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ABSTRACT

We study the structure of finite groups G which act as elation groups on finite generalized quadrangles
and contain a full group of symmetries about some line through the base point. Such groups are related
to the translation groups of translation transversal designs with parameters depending on those of the
guadrangles.

Using results on the structure of p-groups which act as translation groups on transversal designs and
results on the index of the Hughes subgroups of finite p-groups, we can show how restricted the structure
of elation groups of finite generalized quadrangles with symmetries is.

One of our main results is that G is necessarily an elementary abelian 2-group, provided that G has even
cardinality. In particular, the elation generalized quadrangle coordinatized by G is a translation generalized
quadrangle with G as translation group, that is, G contains full groups of symmetries about every line

through the base point.

1. Elation generalized quadrangles and 4-gonal families

The general background of this paper is the study of finite geometries admitting
a particular group of automorphisms such that the geometry under consideration can
be coordinatized by that group, and, where the properties of the geometry are
reflected in the subgroup structure of the automorphism group. Indeed, in the cases
considered here, the existence of such a geometry together with its automorphism
group can equivalently be formulated as a combinatorial problem concerning the
subgroup structure of the coordinatizing group. Therefore, nonexistence results and
examples of these geometric structures can be obtained by considering a pure group
theoretic problem.

In the present paper, we study the structure of finite groups admitting certain
families of subgroups having ‘extreme intersection properties’ (see the conditions
(K1) and (K2) below). The motivation therefore is due to the fact that these groups
arise as automorphism groups of finite elation generalized quadrangles.

Since their introduction as generalized polygons by J. Tits in [20], finite generalized
quadrangles have been studied intensively in the past three decades. The standard
reference, which we refer to for details, is the monograph of S. E. Payne and J. A.
Thas [16]. Here we give only the definition of the particular geometry we are
interested in, together with its automorphism group.

Let 5,7 > 1 be integers. A finite generalized quadrangle 2 of type (s,t) is a triple
(2, ¥, J), where 2 and ¥ are nonempty and disjoint sets whose elements are called
points and lines, respectively, and where .# 1s a subset of the cartesian product 2 x £,
the incidence relation, satisfying the following conditions.

(GQ1) For any P in 2, the set %,.:={le & :(P,/)e.#} has cardinality ¢+ 1.
(GQ2) For any /in %, the set Z:={PeP:(P,[)e ¥} has cardinality s+ 1.

Received 31 May 1994,
1991 Mathematics Subject Classification S51E12.
J. London Math. Soc. (2) 53 (1996) 397-406



398 DIRK HACHENBERGER

(GQ3) For any two different points P and Q in #, the cardinality of %, n %, is
at most one.

(GQ4) For any two different lines / and m in %, the cardinality of Zn 2, is at
most one.

(GQS) For any pair (P,/) in # x ¥ which is not contained in .#, there exists

exactly one pair (Q,m) in .# such that (P,m) and (Q, /) are members of .#.

A collineation of 2 is a pair (a, ff), where a and f are permutations of the sets 2
and %, respectively, such that the incidence relation is respected, that is, (P,/)e.# if
and only if (a(P), f(/))e #. It is customary to denote a collineation by a single letter.

If 6 is a collineation of 2 which fixes a point P and any line incident with P, then
0 is called a whorl about P. A whorl § about P is called an elation about P if 6 is
the identity on 2 or 6 fixes no point of the set #Z—P' where P':=
(Xe?: % NY% # I} 1s the set of points which have a line in common with P.

A finite generalized quadrangle is called a finite elation generalized quadrangle with
elation group G and base point P, and is denoted by (27, G), if G is a group of elations
about P acting sharply transitively on the set 22 — P+,

From now on, let (2, G) be a finite elation generalized quadrangle of type (s, 1),
where 5,7 > 1. We are interested in the structure of the elation group G, and therefore
summarize the fact (due to W. M. Kantor) that G necessarily admits certain families of
subgroups having extreme intersection properties (see, for example, [16, Section 8.2]).

Let X be any point in #— P+, If [ is any line in %, then / is not incident with X
(by the definition of P*) and therefore, by (GQ5), there exists a unique pair (Y, m) in
# such that (Y,/), and (X,m) are elements of .#. Hence there are defined two
mappings ¢:%, — %, and ¢: %, — P+ n X*, which by (GQ5) are bijections.

Now, for any / in %, let A, be the stabilizer of the line ¢(/) in G, and let AF be
the stabilizer of the point ¢(/) in G. Then 4, and A} are subgroups of G of order s and
st, respectively, and furthermore, 4, is a subgroup of AF. Moreover, # :={A,:le %}
and # *:={A4:/e %} are families of t+ 1 subgroups of G, satisfying the following
conditions:

(K1) ABn C = {1} for pairwise distinct 4, B, C in &
(K2) A4*n B = {1} for distinct A, Bin #

The pair (F,Z *) is called a 4-gonal family of type (s,t) in G.

It was first shown by Kantor (see [11, Theorem 2]) that, conversely, a group of
order s°t admitting a 4-gonal family can be represented as a regular elation group of
a suitable generalized quadrangle. A 4-gonal family is therefore also called a Kanror
SJamily (see {5, 6]). In [11], it is also shown that many, though not all, of the previously
known finite generalized quadrangles are elation generalized quadrangles and
therefore constructable via a 4-gonal family in the corresponding elation group.
Moreover, in [11], a (at that time) new class of elation generalized quadrangles was
constructed. For the discussion of further examples, we refer the reader to the recent
survey article [15] of S. E. Payne and to [16, Chapter 10].

Consequently, the existence of finite elation generalized quadrangles is completely
settled, if the groups of order s*r admitting a 4-gonal family together with such a
family are known. For this reason, D. Frohardt and X. Chen in [5, 6] study the
restriction that the existence of a 4-gonal family in a group G imposes on the structure
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of G. We state two of their main results which are of interest for our considerations
(as already mentioned above, we assume that 5,1 > 1, throughout).

THEOREM 1.1. (Frohardt [6]). Let G be a group of order s*t admitting a 4-gonal
Sfamily of type (s,t). If t = s then s and t are powers of the same prime number p and G
is a p-group.

THEOREM 1.2. (Chen and Frohardt [5]). Let G be a group of order s*t admitting
a 4-gonal family (F ,F *) of type (s, t). If there exist two distinct members in F which
are normal subgroups of G, then s and t are powers of the same prime number p and G
is an elementary abelian p-group.

In the present paper, we are going to study the structure of groups G admitting
a 4-gonal family (%, # *) with the additional property that there exists one member
of # which is a normal subgroup of G. The normality of some member in % has the
following geometric meaning (see [16, 8.2.2.(1v)]).

For a line / in &, let I*:={me ¥ :2n 2P, # &} be the set of lines which have a
point in common with /. Now, in the above situation, 4, is a normal subgroup of G,
if and only if 4, is a full group of symmetries about [, that is, any elation in 4, fixes
each line m of [+ and acts sharply transitively on the set 2, — (£ n #,) of each such
line m.

In the next section, we shall see that an elation generalized quadrangle admitting
a fuil group of symmetries about a iine through the base point is closely related to
some other kind of coset geometries, likewise group constructable, and which also
have been intensively studied in the past few years, namely franslation transversal
designs. Using results on the structure of the translation group of such a design, we
draw conclusions on the structure of an elation group with symmetries of a
generalized quadrangle. A detailed outline of our results is given subsequently to
Theorem 2.1. The following theorem is a short summary.

THEOREM 1.3. Let G be a finite group of order s*t admitting a 4-gonal family
(F,F *) of type (s, t). If there exists a member A in F which is a normal subgroup of
G, then s and t are powers of the same prime number p, and necessarily one of the
following two cases occurs:

(1.3.1) G is elementary abelian;

(1.3.2) p is odd, G/ A is nonabelian and has exponent p.

2. On the structure of regular elation groups with symmetries

Throughout this section, let (#, Z *) be a 4-gonal family of type (s,7) in a group
G, which will be written multiplicatively. We assume that there exists a member A in
Z which is a normal subgroup of G and study the restriction these assumptions
impose on the structure of G.

First, we consider the set

F,o={A*/A} U{BA/A:Be F —{A}}

of subgroups of the factor group G/A.
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The cardinality of 4%/ A4 is equal to ¢ and the cardinality of BA/A is equal to s for
all B in # —{A4}. Furthermore, as a consequence of (Kl) and (K2), we have that
XNnY=A/A for any two different members X and Y of #,. Moreover, as

U X =

XeF,

A* /Al + Y (BAJA[—1) = t+1(s—1) = ts = |G/ Al,

BeF—{A!

we see that Z, is a so-called (z, s)-partition in G/ A.

A partition of a group H is a set of proper nontrivial subgroups of H whose union
1s the whole set H, and where any two different members intersect in the trivial
subgroup {1}. The members of a partition are called components. The subgroup 4*/ A4
of the (particular) partition %, above is called the particular component of Z,.

Finite groups admitting a partltlon were first studied by R. Baer in [1]. In further
papers, R. Baer [2,3], O. H. Kegel [12] and M. Suzuki [19] were able to classify all
families of finite groups admitting a partition.

Groups admitting a (z, s)-partition were intensively studied in the past, because, as
with 4-gonal families, they arise as automorphism groups of certain coset geometries.

If H is a group admitting a (¢, s)-partition = with particular component N, then the
incidence structure

(H,{Un:Uen—{N},ne N}, €)

1s a translation transversal design with translation group H.

Using the Classification Theorem of Baer, Kegel and Suzuki, R. H. Schulz [17]
and M. Biliotti and G. Micelli [4] classified all families of groups which arise as
translation groups on translation transversal designs. For details and further
references, the reader is referred to Hachenberger [7]. There, the author gives an
elementary proof of the classification of the families of groups admitting a (¢, s)-
partition without using the theorem of Baer, Kegel and Suzuki, and studies the
structure of p-groups admitting such a partition.

In the present paper, applying results of [7], we draw conclusions on the structure
of elation groups G with symmetries of generalized quadrangles. Together with
Frohardt’s Theorem 1.1, we can give a first approximation of the structure of G.

THEOREM 2.1.  Let G be a group of order s*t admitting a 4-gonal family (F,F *)
of type (s,t) and assume that there is a member A in F which is a normal subgroup of
G. Then the following hold:

(2.1.1) A*/A is a normal subgroup of G/A;
(2.1.2) t = s, and, s and t are powers of the same prime number p, and G is a p-
group;

e .
(2.1.3) every member of F —{A} is elementary abelian,

(2 1. 4) with p by (2.1.2) being the unique prime divisor of the cardinality of G, the
H -subgroup of G/ A (that is, the subgroup of G /A which is generated by all elements of
G/ A whose order is different from p) is a subgroup of the particular component A*/A
of the corresponding (t,s)-partition F,.

Proof. The first statement is the content of [7, Proposition 1.6] which states that
the particular component of a (z, s)-partition always is a normal subgroup. It likewise
can be derived from [5, Lemma 1], which states that 4* is a normal subgroup of G,
provided that 4 is normal in G.

The second statement is [S, Lemma 2]. It is based on Frohardt’s Theorem 1.1.
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The third statement follows immediately from [7, Theorem 3.4], which states that
in a (1, s)-partition of a p-group, every component different from the particular one is
elementary abelian.

The last statement is formulated as Result (3.1) in [7].
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Case 1: G/A is elementary abelian.

Case 2: the H -subgroup of G/A is different from 4/A4.

Case 3: G/A is not elementary abelian and the H -subgroup of G/4 is equal to
A/ A. This is equivalent to /A4 being nonabelian of exponent p.

We next summarize our main results which hold under the general assumptions
of this section.

In Case 1, we prove that G is elementary abelian provided that G/ A is elementary
abelian (see Theorem 2.3 below). As a corollary we obtain the inequality 7 > sp
provided that G is not abelian.

In Case 2, we are confronted with the famous Hughes Problem concerning the
index of the H,-subgroup in G. The H -subgroup of a group is named after D. R.
Hughes, who conjectured that the H -subgroup of a finite group X is either trivial,
equal to K, or has index p in K (see [9)).

Although this conjecture holds for many families of finite groups, it is not true in
general. For more information on the Hughes Problem, the reader is referred to E.
I. Khukhro [13], a recent monograph on nilpotent groups and their automorphisms.
However, in Case 2, applying (2.1.4), we know that the index of the Hughes subgroup
of G/A is at least equal to s, since 4* /A4 has index s in G/A. Applying recent results
on the index of the H -subgroup of a p-group in combination with Higman’s
Inequality (see the remark before Theorem 2.5), we are able to exclude Case 2 (see
Theorem 2.7 below).

In Theorem 2.5, we show that G is elementary abelian, provided that the
parameter s is equal to p. Applying this result together with the validity of the Hughes
conjecture for finite 2-groups to the special case where p = 2, we can prove the result
mentioned in the Abstract, that is, that under the general assumptions, G is
elementary abelian provided it has even order (see Theorem 2.6). In the language of
geometry this can be stated as follows.

A finite elation generalized quadrangle with elation group G of even order
containing a full group of symmetries about some line through the base point, already
contains full groups of symmetries about every line through the base point.

A {1119[‘7’91’10‘\9 nf fhe lattpr f\JIpP |S /")”PA a ftanélallon gezzerall‘:ed q“ndransle “V’}th

tranalatzon group G (see [16, Section 8.2]). In various places, we shall use the fact that
an abelian group admitting a 4-gonal family is necessarily elementary abelian (see [6,
p. 145, Corollary]). Obviously, this also follows from Chen and Frohardt’s Theorem
1.2, but it is also proved in [16, Chapter 8], where it is shown that the translation group
of a translation generalized quadrangle is elementary abelian.

Of course, in Case 3, p is necessarily odd. However, we cannot say more in that
case, because, apart from the remarks in [7, (3.9)] not much is known about
nonabelian p-groups of exponent p admitting a (z, s)-partition. Even less is known
about the parameters of such a partition. This is a field for further research where new
examples of nonabelian groups admitting 4-gonal families may be found. On the
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other hand. as far as the author is aware, no known finite elation generalized
quadrangle with nonabelian elation group admits a full group of symmetries about
some line through the base point. This might also be an indication for the
nonexistence of such quadrangles.

he Wwae Mroy,
LAST 1. WL LU

individual interest. It states that .# * does not contain too many abehan members
provided that G is not abelian. Here |U| denotes the cardinality of the set U.
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PROPOSITION 2.2.  Let (7,7 *) be a 4-gonal family of type (s, t) in a group G. Let
Z(G) denote the centre of G and for any B in F, let {,:=|Z(G)NB| and
(o= |2Z(G) N B¥|. Furthermore, let o/ * be the subset of members of F * which are
abelian and let «f = {Be . # : B*e.o/ *}. Then the following hold.

(2.2.1) If B* and C* are different members of < *, then B* N C* is a subgroup of
Z(G). Moreover,

2P0 =t and UG = Cplet.

Sp ('

e

(2.2.2) If the cardinality of o/ is at least 3, then { is constant for all B in .o/, say
a, and |Z(G)| = a*t. Moreover, if G is not elementary abelian, then ¢ < s and the
cardinality of </ is at most s/o+ 1, and, in the case of equality, G/Z(G) is necessarily

lorromta

40 ~bL ST
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Proof. 1f G is a group containing two abelian subgroups U and V such that
G = UV, then Z(G) = (UNZ(G))(V 0N Z(G)).

Let z = uv be an element of the centre of G, where ue U and ve V. Since V is
abelian, we have that v = zv ! centralizes V. Since U likewise is abelian, we have that
u also centralizes U and therefore the whole group G, which by assumption is equal
to the complex product of U with V. Thus « is an element of the centre of G. The same
argument shows that ve Z(G), whence the desired factorization of Z(G) is proved.

If we apply this argument to any two different members B* and C* of o/ *, we
obtain that Z(G)= (B*NZ(G))(C*NZ(G)). Furthermore, it 1is clear that
K:= B* n C*is a subgroup of Z(G). Now, since K, as a consequence of the definition
of a 4-gonal family, has cardinality ¢, we obtain

Z(G) = (Lo L)/t

On the other hand, applying the above argument to any pair (B8, C*), where B and
C are different members of .7, we have Z(G) = (BN Z(G)) (C* n Z(G)) and therefore,
by (K2), |Z(G)] = {3 ... From that we derive the first statement of the theorem.

Assume next that the cardinality of .o/ * is at least 3 and let B, C and D be three
pairwise different members of /. An application of the first statement to the pairs
(B*, C*), (B*, D*) and (C*, D*) shows that

IZ(G)VI = é’R'CC = CB'CD = g(,r'cua

which proves the first part of the second statement.
Now, let ¢ be as in (2.2.2). If G is not elementary abelian, then (by Theorem 1.2)

alaals P S, ~aco

G is not abelian, whence ¢ < 5. In that case,

oy = \BLG)/Z(G):Be o/ |
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is a set of proper subgroups of G/Z(G). Moreover, if X and Y are different members
of &/, . an argument similar to the one used at the very beginning of the proof shows
that X and Y intersect in the trivial subgroup Z(G)/Z(G). Thus, it is easy to see that
A gy 18 AN (s/0, | |)-partial congruence partition in G/Z(G), that is, a set of |.o7|
subgroups of G/Z(G) having the property that any two different members have
intersection Z(G)/Z(G) while their complex product is equal to G/Z(G). Therefore,
the cardinality of .o/ is at most s/o+ 1. and equality occurs if and only if .24, is a
partition of G/Z(G). Such a partition is called a congruence partition in G/Z(G). A
well-known theorem on congruence partitions says that finite groups admitting such
a partition are necessarily elementary abelian (we refer the reader to Chapter 1 of H.
Lineburg’s monograph [14]: translation planes are the geometric equivalent to
congruence partitions). This finally proves (2.2.2).

We can now prove that Case 1 only occurs, if G is elementary abelian.

THEOREM 2.3. Let G be a group of order s*t admitting a 4-gonal family (F,F *)
of type (s, t). Assume that there exists a member A in F which is a normal subgroup of
G and suppose that G/ A is elementary abelian. Then G is elementary abelian.

Proof. If A is a member of # which is normal in G, and G/A4 is elementary
abelian, then B* is elementary abelian for all B* in # *—{A4*}, since B* as a
complement of A (see (K2)) is isomorphic to G/4. We may therefore apply
Proposition 2.2 to o *:= F * —{4*}.

If| #| > 3, thatis, |./ *| = 3, let o be asin (2.2.2). Assume that G is not elementary
abelian. Then G is not abelian by Theorem 1.2, whence ¢ < s and thus, by (2.2.2),
t=]od* <s/og+1. But, as t>=s, see (2.1.2), this can happen only if o= 1.
Consequently, by the definition of ¢ and Proposition 2.2, the centre of G is contained
in B* for all B which are different from 4. Therefore, by (K2), 4 intersects Z(G) in
the trivial subgroup {1} But this is a contradiction, since any normal subgroup
X # {1} of a p-group has nontrivial intersection with Z(G). Thus, G is elementary
abelian.

In order to complete the proof of the theorem, it remains to study the case, where
{F | =3, thatis, where f = 2. As s > | by assumption and ¢ = s by (2.1.2), we see that
s = t = 2 and therefore |G| = 8. Hence, any B* in # * is a maximal subgroup of G and
therefore normal in G. As by assumption A4 is normal in G, (K2) implies that & is
isomorphic to the direct product of 4 with B*, where B is any element of # which
is different from A. But then G is abelian, since [4| =2 and |B*| = 4. Finally,
Theorem 1.2 implies that G is elementary abelian.

COROLLARY 2.4.  Let G be a finite p-group admitting a 4-gonal family ( F ,F *) of
type (s, t) and suppose there is a member A in F which is a normal subgroup of G. If
G is not abelian, then necessarily t = sp.

Proof. By (2.1.2), we know that ¢ > s. If 1 = 5, we have that the corresponding
(s, s)-partition in G/ A is a congruence partition in G/A4. Therefore (compare with the
end of the proof of Proposition 2.2) G/ A is elementary abelian. By Theorem 2.3, in
contradiction to our assumption, we obtain that G is elementary abelian. Thus, 7 > s,
and, as ¢ and s, are powers of p, we have the desired result.



406

7.

ON FINITE ELATION GENERALIZED QUADRANGLES WITH SYMMETRIES

References

R. Baer, ‘Partitionen endlicher Gruppen’, Math. Z. 75 (1961) 333-372.

R. Barr, "Einfache Partitionen endhicher Gruppen mit nicht-trivialer Fittingscher Untergruppe’,
Arch. Math. (Basel) 12 (1961) 81-89,

R. BAER, ‘Einfache Partitionen nicht-einfacher Gruppen”, Math. Z. 77 (1961) 1-37.

M. BiLioTTl and G. MICELLL, ‘On translation transversal designs’, Rend. Sem. Mat. Univ. Padova 73
(1985) 217-229.

X. CHeN and D. FROHARDT, ‘Normality in a Kantor-family', J. Combin. Theory Ser. A 64 (1993)
130-136.

D. FROHARDT, * Groups which produce generalized quadrangles’, J. Combin. Theory Ser. A 48 (1988)
139--145.

D. HACHENBERGER, ‘Remarks on translation transversal designs’, J. dlgebra 166 (1994) 211-231.

D. R. HuGHEs, ‘Partial difference sets’, Amer. J. Math. 78, (1956) 650-674.

D. R. HuGHEs, *A problem in group theory Bull. Amer. A{afh Soc. 63 (1957) 209.

. B. HUPPERT, Endliche Gruppen 1 (Springer, Berlin, 1967).

W. M. KANTOR, *Generalized quadrangles associated with G,(g)°, J. Combin. Theory Ser. A 29 (1980)
212-219.

O. H. KEGEL, * Nichteinfache Partitionen endlicher Gruppen’, Arch. Math. (Basel) 12 (1961), 170-175.

E. I. KHUKHRO, Nilpotent groups and their automorphisms (de Gruyter, Berlin-New York, 1993).

H. LUNEBURG, Translation planes (Springer, Berlin-Heidelberg-New York, 1980).

. S. E.PAYNE, ‘A census of finite generalized quadrangles’, Finite geometries, buildings and related

topics (eds. W. M. Kantor, R. A. Liebler, S. E. Payne, E. E. Shult; Clarendon Press, Oxford,
1990) 29-36.

. S. F. PaYnE and J. A. THAS, Finite generali:ed quadrangles Pitman Research Notes in Mathematics

100 AN

DClle lJU (LOIlgIIldH DLI ICLH DUSIOH 1704).

. R.-H. ScnuLz, ‘On the classification of translatlon group-divisible designs’ European J. Combin.

6 (1985) 369-374.

. E. G. Straus and G. SZEKERES, "On a problem of D. R. Hughes’, Proc. Amer. Math. Soc. 9 (1958)

157-158.

M. Suzuk, *On a finite group with a partition’, drch. Math. (Basel) 12 (1961) 241-254.
. J. Trrs, “Sur la trialité et certain groupes qui s’en déduisent’, Inst. Hautes Etudes Sci. Publ. Math. 2

(1959) 14-60.

Institut fiir Mathematik der Universitdt Augsburg
Universititsstrafle 14
D-86135 Augsburg

E-mail: Hachenberger@math.uni-augsburg.de



