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Abstract
Non-Invasive foetal electrocardiography (NI-FECG) represents an alternative 
foetal monitoring technique to traditional Doppler ultrasound approaches, 
that is non-invasive and has the potential to provide additional clinical 
information. However, despite the significant advances in the field of adult 
ECG signal processing over the past decades, the analysis of NI-FECG remains 
challenging and largely unexplored. This is mainly due to the relatively low 
signal-to-noise ratio of the FECG compared to the maternal ECG, which 
overlaps in both time and frequency.

This article is intended to be used by researchers as a practical guide to 
NI-FECG signal processing, in the context of the above issues. It reviews 
recent advances in NI-FECG research including: publicly available 
databases, NI-FECG extraction techniques for foetal heart rate evaluation 
and morphological analysis, NI-FECG simulators and the methodology 
and statistics for assessing the performance of the extraction algorithms. 
Reference to the most recent work is given, recent findings are highlighted 
in the form of intermediate summaries, references to open source code and 
publicly available databases are provided and promising directions for future 
research are motivated. In particular we emphasise the need and specifications 
for building a new open reference database of NI-FECG signals, and the need 
for new algorithms to be benchmarked on the same database, employing 
the same evaluation statistics. Finally we motivate the need for research in 
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NI-FECG to address morphological analysis, since this represent one of the 
most promising avenues for this foetal monitoring modality.

Keywords: noninvasive foetal ECG, foetal monitoring, source separation

(Some figures may appear in colour only in the online journal)

1. Introduction

Worldwide, an estimated 2.65 million stillbirths occur yearly, of which 98% occur in coun-
tries of low and middle income and with more than 45% in the intrapartum period (Bhutta 
et al 2011) (i.e. occurring during childbirth). Thus, there is a need for effective monitoring 
techniques that can provide information on the foetal health during the pregnancy and at deliv-
ery. In addition, heart defects are the leading cause of birth defect-related death (California 
Department of Public Health 2014). As an example it is estimated that 9 in 1000 babies born in 
the UK have congenital related heart disease at birth (NHS 2014). Nowadays, more and more 
cases of congenital heart disease are diagnosed prepartum during routine imaging via an ultra-
sound scan. However, there are some cardiac defects that cannot be identified with this modal-
ity and the use of this technology requires extensive training and relatively high costs. There 
is therefore an interest in antepartum technology that could provide additional information 
about the cardiac health of the foetus at a relatively lower cost, in a more automated manner.

Intermittent observations of foetal heart sounds through auscultation became a standard 
clinical practice by the middle of the 20th century. Foetal heart rate (FHR) monitors became 
widely available by mid-1970s (Kennedy 1998) and enabled continuous FHR monitoring, 
mainly via one dimensional ultrasound or ‘cardiotocography’ (CTG)5. CTG monitors were 
expected to drastically reduce foetal hypoxia. However, rapidly conflicting studies were 
published and challenged the efficacy and reliability of the FHR monitors. The introduction 
of these monitors in clinical practice increased the rate of a painful and expensive cesar-
ean  section, higher prevalence of postnatal depression (Philip and Angela 1992), and post- 
operative pain negatively affecting breastfeeding and infant care (Karlström et al 2007) while 
its benefits on foetal health were not clearly demonstrated. Although intrapartum abnormali-
ties detected through electronic foetal monitoring correlate with umbilical cord base excess 
and its use is associated with decreased neonatal seizures, it has no effect on perinatal mortal-
ity or paediatric neurological morbidity (Graham et al 2006).

The first documented attempt to record a non-invasive foetal electrocardiogram (NI-FECG) 
from the maternal abdomen was by Cremer (1906). It has been shown that during the first 
stage of labour, FHR tracings obtained by Doppler CTG and NI-FECG measurements corre-
late well with each other (Reinhard et al 2010). Similar results were also obtained for acceler-
ation and deceleration counts as well as other characteristic CTG patterns. However, because 
the NI-FECG does not need to average over multiple beats, it has the potential to provide 
a more accurate estimation of the FHR. Moreover, due to the sensor modality, NI-FECG 
can also identify key morphological information related to the electrical activity of the foetal 
heart. However, the FECG is difficult to extract from the recorded abdominal signal mixture 
(see figure 1) and this has restricted its use to-date. Throughout the last few decades, NI-FECG 
analysis has been the focus of many research studies, mainly due to improvements in quality 

5 Technically, CTG includes recording (or displaying) the foetal heartbeat (‘cardio’) as well as the uterine 
contractions (‘toco’). The latter are not directly addressed in this review, except in its relation to foetal heart rate 
changes.
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of sensors, speed of processors, advances in signal processing and the decrease in price of 
recording devices (Sameni and Clifford 2010).

2. Electronic foetal monitoring

Electronic foetal monitoring (EFM) techniques can be invasive or non-invasive with intermit-
tent or continuous assessment. Current techniques include foetal phonocardiography (PCG), 
Doppler ultrasound, cardiotocography (CTG), foetal magnetocardiography (FMCG) and foe-
tal electrocardiography. Although electronic foetal PCG has been reported in the literature, it 
is highly prone to noise and can only be used late in pregnancy, and therefore is almost unused 
in clinical practice (Kovács et al 2011). From 20 weeks onwards the heart can be monitored 
using Doppler ultrasound, the FECG, and the FMCG (Peters et al 2001). Around the 28th–
32nd week of gestation, a thin layer called the vernix caseosa is formed and  dissolves in the 
37th–38th week in normal pregnancies (Stinstra 2001). This layer is highly non- conductive 
and results in a limited NI-FECG amplitude on the maternal abdomen (Oldenburg and Macklin 
1977, Oostendorp et al 1989). A number of studies (Pieri et al 2001, Graatsma et al 2009) 
have observed the adverse effect of this layer on the performance of the NI-FECG extraction 
but the limitations have been inconsistently reported.

Doppler ultrasound is routinely used for FHR monitoring during pregnancy and delivery. 
However, despite being a non-invasive modality, the ultrasound is not passive and it has not been 
conclusively demonstrated that ultrasound radio frequency exposure is completely safe for the 
foetus (Barnett and Maulik 2001). In addition, while using Doppler ultrasound, the maternal HR 
(MHR) can be picked up instead of the FHR because of the misorientation of the ultrasound trans-
ducer (which can therefore be transducing the maternal arteries). Neilson et al (2008) reported five 

Figure 1. From top to bottom: chest ECG (largely dominated the maternal ECG), SECG 
i.e. ECG of the foetus recorded by screwing a small electrode on the foetal head (or 
sometimes foot) during delivery, and abdominal ECG (mixture of maternal and foetal 
ECG). The purpose of NI-FECG analysis is to separate between the maternal and foetal 
components of the signal mixture recorded on the maternal abdomen. Reproduced from 
Clifford et al (2014d).
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Table 1. Continuous foetal monitoring modalities (Clifford et al 2014d, Peters et al 
2001). SNR: signal to noise ratio.

Method System
Gestational 
age Comments

PCG Phonocardiography: 
acoustic recording 
from abdomen

⩾ 28–30 
weeks

-  Manual auscultation employs a Pinard 
stethoscope but electronic stethoscopes 
with amplification are sometimes used

- Lowest SNR of all methods employed
- Requires expert to locate foetus
-  Prone to endogenous and exogenous 

acoustic noise sources (e.g. 
gastrointensinal activity and speech)

-  Not routinely employed for 
foetal monitoring or foetal health 
assessment

CTG Cardiotography; 
ultrasound transducer 
and uterine contraction 
pressure-sensitive 
transducer

⩾ 20 weeks -  Contraction monitoring with a pressure 
transducer

- Smoothed HR time series
-  No beat-to-beat data and cardiac function 

descriptor limited to HR
- Not passive; ultrasound irradiation
- Prone to maternal/foetal HR confusion
-  Prone to dropout due to foetal or 

maternal movement

FMCG Foetal 
magnetocardiogram. 
Detection of the foetal 
heart’s magnetic 
field through SQUID 
sensors positioned 
near the maternal 
abdomen

⩾ 20 weeks - Expensive
- Requires skilled personnel
-  Morphological analysis of the FMCG 

easier than FECG because of higher SNR
-  No long term monitoring possible to date 

because of apparatus size and cost

NI-FECG Non-invasive foetal 
ECG. Standard ECG 
electrodes with varying 
skin preparation 
methods

⩾ 20 weeks - Low cost
- Does not required skilled user
- Continuous monitoring possible
- FHR and possibly morphological 
analysis
-  Low SNR, with potential issues from 

28th to 37th week from vernix

SECG Scalp ECG. A single 
scalp electrode is 
placed on the foetal 
scalp

At delivery - Accurate FHR
- Morphological analysis possible
- High SNR
-  Invasive, carrying small additional risk, 

not routinely recommended
- Can only be used at delivery
- Single channel only
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cases out of 10 000 monitored pregnancies that were fatal for the foetus where the MHR rather 
than the FHR was recorded by the CTG. FMCG, while providing higher quality FHR is too 
cumbersome and expensive to be widely used clinically. The scalp ECG (SECG), while provid-
ing accurate FHR time series, is an invasive technique and monitoring can only be performed at 
delivery. Table 1 lists the EFM techniques and presents their advantages and drawbacks.

Since the introduction of the EFM in the mid 1970s and the uncertainty around the benefit of 
this method, the medical community has been very cautious about the adoption of any alterna-
tive method or adjunct to the CTG (despite the lack of evidence for the utility of the CTG itself). 
In practice, this has resulted in large clinical trials targeted at assessing the benefits of novel 
monitoring methods. For example, foetal pulse oximetry (FPO) was recently introduced (with 
the first FDA approved device in 2000 (Bloom et al 2006)) and clinical studies were run to assess 
its clinical benefit. Studies on FPO showed that using this monitoring method in addition to the 
CTG was not associated with a significant difference in neonatal outcomes (Bloom et al 2006, 
East et al 2006) and conclusions on whether it reduced caesarean frequency could not be drawn.

In clinical practice there are two main widespread methods currently in use for continu-
ous foetal monitoring: the CTG, which is the most widespread, and the SECG. However, 
neither method is ideal; the CTG only provides an estimate of the FHR while the SECG is 
invasive. Due to those limitations, the NI-FECG has been suggested as an alternative monitor-
ing method that can combine the advantages of both the CTG and SECG, i.e. be non-invasive 
while providing an accurate FHR, as well as the additional information on the electrical activ-
ity of the heart, contained in the ECG morphology and inter-beat timing. For this reason, the 
NI-FECG is the subject of considerable research.

3. A meta-review

Since the early 2000s, several reviews have been published on the topic of electronic foetal moni-
toring. A detailed book on foetal electrocardiography by Symonds et al (2001) provides an in 
depth history of the development of FECG extraction and analysis, including invasive SECG and 
NI-FECG. In particular, the book includes a substantial chapter that reviews the publications on 
morphological analysis of the FECG and on the interpretation of the FHR. However, the book is 
focused on the clinical interpretation of the NI-FECG and not on the NI-FECG signal processing 
techniques. Moreover, there has been a number of novel contrib utions to the field since its pub-
lication over 14 years ago. Hasan et al (2009) published a rather general overview on NI-FECG, 
reviewing the physiological background, hardware, extraction algorithms and description of the 
different sources of noise. While lacking detail, it provides a good entry point to the field of 
NI-FECG. Almost concurrently, Sameni and Clifford (2010) published an extensive review on 
NI-FECG covering the physiological background of the  foetal heart, modelling of NI-FECG 
using the dipole model, existing publicly available databases and a detailed overview of FECG 
extraction algorithms with relative merits of each. Although a number of signal processing algo-
rithms were qualitatively reviewed in these two papers, the absence of a ‘large’ public database 
and of a defined evaluation methodology made it impossible to objectively compare the relative 
performance of extraction algorithms proposed to-date. To address these issues the authors of 
the latter article and colleagues initiated an international competition: ‘the PhysioNet/Computing 
in Cardiology Challenge 2013’ (hereafter referred as the ‘Challenge’) Silva et al (2013) and a 
follow-up special journal issue (Clifford et al 2014d). This editorial provided an extensive review 
of the Challenge and the publications from the 29 teams that competed. The editorial review 
highlighted the strengths and weaknesses of the 17 open source algorithms that competed for the 
Challenge. The main strength of the editorial review is that it allowed for the objective ranking of 
the algorithms’ performances since they were evaluated on the same database and using the same 
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methodology. A public training set was provided, and a hidden test set was used to score submitted 
algorithms in an independent manner, using the same statistics. The editorial review, however, did 
not discuss the strengths and weaknesses of the evaluation statistics in detail. Nor did it address 
the topic of morphological analysis of the NI-FECG. Most recently, Agostinelli et al (2015) pro-
vided a good general overview of the field including the challenge of electrode placement on the 
maternal abdomen and potential usefulness of some morphological measures. However the topics 
addressed in this review were not treated in depth, with a relatively trivial notion of treating the 
issue as a linear additive noise and signal problem, ignoring movement, nonstationarities, and the 
complex near-field effects observed in FECG extraction. Several inaccuracies are present in their 
review such as the description of electrode locations, and that the use of blind source separation 
techniques requires too many electrodes to be practical (existing commercial monitors contradict 
this conjecture). Moreover, the review failed to reference the most recent publications in the field 
(including the wealth of articles generated from the Challenge), possibly because their methodol-
ogy relied entirely on a PubMed search, although this does not explain all of the major omissions. 
Perhaps most importantly, the review did not provide any detail on the relative approaches and 
merits of each FECG extraction technique, nor any numerical results of experiments performed 
with these techniques. Consequently, no discussion of where the field should move is given.

The current review presented here addresses the recent advances made in digital signal pro-
cessing for extracting and exploiting the NI-FECG information. In particular we aim at current 
and prospective research for creating NI-FECG algorithms targeted at morphological analysis and 
the use of standard statistics for scoring the extraction algorithms (and thus being able to bench-
mark between algorithms using the same statistics). Reference to the most recent work is given, 
important findings are highlighted in short ‘intermediate conclusions’ summarising important 
design consideration for the practitioner. Finally, directions for future research are motivated. The 
physiological background of NI-FECG is not reviewed in this article and the reader is referred to 
Sameni and Clifford (2010) and Symonds et al (2001) for a good overview on the topic.

4. Research foci and challenges

The research in NI-FECG is motivated by the possibility of acquiring the following physiologi-
cal information through this modality: (1) rhythm information using the extracted FHR. The 
NI-FECG can provide a beat to beat estimation of the FHR, which is superior to what is provided 
by Doppler ultrasound and enable antenatal monitoring in contrast to SECG, which can only be 
used at delivery; (2) FECG morphological information, such as PR, QT intervals and ST level. 
Studies of these parameters have proven to be clinically relevant in adults and animal models, and 
thus have the potential to add information to the monitoring of the foetal heart; (3) Contraction 
monitoring by sensing the electrical impulses generated by the myometrial activity (Hayes-Gill 
et al 2012). Knowledge of contraction occurrence is believed to aid the interpretation of rapid 
changes in the FHR during delivery (although there is little evidence for this, possibly because 
the lack of precise definitions around contractions); (4) foetal respiration, foetal movement (as 
suggested in Sameni (2008) and Vullings et al (2013)) and foetal orientation (Taylor et al 2003).

The challenges for extracting the information listed above from the NI-FECG are: (1) 
Relatively low signal-to-noise ratio of the FECG compared to the maternal ECG (MECG, see 
illustration in figure 1). This is due to the size of the foetal source which is much smaller than 
its maternal counterpart and the different dielectric media in between the foetal source and 
the sensors; (2) foetal non-stationarities, such as foetal movement, which are frequent at the 
earlier stages of pregnancy or foetal respiratory effort (see example in figure 2); (3) need for 
algorithms that either do not require the intervention, or require minimal intervention from a 
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medical professional; (4) limited feasibility in recording the NI-FECG after the formation of 
the vernix caseosa layer and until it dissolves (Oostendorp 1989); (5) statistics that provide a 
confidence measure on to the extraction performances and avoid medical errors such as con-
founding the FHR and the maternal HR (MHR); (6) algorithms that enable the reconstruction 
of the FECG waveform (as opposed to being restricted to foetal R-peak detection) from the 
NI-FECG mixture and enable morphological analysis of the FECG.

5. Commercial NI-FECG monitors

In recent years, a handful of NI-FECG commercial monitors have appeared in the market and 
more competing solutions are in development Particularly interesting are two monitors that have 
obtained FDA clearance: the Monica AN24 monitor (Monica Healthcare, Nottingham, UK) 
and the Meridian M100/M1000 monitors from MindChild Medical (North Andover, MA)6. 
Both monitors have proved to be accurate in detecting FHR (Sameni et al 2009, Reinhard 
et al 2012), and some seminal work on extracting morphological information has shown prom-
ise for the latter monitor (Clifford et al 2011, Behar 2014, Behar et al 2014e). However, the 
studies associated with these monitors were limited in patient numbers and population size and 
further research is needed to address a broad range of populations and conditions.

Commercial applications for NI-FECG monitoring are in their early days, and there is a 
growing interest in improving their performance in order to reach the point where they will 
provide actionable information to the clinician. As such, both because it is a relatively low 
cost non-invasive technique, and because of the information the NI-FECG has the potential to 
provide, there is a strong motivation for pushing forward research in this area.

6. Electrode placement

When attempting to collect NI-FECG data, careful thoughts about the electrode configuration are 
necessary. Similarly to adult electrocardiography, the morphology of the cardiac signal strongly 

Figure 2. Example of a uterine contraction and its effect on the quality of the 
abdominal ECG signal. Note the degradation in the abdominal ECG quality after 70 s, 
which corresponds to the onset of the contraction recorded by an intrauterine pressure 
transducer.
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6 Other monitors planned for release include Nemo Healthcare (De Lismortel, Netherlands) and PregSense 
(Nuvo, Israel).
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depends on the lead configuration employed. The foetal position cannot be easily identified prior 
to electrode placement because it changes across patients particularly at low gestational weeks. 
Therefore a general-purpose ‘optimal’ electrode placement is impracticable (Agostinelli et al 
2015). Nonetheless, numerous configurations have been proposed in the  literature ((Andreotti 
2011, Agostinelli et al 2015)—see figure 3), in an attempt to standardise the recording procedure. 
Several authors rely on the most common foetal presentation (i.e. vertex, breech or shoulder), to 
reduce the number of leads used by aiming at usual positions for foetal head/thorax, consequently 
minimising the application’s complexity. Meanwhile, other authors attempt to cover most of the 
abdomen to maximise the chances of obtaining FECG signal (Agostinelli et al 2015). Despite the 
variety of electrode configurations proposed, to date, very few studies have compared the different 
options that exist. Rooijakkers et al (2014) is one exception, in which the effect of increasing the 
distance between leads was analysed. The authors suggested two bipolar lead placement schemes, 
one with 5 electrodes for intrapartum recordings (inter-electrode distance of 16 cm—similar to 
figure 3(a) with an additional central electrode) and a 6 electrodes scheme for preterm recordings 
(distance 20 cm—similar to figure 3(b)). Such configurations should optimally record the MECG, 
FECG and uterine activity. However, this clinical study was limited to 5 patients, each recording 
20 min in duration at high gestational weeks (>39 weeks). Another study, which considered sig-
nal quality throughout different channels was performed by Clifford et al (2012) and Clifford et al 
(2011). The authors described an ‘over-complete’ set of electrodes and noted that some channels, 
at particular time instants, contributed most with FECG signals. However, they also noted that the 
signal quality varies across patients (and time), thus an automatic selection of channels based on 
signal quality measures is necessary. Lastly, the optimal number of electrodes may depend on the 
extraction method used. For instance, extraction routines may required one or several abdominal 
leads, meanwhile other methods need one (or more) MECG reference leads. Further details about 
these signal processing requirements are discussed in section 8.3.1.

7. Public databases

7.1. Existing databases

To date there are five publicly available databases that can be used to evaluate NI-FECG 
extraction algorithms’ performance. These are summarised below and in table 2:

Figure 3. Different electrode configurations used in the literature by (a) Monica 
Healthcare Ltd AN24 (Nottingham, UK) (Pieri et al 2001, Reinhard et al 2010); 
(b) (Rabotti et al 2008, Rooijakkers et al 2014); (c) (Andreotti et al 2014); (d) MindChild 
Medical Inc. Meridian Monitor (North Andover, USA) (Clifford et al 2011, Wolfberg 
et al 2011). ‘GND’ represents the common ground (inactive) electrode, while +◯ is the 
active and ◯−  the reference electrode. This distinction between active and reference 
electrodes serves to specify which differential leads were considered. (a) 5 electrodes 
GND. (b) 8 electrodes GND. (c) 14 electrodes Back GND. (d) 32 electrodes.
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• The Daisy database (DDB) (De Moor et al 1997) is not so much a database, as a single 
unrepresentative snippit of data. It consists of 8 ECG channels (5 abdominal and 3 
thoracic) from a single foetus, lasting for 10 s, using a sampling frequency =f 250s  Hz, 
without reference annotations. Although this recording is often used, it is unrepresenta-
tive as it is a particularly clean and short set of recordings.

• The non-invasive foetal electrocardiogram database (NIFECGDB), available on PhysioNet 
Goldberger et al (2000), =f 1s  kHz, includes 55 multichannel abdominal ECG (AECG) 
recordings taken from a single subject (21–40 weeks of gestation) and recorded using 
a g.BSamp Biosignal Amplifier (GTech GMBH, Austria). No reference annotations are 
available. Each record has 2 thoracic and 3 or 4 abdominal signals.

• The abdominal and direct foetal electrocardiogram database (ADFECGDB), available 
on PhysioNet (Goldberger et al 2000) =f 1s  kHz with 5 min of recordings (4 abdominal 
channels and the SECG) from 5 women in labour (38–41 weeks of gestation) and with 
reference FQRS annotation derived from the SECG. Data were recorded using the 
KOMPOREL foetal monitoring system (ITAM, Zabrze, Poland).

• The 2013 PhysioNet/Computing in Cardiology Challenge Database (PCDB) (Silva et al 
2013) consists of 447 min of data from five different databases (including the NIFECGDB, 
ADFECG and simulated data using the fecgsyn). FQRS reference was provided to a subset of 
the CDB, the remaining reference was kept as hidden test set. Data were resampled at =f 1s  
kHz. This database represents the largest publicly available dataset to date. Each record has 
four abdominal channels and no maternal reference. The open training set has reference FQRS 
available while the closed validation and test sets had restricted access to the reference annota-
tions to facilitate independent testing. In this respect it is a unique database, which prevents 
over tuning of parameters. Data and references for set-a (training set) are still available and the 
platform is still open for scoring annotations for the recordings of set-b (validation set.)

• The Foetal ECG Synthetic Database (FECGSYNDB) (Andreotti et al 2016) includes 1750 
five-minute realistic simulations of abdominal mixtures using 34 channels (32 abdominal 
and 2 MECG channels), totalising 145.8 h of data and 1.1 million foetal peaks. The 
FECSYNDB comprised seven cases of physiological events, for 10 different maternal-
foetal heart dipoles’ arrangements, at five noise levels. Each combination was simulated 
five times for statistical purposes, hence combined into a total of × × × =7 10 5 5 1750 
simulations. The simulated data utilised the fecgsyn simulator by Behar et al (2014a).

Table 2. Summary table of the existing open databases.

Database NR NF fs (Hz) RA Duration

DDB 1 1 250 No 10 s
NIFECGDB 55 1 1000 No Varying
ADFECGDB 5 5 1000 Yes 5 min
PCDB 447 >10a 1000 Yes 1 min
FECGSYNDB 1750 9b 1000 Yes 5 min

NR: number of records
NF: number of foetuses
fs sampling frequency
RA: reference annotations available (yes/no).
a An unknown number of additional subjects were used in the hidden test dataset.
b Only nine different VCG are used in the fecgsyn simulator, but an unlimited number can be 
defined and generated.
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7.2. Requirements for building a standard database

Together with providing the first significant open NI-FECG database (the PCDB), the 2013 
Physionet/Computing in Cardiology Challenge highlighted the need for a larger and more 
complete dataset. This database should ideally have a number of characteristics which are 
summarised within this section. The description below intends to define the specification for 
building such database so that any existing and novel NI-FECG extraction and analysis algo-
rithm can be evaluated on it.

Part of the database should have a reference SECG and at least one chest MECG channel. 
The scalp recordings can be used as the silver standard for FHR and ECG morphological 
analysis. Chest recordings can be used to ensure accurate MQRS detection and be used as 
reference channel for some source extraction techniques that require a lead free of any FECG 
contribution. Moreover, it can be used to avoid confusing the FHR and MHR, a mistake which 
sometimes occurs during Doppler ultrasound recordings and can be life threatening for the 
foetus (Neilson et al 2008).

The database should also include at least eight abdominal channels (see section  6.5 of 
Sameni (2008)) and potentially more (Clifford et al 2011) to capture the multidimensional 
nature of both the foetal and maternal ECG. This would allow better performance of blind 
source separation (BSS) based methodologies and maximise the chances of obtaining foetal 
signals, since the optimal positioning of the electrodes with respect to the foetal heart position 
is a priori unknown (i.e. channel selection might be required). The sampling frequency and 
amplitude resolution of =f 1s  kHz, 16-bits usually are sufficient. In particular, low frequency 
resolution can cause misalignment problems in removing the MECG when using template 
subtraction methods (see figure 3 in Behar et al (2014d)). A sampling frequency that is too low 
can also affect the accuracy of morphological measurements such as the QT interval (Baumert 
et al 2016).

The database should be ‘large enough’ both in term of the number of recordings (from 
independent pregnancies), recording’s length and heterogeneity of conditions. In particular, 
the records should be long enough in order to assess the adaptability of the approaches with 
respect to the non-stationary nature of the FECG (intrinsic to the ECG signal but also due 
to foetal motion, resulting in a change of the foetal heart orientation). For example, figure 2 
shows a case where an uterine contraction is affecting the quality of the abdominal ECG signal 
thus making the extraction of the NI-FECG more challenging. Mild contractions are generally 
15–20 min apart and last between 60–90 s (Cleveland Clinic 2015) and thus a minimal length 
of 30 min recording at delivery time should be considered to ensure (statistically) capturing 
one such event per record. Monitoring the FHR during these events is crucial and none of 
the published paper to date assessed the capability of the algorithms to cope with this type of 
physiological events.

Recordings should be performed at different stages of pregnancy, in order to assess when 
and in what proportion NI-FECG extraction is feasible. If possible, data on foetal activity 
or ‘sleep’ should be captured. Meanwhile it would enable the study of heart rate variability 
(HRV) and ECG morphological analysis as a predictor of cardiovascular diseases in infants. 
When assessing the performance of the NI-FECG it is important to compare the success of 
the evaluated FHR against an alternative technique such as ultrasound or SECG, rather than 
manually annotating foetal R-peaks on the abdominal recordings. Indeed, manually annotat-
ing the foetal R-peaks (in order to use them as the reference annotations) implies that these 
peaks must be visible to the human eyes in the first place on at least one abdominal ECG chan-
nel. However, there are instances where the NI-FECG can also be extracted from abdominal 
recordings where no FECG can be identified by human inspection of the surface electrode 
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recordings (see figure 7 in Behar et al (2014d)). These records should not be discarded from 
the analysis, since this creates a bias of any system towards analysing easier data.

A range of clinical information such as outcome of delivery, maternal history (e.g. IUGR, 
foetal anaemia and premature rupture of the membrane) should be reported. Information on 
the delivery outcome can include presence of metabolic acidosis, neonatal encephalopathy, 
Apgar score, need for neonatal intubation This allows the assessment of whether or not the 
information extracted from the NI-FECG is predictive of delivery outcomes. It is also impor-
tant to obtain rhythm annotations as well as information on early and late deceleration from 
experts since these events are typically the ones where the NI-FECG monitor should not fail 
to extract the FECG. Current parameters for foetal FHR analysis should be considered and 
annotated by medical experts. These parameters were standardised by the FIGO Guidelines 
(Rooth et al 1987), which include definitions for physiological and pathological accelerations, 
decelerations, tachychardias and bradychardias. Of note, there is still some controversy about 
the definition around some of these parameters (Bernardes et al 1997, Ayres-de Campos and 
Bernardes 2010).

7.3. Simulations

One of the main limitations of the current NI-FECG databases is the absence of pathological 
cases, pregnancy with adverse outcome or rare events such as similar FHR and MHR at times 
of abrupt heart rate changes. Another limitation of existent databases is that they do not enable 
the performance assessment of the separation algorithms as a function of the signal to noise 
ratio (SNR) between the ECG mixture and noise, the SNR between the maternal and foetal 
components. These considerations have motivated the development of an artificial NI-FECG 
model to create realistic abdominal recordings that model specific physiological phenomena. 
The original simulator was developed by Sameni et al (2007b) and considered a single dipole 
per cardiac source linearly related to the body surface potentials by a projection matrix that 
takes into account the temporal movements and rotations of the cardiac dipole. This model 
build upon the adult ECG model from McSharry et al (2003). The most recent update to the 
NI-FECG model called fecgsyn was contributed in Behar et al (2014a) and open sourced on 
Physionet7 with an easy to use user interface (Alvi et al 2014). This recent update took into 
account the non-stationary mixing due to respiration and foetal movement and realistic heart 
rate changes (both normal and pathological). Figure 4 illustrates the volume conductor repre-
sentation used in fecgsyn. Further works using the fecgsyn resulted in the development of the 
FECGSYNDB (Andreotti et al 2016), which enables the benchmarking of FQRS extraction 
and FQRS detection algorithms. The fecgsyn and FECGSYNDB are particularly useful in pro-
viding a first analysis of morphological extraction techniques, since the FECG morphology is 
known before being added to the abdominal signal (see example on figure 5). The simulator 
was also used in the recent work of Liu and Luan (2015). The FECGSYNDB should be under-
stood as an exemplary usage of the simulator but the simulator itself provides the possibility for 
researchers to simulate specific events which can be adapted to suit one’s experimental needs.

One of the main limitation of the model in its current state is that the vectocardiograms 
used to generate the FECG signals were acquired from adult ECG signals which will pro-
duce non-physiological foetal intervals. This is because the adult ECG waveform is basically 
linearly re-scaled to match the FHR but this shrinkage should not be linear in order to pro-
duce foetal intervals falling in their physiological range (see table 4). In addition, variation of 
intervals such as FQT (and other morphological parameters) as a function of the FHR is not 

7 Available at: www.physionet.org/physiotools/ipmcode/fecgsyn/
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modelled (other than a linear re-scaling). For this last point a corrected FQT/FHR relationship 
(equivalent of QTc) should be derived in the first place from real data measurements. As a final 
improvement, a more realistic volume conductor geometry could be considered.

Figure 4. (a) Volume conductor representation. The two spheres represent maternal 
(large sphere) and the foetal (smaller sphere) hearts. The blue numbered squares show 
the location of the electrodes on the volume conductor, while the arrows represent 
the orientation of the foetal and maternal body axis which are defined by the heart 
orientation; (b) Top view of the volume conductor. Note that in (b) electrodes 2 and 4 
are not represented because the top view is overlapping. Figure reproduced from Behar 
et al (2014a).
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7.4. Intermediate conclusions

• There are currently five publicly available real NI-FECG databases (three of which avail-
able on Physionet (Goldberger et al 2000)). We recommend to use the most recent and 
complete database of real signals i.e. the PCDB (Silva et al 2013). It is important to stress 
that new algorithms must be evaluated on set-a (training set) and set-b (validation set). 
Evaluation on the set-a only can solely be a ‘proof of concept’. When using any of the 
NI-FECG databases, recordings with inaccurate reference annotations should be excluded.

• The NI-FECG is usually recorded at high sampling frequency (typically between 500 Hz 
and 1 kHz) (Taylor et al 2005, Widrow et al 1975) and AD converter resolution of 16 bit 
similar to what is traditionally used for adult clinical ECG.

• We motivate the critical need for creating of a novel database of NI-FECG signals with the 
following important characteristics: (1) rhythm annotations from experts; (2) a minimum 
of 30 min recording length for each record; (3) sampling frequency of 1 kHz and resolu-
tion of 16 bits; (4) recording of SECG, a minimum of one chest channel and a minimum 
of eight abdominal channels; (5) outcomes at delivery.

• Because there is currently no such ‘complete’ database, an artificial NI-FECG model such 
as fecgsyn (Behar et al 2014a) (see section 7.3), may be used until it is created, or in addition 
to such database as a way to test/produce of proof of concept for any extraction algorithm.

8. Estimation of the foetal heart rate

The range of normal foetal heart rate varies with gestational age. The heart starts beating at 
the end of the first month of the pregnancy, when a single hollow ventricle is created (and a 

Figure 5. From top to bottom: abdominal mixture, extracted NI-FECG by the EKFD 
on top of the true FECG. Note that the FECG morphology is reconstructed well using 
the method by Behar et al (2013). Figure  reproduced from Behar et al (2013). The 
fecgsyn simulator was used to generate the abdominal mixture signal.
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ventricular rhythm is established at 60–80 bpm (Symonds et al 2001)). By the ninth week, 
the sino-auricular node has developed and the baseline FHR becomes 175 bpm. In the follow-
ing weeks FHR declines and reaches between 110–160 bpm at delivery (von Steinburg et al 
2012). There are a large number of FHR patterns that have been studied and it is beyond the 
scope of this article to review this extensive literature on FHR interpretation. For more infor-
mation on such patterns the reader is referred to Sweha and Hacker (1999). However, the large 
inter- and intra-expert variance in interpretation of clinical guidelines means that there is little 
evidence for the efficacy of the use of such patterns (Downs and Zlomke 2007). This, together 
with the lack of clear, non self-referential definitions of FHR patterns is another reason that 
open clinical databases and standardised open source algorithms are needed.

Figure 6 shows a generic block diagram which represents the typical steps undertaken in 
processing the AECG to extract the NI-FECG and FHR: (1) the AECG channels are preproc-
essed (see section 8.1); (2) MQRS detection is performed (see section 8.2); (3) at least one of 
the MQRS time-series is selected (see section 8.4); (4) source separation to extract the FECG 
from the abdominal mixture (see section 8.3.1); (5) FQRS detection (see section 8.4); (6) one 
of the FQRS time-series is selected (see section 8.4); (7) the resulting time-series is smoothed; 
(8) finally the post-processed signal is scored against the reference FQRS annotations or FHR 
trace (see section 10). Note that step (8) is not part of ‘routine’ assessment but only used for the 
development and benchmarking of algorithms. Some of these key steps are discussed below.

8.1. Preprocessing

The prefiltering step is crucial for most biosignal processing application. In Behar et al (2014d) 
18 source separation algorithms for NI-FECG extraction were evaluated with different base-
line wander cut-off frequency (  fb). For all approaches but three a higher fb ( =f 10b  Hz) 
performed better (up to 3% increase in the F1 accuracy measure) than a lower fb ( =f 2b  Hz). 
Similar findings were obtained in Behar et al (2014b) where a grid search was performed over 
the prefiltering parameters (  fb and the higher cut-off frequency, fh). In Andreotti et al (2016) a 

Figure 6. NI-FECG and FHR extraction block diagram. (1) The abdominal ECG 
(AECG) channels are preprocessed (see section 8.1); (2) MQRS detection is performed 
(see section 8.2); (3) at least one of the MQRS time-series is selected (see section 8.4); (4) 
source separation to extract the FECG from the abdominal mixture (see section 8.3.1); 
(5) FQRS detection (see section 8.2); (6) one of the FQRS time-series is selected (see 
section 8.4); (7) the resulting time-series is smoothed; (8) finally the post-processed 
signal is scored against the reference FQRS annotations or FHR trace (see section 10). 
Picture reproduced from Behar et al (2014d).
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cut-off of 3 Hz was used. In the above mentioned publications the value of fb were much higher 
than the ones traditionally used for adult ECG prefiltering (in the range 0.05 Hz–0.7 Hz). 
Figure 7 illustrates why better outcomes in MECG cancellation are expected with a higher 
fb than what is traditionally used for adult ECG prefiltering: a high fb suppresses the P and T 
waves, leaving only the MQRS and FQRS (and some band-limited noise) for separation in the 
abdominal mixture.

8.2. QRS detection

Many QRS detectors were published over the past 50 years. For adult QRS detection (thus 
MQRS) some very accurate detectors were open sourced and evaluated (see Johnson et al 
(2016) for a benchmark of the most well-known open sourced QRS detectors). For FQRS 
detection many FQRS detection algorithms were open sourced during the Challenge 2013. 
These FQRS detectors have often been adapted from traditional adult QRS detectors with 
some parameters, such as the refractory period, adjusted for the higher metabolic rate. 
However, so far, it has been impossible to compare their relative performance, because the 
outcome of the detection were the combined result of many cascaded steps (figure 6), that 
are necessary to separate the FECG signal from the abdominal mixture. To the authors’ best 
knowledge, no published work to date has focused on benchmarking FQRS detectors on the 
extracted NI-FECG for a given source separation algorithm.

8.3. Source separation

8.3.1. Before the 2013 PhysioNet/Computing in Cardiology Challenge. The FQRS location is 
the primary feature that any algorithm must extract from the AECG signal mixture. This peak 

Figure 7. Effect of varying the low cut-off frequency fb for the preprocessing step. Note 
that at =f 10b  Hz most of the frequency content of the P and the T-wave of the MECG 
have been filtered out, leaving only the FQRS and the MQRS. Picture reproduced from 
Behar et al (2014b).
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detection is used for computing the FHR, detecting rhythm abnormalities, or is further used as 
an anchor point for extracting features from the FECG waveform. Ascertaining the location of 
the FQRS is simplified by first separating the FECG from the AECG, and several approaches 
have been suggested in the literature. These include: principal component analysis (Kanjilal 
et al 1997), independent component analysis (ICA) (De Lathauwer et al 2000, Zarzoso and 
Nandi 2001), or periodic component analysis (πCA) (Sameni et al 2008) which makes use 
of the ECG’s periodicity. In essence, these approaches are a form of blind source separation 
(or in the case of πCA semi-blind source), which aim to separate the underlying statistically 
independent sources into three categories: MECG, FECG and noise. Other techniques, which 
operate in lower dimensions (i.e. using a lower number of, or single, abdominal channel) 
include adaptive filtering (Widrow et al 1975, Camps et al 2001, Behar et al 2014b), template 
subtraction (Cerutti et al 1986, Kanjilal et al 1997, Martens et al 2007, Ungureanu et al 2007), 
Kalman filtering (KF) (Sameni 2008, Zaunseder et al 2012, Andreotti et al 2014), Gaussian 
processes (Niknazar et al 2013a), tensor decomposition (Niknazar et al 2012) and the com-
bination of multiple methods (Behar et al 2014d). Refer to chapter 3 of the thesis from Behar 
(2014) for a detailed presentation of some of the main algorithms. Table 3 classifies these 
algorithms into three categories: blind source separation (BSS), adaptive filtering methods 
(AM) and template subtraction methods (TS).

8.3.2. The 2013 PhysioNet/Computing in Cardiology Challenge. The 2013 PhysioNet/Com-
puting in Cardiology Challenge (Silva et al 2013) addressed the topic of NI-FECG extrac-
tion. Over 50 teams entered the competitions and benchmarked their algorithms on the same 
dataset and using the same statistics. A variety of separation algorithms were used such as: 
template subtraction (Andreotti et al 2013, Christov et al 2013, Dessì et al 2013, Di Maria et al 
2013, Kropf et al 2013, Kuzilek and Lhotska 2013, Lipponen and Tarvainen 2013, Liu and Li 
2013, Llamedo et al 2013, Lukos~evic~ius and Marozas 2013, Maier and Dickhaus 2013, Marco 
et al 2013, Starc 2013), Kalman filtering (Andreotti et al 2013, Haghpanahi and Borkholder 
2013), tensor decomposition (Akhbari et al 2013, Niknazar et al 2013b), deflation (Fatemi 
et al 2013), adaptive filtering (Rodrigues 2013) as well as a fusion of different algorithms 
(Behar et al 2013b). Separation steps used in the best entries of the Challenge and follow-up 
special issue (Clifford et al 2014d) included: fusion of multiple source separation algorithms 
(Behar et al 2014d), template subtraction (Andreotti et al 2014), combination of template 
subtraction and ICA (Varanini et al 2014) and adaptive filtering (Rodrigues 2013).

8.3.3. After the Challenge 2013. Recent work from Ghaffari et al (2015) directed at FQRS 
detection without having to separate the FECG from the abdominal mixture. The authors 

Table 3. Foetal separation algorithms for NI-FECG extraction.

Category Examples

BSS BSSica (De Lathauwer et al 2000, Zarzoso and Nandi 2001), BSSπCA (Sameni et al 2008), 
GP (Niknazar et al 2013a), TD (Niknazar et al 2012)

AM AMlms (Widrow et al 1975), AMrls and AMesn (Behar et al 2014b)
TS TSc (Cerutti et al 1986), TSm (Martens et al 2007), TSpca (Kanjilal et al 1997), TSlp 

(Ungureanu et al 2007), TSekf (Sameni 2008, Zaunseder et al 2012)

BSS: blind source separation.
AM: adaptive filtering methods.
TS: template subtraction.
GP: Gaussian processes.
TD: tensor decomposition.
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performed MQRS detection and looked for high energy zones out of MQRS domain. 
Although the authors report a high performance for their algorithm they do not separate their 
data into train-validation-test sets and they did not evaluate the algorithm on set-b of the 
PCDB which would have provided an objective performance measure for comparison against 
other algorithms. Instead, the authors presents a table summarising the performance of their 
algorithm against other published ones, but with an evaluation performed on different data-
bases, and using differently defined ‘accuracy’ measures for some of the table entries. Finally, 
the reported accuracy figures sometime come from the evaluation of an algorithm on a test 
set of data and sometimes on a training set which makes unfair and irrelevant comparisons. 
Such publications are a classic example of the non-rigorous approach often seen in the signal 
processing literature, where the authors’ results are often inflated due to over fitting, and hand 
selection of non-comparable metrics. The work of Liu and Luan (2015) used an adaptive algo-
rithm based on a combination of ICA, ensemble empirical mode decomposition (EEMD), and 
wavelet shrinkage (WS) denoising. In Ghazdali et al (2015) the authors developed a new BSS 
approach for NI-FECG extraction. In Martinek et al (2015) the authors suggested a multi-
channel adaptive neuro-fuzzy interference system to extract the NI-FECG. Although some of 
these works seem promising, their evaluations suffer from similar limitations as in Ghaffari 
et al (2015), in that it is not possible to draw substantial conclusions with respect to the rela-
tive performance of these algorithms and with respect to existing ones. In Noorzadeh et al 
(2015) the authors used two phonocardiogram (PCG) reference channels (one for the foetus 
and one for the mother) and focused on extracting the FECG and MECG morphology using a 
Gaussian process based algorithm. Although the approach is of interest from a machine learn-
ing perspective, its clinical practicality is questionable given that two additional PCGs sen-
sors have to be correctly positioned and can be prone to noise. Moreover, the data used in the 
study was recorded from a single pregnant woman in the 8th month of pregnancy. In Andreotti 
et al (2016), the authors benchmarked eight extraction techniques in terms of FQRS detec-
tion accuracy, using a large database of simulated signals (45.8 h of data with almost 1.1 
million foetal R-peaks) containing different types of events (further described in section 7.3). 
This contribution provides a large collection of simulations, extraction algorithms and perfor-
mance analysis, all made freely available on www.Physionet.org (Goldberger et al 2000). The 
authors’ results have shown that all of the three categories of techniques (presented in table 3) 
are able to extract FQRS complexes with some relative differences in the extraction outcome 
depending on the types of non-stationarities present in the abdominal mixture. Within the 
TS category TSpca (Kanjilal et al 1997) performed the best, within the AM category AMesn 
(Behar et al 2014b) performed the best and within the BSS category BSSica performed the 
best. Finally, Yaping et al (Ma et al 2015) proposed a multichannel nonlinear adaptive noise 
canceller based on the generalized functional link artificial neural network (GFLANN). They 
compared their algorithm against alternative AMs and made use of a training and test set, 
although the volume of their database remained small (14, 1 min segments for the training set 
and 8, 1 min segments for the test set). They showed that their algorithm was outperforming 
all the benchmark techniques with exception of the ESN (Behar et al 2014b). However, the 
computational time of the GFLANN was 3–6 times lower than for the ESN.

There have been a number of contributions published since the 2013 Challenge. However, 
many of those did not take into account the critical points stressed during the Challenge: 
the necessary usage of a separate training and test set and the requirement for reporting a 
novel algorithm and benchmark performances using the same database and same evaluation 
statistics. Given the existence of the Challenge there is little reason not to include these data 
in any future publications. We therefore further stress the need for standardised evaluation in 
the comparison of new NI-FECG algorithms.
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8.4. Channel selection

After the source separation step is performed the algorithm has to deal with a number of ECG 
residuals (in the case of the TS or AM algorithms) which contain the FECG and noise comp-
onents (in the case of blind source separation). One of the channel RR time series need to be 
selected or the RR-intervals time series from all (or a subset) of the extracted channels need 
to be combined. Multiple approaches were suggested in the context of the Challenge 2013. 
These were usually based on the regularity measure of the RR time series (Andreotti et al 
2014, Behar et al 2014d, Liu et al 2014, Varanini et al 2014). However, such approaches are 
likely limited in the instances of abnormal or non-stationary rhythms (acceleration/decelera-
tion). This needs to be evaluated.

Additional ideas emerged with the Challenge 2014 (Moody et al 2014) that addressed 
the topic of Robust Detection of Heart Beats in Multimodal Data. Participants were asked to 
robustly estimate the R-peak location from multiple channels of biosignals including (adult) 
ECG. In particular one of the best approaches in this competition made use of signal quality 
indices to assess what channel to trust (Johnson et al 2015). Signal quality was successfully 
used in the context of NI-FECG in Liu et al (2014), in order to exclude bad quality abdominal 
channels and in (Behar et al 2014b, Behar et al 2013c) to remove bad quality maternal chest 
ECG leads that were used as a reference in an AM framework. However, signal quality was 
not used on the residual signals extracted to select what channel was the most trustworthy. The 
beat comparison measure (BCM) (Behar et al 2014d) was also used as a first check to exclude 
QRS time series detected on the residual signal that matched the MQRS time series. This is 
important in cases where a TS or AM technique would fail and leave a high amplitude MECG 
contribution in the residual signal. These signal quality indices (SQIs) allow more accurate 
MQRS extraction, to some extend discard some very noisy segment and avoid confusing the 
MQRS with the FQRS time series. However, no SQI specifically designed for abdominal 
FECG quality evaluation has been proven to improve NI-FECG extraction.

8.5. Intermediate conclusions

• Using a high baseline wander cut-off frequency fb to prefilter the signal has improved 
FQRS detection. It naturally removes the maternal (and foetal) P and T-waves, thus facili-
tating the source separation (Behar et al 2014b, 2014d, Andreotti et al 2016).

• For MQRS detection we recommend the use of classical open sourced adult QRS detec-
tors such as the ones benchmarked in Johnson et al (2016)8 or in Oster et al (2013).

• There are different families of source separation algorithms which can be categorised 
as Behar et al (2014d): (1) blind/semi-blind (BSS), (2) adaptive filtering methods (AM) 
and (3) template subtraction (TS). In addition, some work combined multiple separation 
algorithms.

• Among the template subtraction techniques TSpca gave the best results over alternative 
template subtraction (TS) techniques and was successfully used by some of the top 
Challenge participants (Behar et al 2014d, Lipponen and Tarvainen 2014, Varanini et al 
2014) and in a recent exhaustive algorithms benchmark on simulated data (Andreotti et al 
2016). Among the adaptive techniques the AMesn has proved to be the best in the work of 
Andreotti et al (2016), Behar et al (2014b) and Ma et al (2015).

• Adding an ICA step after performing source separation using one of the temporal tech-
niques showed to improve the FQRS detection performances (Behar et al 2014d, Varanini 
et al 2014).

8 Available at: https://github.com/alistairewj/peak-detector
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• No single extraction method showed to be systematically the best when considering 
different types of non-stationarities in simulated data (Andreotti et al 2016). Accordingly, 
Behar et al (2014d) showed that combining a series of NI-FECG extraction algorithm was 
performing better than any individual algorithm on the Physionet Challenge database.

• When using ICA careful thought should be given when setting the number of inputs and 
outputs (expected sources). Andreotti et al (2016) highlighted that an inappropriate number 
of sources could result in sub-optimal source separation performance of the NI-FECG. 
In their work the authors advised to remove the low energy components (low eigenvalue) 
obtained using a PCA dimension reduction step.

• Most source separation algorithms have parameters that need to be tuned. We recommend 
using grid search or random search (Behar et al 2013a, 2014d)9 on a separate training 
dataset in order to evaluate what parameters has the highest impact and find optimal 
values rather than hand-tuning them (which is sometimes performed on the same set).

• Open-source code for NI-FECG extraction techniques are available through the 
OSET toolbox10, on Physionet under the Challenge 201311 as well as on the fecgsyn 
Physionet12.

9. Morphological analysis

The ECG allows for a more in-depth interpretation of the electrical activity of the heart than 
only HR and HRV. However, morphological analysis of the FECG waveform is currently not 
performed in clinical practice with the exception of the STAN monitor (Neoventa Medical, 
Mölndal, Sweden), which uses an invasive scalp ECG (SECG) electrode.

Several ECG morphological analysis features have been studied in a foetal monitoring 
context (see chapter 6 of Symonds’ book for a good summary—Symonds et al 2001). These 
include: width and shape of the QRS complex, R / S ratio (for foetal vector cardiography), 
P wave morphology (inversion, notching and disappearance), PR interval, QT interval and 
ST-segment. A summary of the temporal and morphological intervals in the FECG is given in 
table 4. Note that the length of these intervals highly depends on the gestational age.

In the next paragraphs particular focus is given to the QT measurements, the ST segments 
and the T/QRS ratio, which have been proposed in literature and STAN monitoring, showing 
promising results:

QT-segment: In adults, changes in the T-wave occur during myocardial ischemia. It has 
been shown that acute myocardial ischemia will modify the duration of the QT interval 
and increase repolarisation heterogeneity (Candil and Luengo 2008). The FQT interval 
has thus been of much interest in the monitoring of foetal hypoxia. In a study by Oudijk 
et al (2004), a significant shortening of the QT interval has been shown to be associated 
with intrapartum hypoxia resulting in metabolic acidosis, whereas in normal labour none 
of such changes do occur. In Behar et al (2014e) the authors showed the possibility to 
recover the foetal QT from the NI-FECG. Three clinicians manually annotated the foetal 
QT on the NI-FECG and FSE from 22 labouring women. The annotations were fused and 
the errors found between NI-FECG and FSE QT were in the range of QT annotations 
performed on adult ECGs.

9 Available at: www.physionet.org/physiotools/random-search/
10 Available at: http://spc.shirazu.ac.ir/products/Featured-Products/oset/
11 Available at: http://physionet.org/challenge/2013/sources/
12 Available at: http://physionet.org/physiotools/ipmcode/fecgsyn/
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ST-segment: Hypoxia typically causes ST segment and T wave elevations in the FECG. 
This is due to a catecholamine surge, h-adrenoceptor activation and myocardial glycog-
enolysis (Hökegård et al 1981, Rosen et al 1984, Widmark et al 1991). In Clifford et al 
(2011), the authors recorded the NI-FECG on 32 term labouring women who had a FSE 
placed after clinical indication. They evaluated the accuracy of the ST segment extracted 
on the NI-FECG (by an automated algorithm) against the reference ST segment extracted 
from the FSE (using the same automated algorithm.) The root mean square error between 
the ST change calculated by both modalities averaged over all processed segments was 
3.2% thus showing that accurate extraction of the ST segment from the NI-FECG is 
feasible. However, one of the main limitations of the study was the usage of the same 
algorithm for measuring the ST segments on the FSE and NI-FECG. Ideally, the refer-
ence FSE should be annotated manually.

T/QRS-ratio: The T/QRS ratio is defined as the height of the T-peak divided by the QRS 
amplitude. The interest in using the T/QRS ratio as a proxy for the ST segment originates 
from an animal experiment by Greene et al (1982), where the authors examined 10 chroni-
cally instrumented foetal lambs, 115 days to term. The study showed that the normal 
T/QRS ratio was lower than 0.30, whereas it was in the range of 0.17 to 0.59 for eight of 
the lambs after inducing hypoxia and reverted to normal with normoxia. The SECG-based 
STAN monitor uses the T/QRS ratio as a proxy for the ST segment deviation. The use 
of the STAN analyser together with competency-based training on foetal monitoring has 
recently shown a significant decrease in the number of cesarean sections at St George’s 
Maternity Unit (St George’s hospital, London, UK). In the mean time hypoxic ischaemic 
encephalopathy and early neonatal death has slightly decreased (Chandraharan et al 
2013). However, a recent Cochrane study (Neilson et al 2006) reviewed six trials that 
compared the effect of analysing SECG waveforms during labour with alternative foetal 
monitoring methods, and showed that no significant difference in primary outcomes were 
achieved using the STAN ST proxy (based on five trials using different versions of the 

Figure 8. ECG waveform with characteristic waves. Note that the PR segment is 
sometimes called the PQ segment.

                                        



R21

STAN monitor with a total of 15,338 women). More recently, another study including 
11,108 women has revealed that ST-segment analysis, as an adjunct to conventional 
intrapartum electronic foetal heart-rate monitoring, did not improve perinatal outcomes 
and did not decrease operative-delivery rates either (Belfort et al 2015). This suggests that 
the STAN proxy for the ST level is either not accurate enough, or that it does not provide 
meaningful information for foetal monitoring.

The assumption of the above mentioned studies, is that heart abnormalities or foetal 
hypoxic suffering will manifest in the FECG waveform. This is supported by observations 
in adults and animal models. However a limited number of studies have managed to show a 

Table 4. Definition of temporal and morphological intervals in the FECG.

Time intervals

Parameters 
name Definition Interval

P wave 
duration

Duration between the onset 
and end of the P-wave

22–83 ms Stinstra et al (2002) (n  =  400, wg: 16–42)a

PR segment Duration between P and R 
peaks

66–166 ms Stinstra et al (2002) (n  =  534, wg: 16–42)a 
86–141 ms Taylor et al (2005) (n  =  12, wg: 24–41)

RT segment Duration between R and T 
peaks

—

QRS 
complex

Duration between the onset 
of the Q wave and end of the 
S wave

18–75 ms Stinstra et al (2002) (n  =  579, wg: 16–42)a 
26–61 ms Brambati and Pardi (1980) (n  =  421, wg:17–41)b 
47–85 ms Taylor et al (2005) (n  =  12, wg: 24–41)

T wave Duration between onset and 
end of the T wave

85–180 ms Stinstra et al (2002) (n  =  412, wg: 16–42)a

QT 
segment

Duration between Q onset 
and end of the T wave

149–339 ms Stinstra et al (2002) (n  =  412, wg: 16–42)a, 
207–338 ms Abboud et al (1990) (n  =  21, wg: 32–41), 
233–329 ms Taylor et al (2005) (n  =  11, wg: 24–41)

Amplitude and area measures

Parameter name Definition

P wave height Amplitude from isoelectric line to peak of R-wave
P wave area Area between the P wave and the isoelectric line
PR segment elevation Amplitude difference between the end of the P wave and the start of the Q 

wave
Q wave height Amplitude from isoelectric line to peak of Q-wave
R wave height Amplitude from isoelectric line to peak of R-wave
S wave height Amplitude from isoelectric line to peak of S-wave
ST segment elevation Amplitude between the end of the S wave at the J point and the begining of 

the T-wave
T wave height Amplitude from isoelectric line to peak of T-wave
T wave area Area between T wave and isoelectric line
T/QRS-ratio Ratio of height of T wave to amplitude of the QRS complex

Note: (Table adapted from Symonds et al (2001) p 66). See figure 8 for a pictorial representation of a subset of 
these wave delineations.
n: number of foetuses
wg: number of weeks of gestation.
a Measurement on magnetocardiography.
b By observation of the authors’ figure 2.
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significant improvement in foetal outcomes or decrease the proportion of cesarean deliveries, 
because of the difficulty in performing accurate morphological analysis on the FECG (either 
through SECG or AECG). Symonds et al concluded in 2001: ‘The issue of the value of current 
use of the FECG morphological characteristics and time intervals for the prediction of foetal 
compromise remains promising but unresolved’ (Symonds et al 2001). It is fair to say that in 
2016, 15 years later, the problem remains unresolved.

9.1. Preprocessing

Preliminary processing steps are crucial for the outcome of morphological analysis. For 
instance, the effect of the baseline frequency, fb, on the FQT extraction is yet to be determined. 
It is known that a high fb will distort the adult T-wave morphology, negatively affecting the QT 
estimation. However, the baseline wander is rather substantial on the abdominal recordings 
and needs to be significantly attenuated. The trade-off between less QT distortion and good 
baseline removal needs to be studied. In adult ECG a cut-off around 0.5 Hz is traditionally 
used as a upper bound to preserve most of the T-wave (Kligfield et al 2007). Several other 
preprocessing steps play an important role for the reliability of morphological analysis, one 
can cite for example the accuracy of the detection of the FQRS, the generation of an average 
template (in case of averaging of several beats), and the reliability of the automatic segmenta-
tion techniques. Moreover, the influence of alternative extraction methods on morphological 
analysis was evaluated (Andreotti et al 2016). It was shown by using simulated data that the 
transformation from the observation to source domain by using a BSS technique, can signifi-
cantly change the estimates of FQT intervals. Morphological analysis should therefore only 
be performed in the original observation domain.

9.2. Algorithms

In Sameni et al (2007b) a Bayesian filtering framework was introduced for the purpose of 
extracting the FECG. This original algorithm (denoted EKFS) used prior information on the 
MECG cycle morphology in order to suppress it from the abdominal mixture. The FECG 
could then be estimated by subtracting the MECG from the AECG thus leaving the FECG 
plus noise in the residual. Niknazar et al (2013a) extended the EKFS so that both priors 
on the MECG and FECG cycles morphology were modelled (algorithm denoted EKFN). 
At each sample of the AECG signal the contribution of the FECG and MECG were esti-
mated. As such the algorithm allowed to estimate the beat by beat FECG morphology while 
filtering out the noise contaminants. The algorithm was essentially evaluated on artificial 
data generated using the dipole model of Sameni et al (2007a). The equations were recently 
reformulated in Behar et al (2014c) (denoted EKFD) to account for some drift in the filter-
ing process as well as to allow the prior on the FECG cycle morphology to evolve so to 
account for the non-stationarity of the FECG. The EKFD showed better performance in 
estimating the foetal QT from simulated data generated using the fecgsyn simulator (Behar 
et al 2014a) than EKFS or EKFN. Figure 5 shows an example of an artificial AECG mixture 
and the estimated FECG using the EKFD algorithm on top of the ‘true’ FECG (i.e. FECG 
generated by the simulator and before being mixed on the abdomen with the MECG and 
noise.) More work for the validation of this NI-FECG morphological extraction approach is 
needed, particularly by evaluating the algorithms on real data and for a variety of morpho-
logical measures (table 4).

Andreotti et al (2016) compared the ability of retrieving the FQT and T/QRS ratio from 
the extracted FECG using a variety of separation algorithms. They showed on simulated 
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data that the simple TS class of methods was performing better than the alternative methods 
such as ICA and the echo state neural network. This was interpreted as being due to the fact 
that more adaptive extraction algorithms are more likely to cause foetal T-wave distortion 
and in the case of ICA the T-wave measured in the source domain will also be different than 
in the observation domain. Moreover, all techniques used in Andreotti et al (2016) have 
been previously optimised for accurate FQRS detection, therefore, those methods’ para-
meters might be suboptimal for morphology analysis. This original experiment needs to be 
reproduced on real data as its conclusions will direct the research in NI-FECG morphologi-
cal extraction by identifying what class of methods (BSS, AM, TS) is the most suited to this 
purpose.

9.3. Intermediate conclusions

• Careful consideration should be given to the prefiltering cut-off frequencies when 
considering morphological analysis. A trade-off between baseline wander removal and 
distortions of the FECG morphology should be further investigated.

• Performing morphological analysis after a BSS step (i.e. in the source domain) can lead 
to inaccurate estimation of the morphological parameters (Andreotti et al 2016).

• We motivate pushing forward morphological analysis of the NI-FECG and in particular 
the study of the FQT segment, whose usefulness is supported by studies in adult ECG and 
animal models.

• The Dual Kalman filter built upon the Bayesian filtering framework introduced in Sameni 
et al (2007b) represents a good candidate algorithm for NI-FECG morphological analysis 
(Behar et al 2013).

• Preprocessing, template generation and segmentation are crucial aspects of morphological 
analyses and need further investigation/development.

• There is, to date, no open-source segmentation algorithm specifically designed for FECG 
morphological analysis (whether for the SECG or the NI-FECG). This is lacking in the field.

10. Performance measures

10.1. Obtaining reference annotations

The process of obtaining annotations from experts should be considered carefully, since it 
is a time consuming process which suffers from inter-rater variability. While aiming at a 
consensus annotation, it is useful to consider crowd sourcing annotations from a number 
of individuals such as in the recent work of Zhu et al (2014, 2015, 2013). Zhu et al com-
bined adult QT annotations from different individuals and automated algorithms in order 
to improve the estimation of the reference annotations. This algorithm has recently been 
used in Behar et al (2014e) to estimate foetal QT (FQT) by merging the annotations from 
three medical professionals (see figure  9). We recommend using a consensus of at least 
three human annotations for obtaining morphological references such as FQT interval part-
icularly given that no open SECG segmentation and signal quality algorithm exists to date. 
(Although signal quality research on adult data might be sifficient and recent research indi-
cates that automated algorithms can provide accurate ST estimates (Clifford et al 2011).) 
Regarding FQRS references, we recommend to record and use the SECG, then employ an 
accurate FQRS detector (used in the Challenge) in order to identify the location of reference 
QRS complexes. If the SECG is not available, multiple expert annotation of raw ultrasound 
data may prove acceptable.
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10.2. Foetal heart rate

It is possible to assess the error for FQRS detection using a window based metric (e.g. FQRS 
within  ±XXX ms window) or using a distance based measures (e.g. absolute error or root 
mean square error between the detected R-peak and the true R-peak locations—see table 5). 
Following the ANSI/AAMI guidelines (ANSI/AAMI/ISO EC57 1998/(R)2008) the classi-
cal statistics for evaluating QRS detectors are: sensitivity (Se) and positive predictive value 
(PPV). A detected QRS is considered a true positive if it is within 150 ms from the reference 
annotation for adults. In the context of NI-FECG extraction, a window of 50 ms is classically 
used to take into account the higher foetal HR than HR in adults. The bxb() function from the 
WFDB Toolbox (Goldberger et al 2000, Silva and Moody 2014) can be used to compute the 
Se and PPV statistics. Defining a matching window is necessary because one cannot expect 
that every detectors will detect a QRS complex with a single sample accuracy.

=
+

=
+

Se
TP

TP FN
, PPV

TP

TP FP
, (1)

Figure 9. Comparison of annotations performed on an average FSE and NI-FECG 
ECG beat by three experts. This example illustrates the importance of having multiple 
experts labelling the data particularly in the case of the NI-FECG which is noisier 
and thus more challenging to annotate. For this example each annotator recorded the 
Q-onset and T-end for the FSE and NI-FECG separately. Thus each annotator produced 
two annotations points for the Q-onset (one on the FSE and one on the NI-FECG) and 
two for the T-end (one on the FSE and one on the NI-FECG). Picture adapted from 
Behar (2014).
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Table 5. Summary of the statistics used for assessing the performances of FQRS 
detection and FECG morphological analysis (on the example of FQT and T-wave 
height).

Foetal heart rate statistics

Statistics Definition and comments

=
+

Se
TP

TP FN

The proportion of true FQRS that have been detected out 
of the total number of true FQRS. This statistic tells how 
good an algorithms is at finding the true FQRS. The ANSI/
AAMI guidelines (ANSI/AAMI/ISO EC57 1998/(R)2008) 
recommend to report Se when evaluating a QRS detector.

=
+

PPV
TP

TP FP

The proportion of the true FQRS that have been detected out 
of all the detected FQRS. This statistic tells how good the 
algorithm is at identifying true FQRS out of all the detections 
it makes. The ANSI/AAMI guidelines (ANSI/AAMI/ISO 
EC57 1998/(R)2008) recommend to report the PPV when 
evaluating a QRS detector.

= ⋅
⋅
+

F 2
PPV Se

PPV Se
1

The F1 statistic is an average of the Se and PPV thus providing 
a good summary metric in the absence of TN. It is a harmonic 
mean and is suited for situations when the average of rates is 
desired (Sasaki 2007). It can be used as an accuracy measure 
when training an algorithm and to summarise the final overall 
performance of it in accurately detecting the R-peak locations. 
This statistic was introduced in the context of NI-FECG in 
Behar et al (2014b).

/ ∑= ∆
=

E E h1 4
1

12
k k

i
i

1

12
2

Mean square error computed from the differences between 
matched reference and test FHR measurements at 12 instances 
for each one minute segment (i.e. one approximately every 5 s). 
∆ = −h h hi i

t
i
r, with hi

t the test FHR on the ith segment and hi
r the 

reference FHR for the ith segment. The purpose of this statistic is 
to assess the accuracy of an algorithm in evaluating the HR from 
the detected R-peaks. This statistic was introduced in Silva et al 
(2013).

/ ∑= ∆
=

E E
M

RR2 5
1k k

i

N

i
1

2
Root mean square error computed from the differences 
between matched reference and test RR intervals. 
∆ = −RR RR RRi i

t
i
r with RRi

t the reference RR, N is the 
number of test measurements and M is the number of 
reference measurements. The purpose of this statistic is to 
assess an algorithm in its performance to accurately evaluate 
the RR interval. This statistic was introduced in Silva et al 
(2013).

HRm  =  N/M Percentage of the HR within  ±5 bpm of the reference HR. 
M number of reference points, N number of test points that are 
within  ±5 bpm of their corresponding reference measurement. 
The purpose of this statistic is to evaluate the accuracy of an 
algorithm in extracting the heart rate with a tolerance of  ±5 
bpm as used in industrial practice (ANSI/AAMI 2002). Thus 
in this case the statistic is window based and not RMS based. 
This measure was suggested in Behar et al (2014b).

(Continued)
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where TP, FP and FN are true positive (correctly identified FQRS), false positive (wrongly 
detected FQRS) and false negative (missed FQRS) detections respectively. For algorithm 
parameter optimisation, the F1 statistic can be used as the accuracy measure. In the context of 
binary classification, F1 is defined as:

= ⋅
⋅
+

=
⋅

⋅ + +
F 2

PPV Se

PPV Se

2 TP

2 TP FN FP
.1 (2)

The F1 measure is an harmonic mean. It is suited to situation when the average of rates 
is desired (Sasaki 2007). In order to get an idea of why the F1 measure is preferable over 
the arithmetic mean, consider the following example: =Se 1 and ≈PPV 0 (which could cor-
respond to a QRS detector annotating every single sample of the ECG as a R-peak) then 
the arithmetic mean would be  ≈0.5. Meanwhile, we would have ≈F 01  which is certainly 
more representative of the outcome of the QRS detection algorithms. The F1 measure was 
introduced in the context of QRS detection in Behar et al (2014b) and well adopted by many 
participants for the follow-up special issue to the Physionet Challenge 2013 (Andreotti et al 
2014, Behar et al 2014d, Di Maria et al 2014, Liu et al 2014) as well as used for the Challenge 
2014 (Johnson et al 2015).

Using a window-based approach also has limitations: let assume that two sets of annota-
tions are provided, a reference set with stable fiducial markers (i.e. every beat is marked at 
the same location on the QRS complex, say the R-wave peak), and another with highly vari-
able markers (e.g. because its creator attempted unsuccessfully to mark QRS onsets, with an 
unreliable method). Assume, however, that the second set does contain an annotation for each 
beat, within bxb’s window of tolerance. Using bxb, both sets would be in perfect agreement, 
but no information on the precision of the FQRS locations (and consequently the estimated 
RR intervals) would be given. It is therefore important to compare also the ‘interval measure-
ments’ and not only the accuracy of the QRS detection. This is the idea behind the use of mxm 
in the E2/E5 Challenge scores (refer to table 5).

Morphological analysis statistics

Statistics Definition and comments

( / ( ) )∑ ∑= ⋅ −
= =

r f rSNR 20 log
i

K

i
i

K

i i
1

2

1

2
The SNR, in decibels (dB), between a reference r and an 
extracted signal f with K samples. This measure can only be 
used with simulated data where the ground truth NI-FECG 
signal is known on each abdominal channel (i.e. before being 
mixed with the maternal and foetal signals.) It as been used in 
Behar et al (2013).

= | − |
∼
FQT FQT FQTa r

Absolute error between the measured abdominal FQT (FQTa) 
and a reference FQT interval (in seconds). This reference can 
be obtained by annotating or automatically detecting FQT 
in the SECG recordings or using simulated data (in which 
case the reference FECG is known). The statistic was used 
in Andreotti et al (2016). It can be used for any of the time 
interval measures listed in table 4.

= | − |
∼
TQRS TQRS TQRSa r The foetal T/QRS error (

∼
FQRS) is evaluated by taking the 

absolute error T/QRS ratios (see table 4) from the extracted 
NI-FECG and the reference ratio that can be obtained from 
the FSE or known when using simulated data (Andreotti 
et al 2016).

Table 5. (Continued)
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The motivation for performing FQRS detection can be two-folds: (i) obtaining an accurate 
estimate of the heart rate; (ii) localising precisely the absolute position of the R-peaks in order 
to use them as anchor points for further processing such as reconstructing the morphology 
of the NI-FECG and automated QT and ST measurements. Some error measurements better 
serve the purpose of (i) whereas other will better serve (ii). Ultimately the choice of the FQRS 
detection precision measurement should be conditioned by the clinical problem i.e. it should 
reflect how well the algorithm is performing in identifying a pathology or an abnormal event, 
for example. In order to clarify the purpose and advantages or limitations of the main statis-
tics, a discussion together with a summary table (table 5) are included below.

Using the RMS error as a distance measure between two RR time-series (event E1/E4 
of the Challenge) might be sub-optimal in many cases. Figure 10 illustrates this statement 
by showing a real example where the reference and algorithms estimated FHR are mostly 
equivalent apart from a small interval at 47 s. Because of this local error the usage of the RMS 
measure will drive the error for this record to a high value. The problem will only be present 
when the FHR time-series outputted by the algorithm is not smoothed. However rigorous 
smoothing will also ‘remove’ the high/low variations in HR due to the presence of ectopic 
beats for example or might lead to an inaccurate outcome in the case of high variability/inad-
equate calibration of the smoothing function parameters.

10.3. Morphological analysis

A number of performance statistics have been used for NI-FECG morphological analysis. 
Some SNR based measures have been used for evaluating the extraction performance using 
the simulator model presented in section 7.3 because the ‘true’ NI-FECG (i.e. the ground 
truth) is known with the simulator. The SNR, in decibels (dB), between a reference r and an 
extracted signal f with K samples is defined as in Behar et al (2013):

( )∑ ∑= ⋅ −
= =

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟r f rSNR 20 log /

i

K

i
i

K

i i
1

2

1

2

However, ultimately the ability of an algorithm to extract an accurate FECG morphology 
should be assessed in terms of clinically significant parameters, such as the QT segment length 
or ST elevation. This is because computing an SNR based similarity measure between a refer-
ence and extracted ECG gives an overall picture of the extraction, but provides no insights into 
whether it is possible to recover clinically important parameters from the extracted NI-FECG 

Figure 10. FHR trace. The plot displays the reference and extracted FHR for the 
first 60 sec of channel 4, record 172a from the NIFECGDB. Black lines indicate the 
delineation at  ±5 bmp with respect to the reference FHR trace.
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(Behar et al 2013). One of the main challenges in defining these measures with real datasets 
is the lack of reference (ground truth). By opposition to adult ECG, where the intervals of 
interest are manually annotated on the ECG and used as the reference, it is not possible to 
ensure that manual annotations performed on the extracted NI-FECG are accurate since it is 
not known whether or not the NI-FECG has been correctly separated from the signal mixture 
in the first place. For that purpose the recording and annotation of the scalp ECG is required 
in order to be used as the ground truth. This means that such data and analysis can only be 
recorded during labour.

Time intervals: for time intervals (see table 4), the absolute error between the measured 
and reference intervals (in seconds) can be computed. The reference interval can be obtained 
by manual or automated detection of the segment on the SECG or using simulated data 
(in which case the reference FECG is known). For example for QT analysis the statistic is 
expressed below in mathematical form:

=| − |
∼
FQT FQT FQTa r

where FQTa corresponds to the segment length detected /measured on the abdominal ECG, 
FQTr to the segment length of the reference annotation (detected or manually measured on 

the SECG) and 
∼
FQT to the absolute error in estimating the FQT. The measure is given on the 

example of the evaluation of the FQT accuracy but it can be used for any time interval listed 
in table 4.

T/QRS ratio: The foetal T/QRS error (
∼
FQRS) is evaluated by taking the absolute error 

T/QRS ratios (see table  4) from the extracted NI-FECG (TQRSa) and the reference ratio 
(TQRSr) that can be obtained from the FSE (or known when using simulated data—Andreotti 
et al 2016).

=| − |
∼
TQRS TQRS TQRSa r

10.4. Intermediate conclusion

The choice of statistics very much depends on the intended use of the algorithm:

• The Se, PPV, F1 (ANSI/AAMI/ISO EC57 1998/(R)2008, Behar et al 2014b) statistics 
allow for the assessment of the presence of R-peaks within a tolerance window (typically 
50 ms for this application (Behar et al 2014b)). The length of this window is shorter for 
FECG than for adult ECG (standard of 150 ms) due to the higher FHR.

• The statistic for E2/E5 using the Physionet mxm function allows to assess whether the 
RR intervals are accurately evaluated. It assesses whether a QRS detector is consistent in 
positioning the fiducial point on the QRS waveform (not necessarily the R-peak).

• The statistic for E1/E4 allows to assess whether the detection can result in accurate FHR 
evaluation. It is however prone to outlier (RMS based statistic) and we recommend using 
the HRm (Behar et al 2014b) (see table 5).

• Ultimately the ability of an algorithm to extract an accurate FECG morphology should 
be assessed in terms of clinically significant parameters. Example of such measures were 
suggested in Andreotti et al (2016) and are listed in table 5 for the example of the evalu-
ation of FQT extraction.

• When evaluating a novel NI-FECG algorithms and presenting results for benchmark 
methods the results should be presented for the evaluation of the novel and benchmark 
algorithms on the same database and using the same evaluation statistics. Given the recent 
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number of open source NI-FECG extraction algorithms (that can be used as benchmarks) 
and of the PCDB this should be a requirement for a novel scientific contribution to be 
accepted for publication.

11. Discussion

The field of NI-FECG is promising and the apparition of the first generation of commercial 
monitors confirms the general interest in using this monitoring technique. However, there are 
many important aspects that need to be researched in order to allow NI-FECG to become a 
standard for continuous foetal monitoring.

The first critical step is to build an open access reference database of NI-FECG signals. The 
recent introduction of the PCDB helped to define what the requirements of such a database 
are: it should encompass enough recordings, contains physiological events such as contrac-
tion and HR acceleration and and contains medical annotations. Such a database will allow 
benchmarking the variety of NI-FECG extraction algorithms that were introduced in the past 
decade and any novel contribution. Indeed, although the number of algorithms published for 
this application keeps flourishing, it is very challenging to make an objective statement on 
their relative performance. In the meantime the fecgsyn simulator presented in section 7.3 can 
be used for proof of concept.

A number of steps are critical in extracting the FHR from abdominal recordings. These 
were divided as being: (1) preprocessing, (2) MQRS detection, (3) MQRS time series selec-
tion, (4) source separation, (5) FQRS detection, (6) FQRS time series selection and (7) time 
series smoothing to obtain the FHR. Algorithms for NI-FECG extracting were classified in 
three categories: (1) blind/semi-blind (BSS), (2) adaptive filtering (AM) and (3) template sub-
traction (TS). The TSpca, AMesn and BSSica techniques have demonstrated high performance 
within their category.

The recent work published in Andreotti et al (2016) and Behar et al (2013) are paving 
the way to addressing the problematic of NI-FECG morphological analysis in a quantitative 
manner. Although accurate FHR extraction is needed for foetal monitoring, we believe that 
the main space for innovation in the field of NI-FECG is in designing methods for accurate 
morphological analysis of the NI-FECG. Being able to accurately evaluate the various mor-
phological parameters (see table 4) will open the path to many research studies aiming at 
defining clinical markers of foetal hypoxia, follow-up of foetal growth and identification of 
cardiac defects.

A large number of NI-FECG algorithms have recently been open-sourced and the loca-
tion of the source code were referenced in this publication. Any new publication on the topic 
should consider benchmarking a subset of the most promising ones (e.g. TSpca, AMesn and 
BSSica) and report an appropriate subset if not all the statistics reviewed in table 5 on set-a 
(training set) and set-b (validation set) of the PCDB or private databases. In any instance, any 
novel algorithm should be benchmarked against the best performing existing algorithms on 
the same database while reporting the same evaluation statistics.

12. Conclusion

This contribution focused on the processing of the ECG recorded from a set of abdominal 
sensors recorded on pregnant women, and the extraction of clinically relevant information 
from this signal. The NI-FECG offers many advantages over alternative foetal monitoring 
techniques, the most important one being the opportunity to enable morphological analysis of 
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the FECG, which is important for determining whether an observed FHR event is physiologi-
cal or pathological during delivery. Commercial applications for NI-FECG monitoring are in 
their infancy, but there is a growing interest in improving their performance and extending 
the types of information they provide (such as morphology), with a view to providing more 
clinically useful decision support. Therefore there is a strong motivation for pushing forward 
the research in this field.
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