colors, dashed lines). A few outliers occurred in (a—FTQRS), where 

�FTQRS FTQRStest ref, which are not shown for visualisation purposes.
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information to represent MECG/FECG’s features (e.g. non-Gaussianity), therefore preventing 
a satisfactory source separation.

The second experiment dealt with a general comparison between eight open-source algo-
rithms’ performance. In this test, BSS (especially BSSica) outperformed all other techniques (see 
figure 4 and table 3). Meanwhile, TSpca and AMesn obtained the best results in their respective 
categories (similar findings for the AM category using real data were presented in Behar et al 
(2014b) and Ma et al (2016)). MAE results were very similar for all methods, notwithstand-
ing, temporal techniques consistently obtained the best results (see table 3). Such results were 
only possible, since the MAE was used as distance measure and disregarded FP and FN detec-
tions (regarded by F1 measure). In further works, the results presented in tables 3(a) and (b) 
should always come in pairs to account for both accuracy and precision of FQRS detections, 
therefore avoiding incomplete benchmarks. It is important to mention that MAE was calcu-
lated using an FQRS reference, which was not aligned to each individual channel, therefore, a 
slight systematic error is expected for all methods as the R-peak location varies slightly from 
channel to channel. These results, however, have to be taken with caution since key algorith-
mic steps of BSS that can cause accuracy to decrease, were not accounted for. Particularly, 
the comp onent selection, representing the foetal signal, is a problematic and decisive step for 
its performance. In this work, the component with highest F1 was selected, disregarding the 
component selection step. Figure 4 shows that BSSica can better extract the foetal component 
than AM/TS techniques in the presence of strong uterine contractions (case 2) and multiple 
foetuses (case 5). On the other hand, in cases with high non-stationarity of the sources such 
as foetal movement (case 1) and ectopic beats (case 4) BSSica is outperformed by temporal 
techniques. These results for cases 1 and 4 are due to the violation of the ICA stationarity 

Figure 8. Results for experiment 3 showing accuracy of FQT and FTQRS extraction 
for the different methods and when considering different SNR levels (increasing from 
left to right, i.e. baseline case furthest to the right). A Kruskal–Wallis test was performed 
to evaluate significant differences across different SNR levels. As mentioned, as the 
SNR level increases, more template beats could be evaluated. Outliers were omitted for 
visualisation purposes.
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assumption. The Friedman test performed demonstrated highly significant effects of differ-
ent methods’ and SNR levels for both F1 and MAE. These results were further clarified by 
the Kruskal–Wallis test presented in figure 4. The test demonstrates that BSS techniques are 
robust against varying SNR levels, while TS and AM techniques show highly significant dif-
ferences in their results when varying SNR levels (results improve for higher SNRs—see 
figure 4). Figure 5 shows that regardless of the performance measure, the performance of the 
methods varies for low SNR, but the differences decrease with better SNR levels. In both cases 
TSekf behaves differently from other methods, regarding F1 it performs worse than most meth-
ods, while for MAE it has the best scores. Figure 6 shows the remarkably distinct morpholo-
gies of BSSica output components, which depend on the calculated mixing matrix.

Experiment 3 demonstrates that considerable efforts need to be made in improving cur-
rently available techniques, so that clinical relevant information can be obtained from the 
FECG morphology. The expressive number of excluded beats were either due to problems 
in the template generation, segmentation or due to the applied methods themselves, there-
fore further studies should focus on improving these individual steps. Moreover, in order to 
perform fair morphological comparisons, studies should make sure to use the same segments 
and report their failure rate, as in this contribution. Figure 7 demonstrates that morphological 
analysis in the source domain (after applying BSS techniques) will inevitably lead to inac-
curate FQT and FTQRS values, hence the results from this paper suggest that such analysis 
should be avoided. This claim is supported by figure 6, on which differences in the morph-
ology of the output signals at different time-instants are evident. An alternative would be to 
back-propagate specifically selected FECG components from the source domain to the obser-
vation domain, in order to perform this analysis. However, as mentioned, component selection 
is a challenging task, which was not carried out in this study. Figure 7 demonstrates that BSS 
techniques are unable to provide satisfactory FQT or FTQRS measures. Meanwhile TS and 
AM produced highly correlating FTQRS measures (even in the presence of noise), but their 
FQT measures are less robust to noise. The TSc, TSpca and AMesn techniques delivered the 
best FQT and FTQRS estimates (see figure 8). These findings reiterate the importance of using 
excluding bad quality ECG segments from the analysis, e.g. using signal quality measures as 
in Behar et al (2013), Li et al (2008). The results suggest that the less adaptive the method, the 
fewer the distortions in the output FECG estimate. In contrast, more sophisticated methods 
may possess some implementation details, which skew morphological analysis. This result 
is consistent with best FQT estimation scores obtained in the Challenge by Podziemski and 
Gierałtowski (2013), who also made use of TSc. However, these results should be validated 
on a larger database with clinical (pathological) recordings. From figure 8 it is evident that 
TS techniques heavily depend on the amount of noise present in the measurement, while 
BSS and AM methods showed a lower dependency to noise. Moreover, our analysis showed 
a negative correlation between the number of templates that were unsuccessfully generated 
or segmented for TS and AM techniques. The TSekf algorithm did not perform as well as 
expected, this may be attributed to its simple model, which falsely models the FECG signal 
as a white Gaussian noise. A promising solution to this modelling problem are variations of 
the TSekf technique, which takes into consideration both maternal and foetal heart models, 
as suggested by Behar et al (2014d) and Niknazar et al (2013). However, accurate FQRS 
detections are pre-requirements for these techniques. For this reason these methods have not 
been included in this contribution. The separate analysis of the results for the baseline and 
case 0 (see figure 7, enables a clear understanding of each methods performance, because 
ectopic beats and other non-stationarities may cause the algorithm to fail in different routines 
(e.g. during template construction). This figure suggests rather high FQT errors for all extrac-
tion methods, and technical improvements are therefore required before being tested on more 
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difficult cases. Several explanations are possible for this low performance, e.g. the extraction 
techniques were optimised for FQRS detection and might therefore distort other segments of 
the FECG, construction of the template might average out small amplitude components (P or 
T wave), but also the segmentation was designed for adult ECG and its performance is likely 
to be sub-optimal for FECG signals. Nevertheless, figure 7 suggests that TS techniques are 
more suited for FTQRS analysis.

4.2. Limitations of this study

The highly accurate FQRS detections obtained in experiment 1 (even in the presence of non-
stationary events) are partially due to the simplicity of the fecgsyn’s dipole model, which 
models the ECG using three orthogonal projections. Following the idea behind this dipole 
model, one would expect to find 3  +  3  =  6 cardiac sources on top of which noise sources are 
added. Sameni et al (2007) have empirically identified that four to eight components can well 
represent the adult ECG, whereas the number of sources representing the FECG was found 
to be between one and three (the other components being dominated by the maternal signals 
and noise). This high number of components representing the adult ECG can be explained by 
the fact that the heart is not a punctual source, but a combination of several distributed micro-
sources. Therefore, the modelling performed by the simulator limits the overall complexity 
of the heart signal. For this purpose, the model could be expanded to simulate such micro-
sources in a similar fashion as in van Oosterom (2004). Another limitation of the model is the 
linear phase applied to the modelled beats, which leads to a simple stretching of those beats. 
This simplification has the drawback of disregarding physiological variations, such as T-wave 
prolongation and ST segments variation. The modelled FECG signal was acquired from adult 
ECG signals, which produces non-physiological FQT intervals. As highlighted in Behar et al 
(2016), the range of the FQT is roughly in the range 200–340 ms, depending on the studies, 
whereas the ranges obtained in this study are lower due to modelling constraints. Similarly, 
the amplitude values of the P-QRS-T waves and their respective ratios have been modelled 
by Behar et al (2014c) disregarding physio/pathological values. Most of the variation in beat-
to-beat amplitude of the ECG components is due to the pseudo-periodic respiratory-related 
movement of the source dipoles with respect to the measurement locations (sensors), or non-
stationarity axis shifts due to postural changes. In the absence of pathological changes (such 
as ectopy), such changes are the predominant shape modifiers. Small beat-to-beat changes in 
the P, QRS and T-wave morphologies due to autonomic changes do exist. However, with the 
exception of some basic relationships for QT hysteresis, and some evidence for partial respira-
tory sinus arrhythmia-like modulation of the PR interval, there are no well-documented stud-
ies that would provide sufficient information to describe these changes accurately. Moreover, 
this effect is second order compared to that due to translation and rotation. The fecgsyn model 
could be extended to provide such beat-to-beat amplitude and width variations, by modify-
ing the amplitude and phase information of the Gaussians for each beat if a realistic dynamic 
model for modulating these parameters is later identified. However, there are no studies known 
to the authors describing such pathophysiological behaviours, particularly for FHR or foetal 
ECG morphological signals. These considerations enable BSS techniques to achieve better 
performance with a low number of channels.

The extraction techniques applied in our methodology have been often used in the lit-
erature, including top-scoring entries during the Challenge. Several other methods have been 
proposed in the literature and can easily be benchmarked using the proposed scheme, e.g. 
different BSS approaches as the tensor decomposition (Niknazar et al 2014) and combina-
tions of different classes of algorithms as the deflation algorithm proposed in Sameni et al 

                                             



645

(2010) or πCA (Sameni et al 2008). Besides the extraction procedure, other aspects of the 
NI-FECG’s signal processing should be separately considered, e.g. preprocessing, channel/
component selection, smoothing techniques, FQRS detection and FECG enhancement. The 
authors strongly recommend that researchers compare their own methodologies performance 
against the provided database and techniques.

In this study, simulated data were used and silver-standard reference FQT and FTQRS 
values were obtained using the open-source segmentation software ecgpuwave. Despite its 
wide use, in this study ecgpuwave often did not return relevant fiducials (e.g. T-peak or 
T-end). Still, ecgpuwave is one of the very few existent open-source algorithms for ECG 
segmentation freely available in the WFDB toolbox (Silva and Moody 2014). Several alter-
natives have been proposed in the literature (Martinez et al 2004, Schmidt et al 2014), which 
have reported better performance than ecgpuwave. However, current algorithms are mainly 
designed and trained using adult ECG databases and are likely to be sub-optimal for FECG 
analysis.

Preprocessing is a crucial aspect of morphological analysis. In this work the signal band-
width was configured as recommended by the American Heart Society for adult electrocar-
diography (Kligfield et al 2007). A clinical trial is required to confirm if such standards can 
indeed be adopted for FECG analysis. Regarding the template generation, there are no current 
standards in ECG analysis. For example, signal-averaging is not a consesus among research-
ers, despite its wide usage in the literature (e.g. Clifford et al 2011, Farrell et al 1991, Gomes 
et al 2001, Zaman et al 2000). However, for signals with low SNR such as the NI-FECG such 
a step is imperative. Template generation played an important role in producing our results 
and a comprehensive study comparing a number of template construction strategies should 
be conducted to investigate at which depth its low-pass effect may hinder the morphological 
analysis. In our preliminary work, the template construction method proposed by Oster et al 
(2015) obtained better empirical results than simply using mean or medians, even when poorly 
correlated beats were excluded. It is important to remark that the findings presented here need 
to be validated using clinical data and expert annotations.

5. Conclusion

This contribution features a well-defined analysis framework, reproducible statistical mea-
sures and a substantial dataset for benchmarking algorithms in NI-FECG analysis in terms of 
FQRS detection and morphological analysis. Data, extraction algorithms and evaluation rou-
tines used in this study were released as part of the fecgsyn toolbox available at www.physi-
onet.org/physiotools/ipmcode/fecgsyn/. Three experiments were conducted to benchmark the 
performance of eight state-of-the-art NI-FECG extraction methods in their capacity to evaluate 
the FQRS locations, FQT length and FTQRS ratio. For that purpose, a large dataset compris-
ing simulated abdominal signals modelling different non-stationary scenarios was developed. 
Indeed, no method performed systematically better on every experiments or non-stationary 
cases (see table 3 and figure 4). Therefore, a combination of different extraction techniques 
may be beneficial. Moreover, it is important to consider non-stationary cases when evaluating 
NI-FECG extraction algorithms, since a given algorithm can perform well in some specific 
instances and fail in the case of some non-stationarity (see table 3—no method performs sys-
tematically best). In general the following items need to be further studied: pre-filtering, tem-
plate generation and segmentation. For BSS techniques important considerations such as the 
number of channels, dimensionality reduction step and the limitations of source domain mor-
phological analysis were addressed. The fecgsyn toolbox is the largest open-source collection 
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of NI-FECG extraction algorithms known to the authors, which also provides a large artificial 
database and the necessary code for evaluating algorithmic performances for the purpose of 
FHR extraction and morphological analysis.
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