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Abstract—We propose a novel method for evaluating the sim-
ilarity between two 1d patterns. Our method, referred to as
two-dimensional signal warping (2DSW), extends the basic ideas
of known warping techniques such as dynamic time warping and
correlation optimized warping. By employing two-dimensional
piecewise stretching 2DSW is able to take into account inhomoge-
neous variations of shapes. We apply 2DSW to ECG recordings
to extract beat-to-beat variability in QT intervals (QTV) that
is indicative of ventricular repolarization lability and typically
characterised by a low signal-to-noise ratio. Simulation studies
show high robustness of our approach in presence of typical ECG
artefacts. Comparison of short-term ECG recorded in normal
subjects versus patients with myocardial infarction (MI) shows
significantly increased QTV in patients (normal subject 2.36 ms
1.05 ms vs. MI patients 5.94 ms 5.23 ms (mean std),

). Evaluation of a standard QT database shows that
2DSW allows highly accurate tracking of QRS-onset and T-end.
In conclusion, the two-dimensional warping approach introduced
here is able to detect subtle changes in noisy quasi-periodic
biomedical signals such as ECG and may have diagnostic potential
for measuring repolarization lability in MI patients. In more
general terms, the proposed method provides a novel means for
morphological characterization of 1d signals.

Index Terms—Dynamic time warping, ECG, QT, QT interval,
QT variability, signal processing, two-dimensional warping,
warping.

I. INTRODUCTION

I N signal and image processing warping is understood as a
technique to match two patterns. By allowing certain vari-

ations to one pattern’s shape, warping accounts for temporal
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shifts to occur within patterns. A set of predefined rules de-
termines which variations are allowed. A cost function guides
the search for the optimal variation, i.e. the one that results in
closely matched patterns.
Warping originated from the field of audio processing,

where the influence of varying lengths in the pronunciation of
identical phoneme need to be accounted for. Dynamic Time
Warping (DTW), which is the most famous warping algorithm,
was first introduced by Vintsyuk in 1968 [1]. DTW performs
a sample-to-sample projection of one pattern to a reference
pattern that aims at minimizing the Euclidean distance between
the patterns. Velichko [2] and Sakoe and Chiba [3] applied
and further enhanced DTW. Although DTW has been largely
replaced by Hidden Markov Models in the field of audio pro-
cessing, warping is used in various other fields today, including
biometry [4], gene expression [5], pattern recognition [6] and
biomedical signal processing [7], [8].
The widespread applicability of warping has produced var-

ious modifications and enhancements such as Scaling Up-DTW
[9], derivative [10], FastDTW [11] and Online Time Warping
[12]. Of the more substantial modifications to DTW that have
been proposed, Correlation Optimized Warping (COW) [13]
is probably the best known algorithm. Even COW can be con-
sidered a representative of DTW under certain circumstances
[14]. The close relationship becomes evident when thinking of
aforementioned DTW variants that make use of subsampling
and/or interpolation schemes, which implicitly pursue ideas
similar to COW. However, a conceptual difference between
COW and DTW can be seen in their strategies of comparing
and aligning patterns: whereas DTW originally aligns patterns
on a sample-to-sample basis, COWmakes use of segmentation.
Using segments allows COW to rely on correlation as measure
of similarity between segments. In comparative studies, in
particular related to chromatography, COW was proven to
be beneficial when compared to DTW [14]–[16]. Despite the
methodological differences and diverse application areas, all
aforementioned methods are unified by their goal to account
for 1d shifts (shift in time or, in case of chromatography, in
frequency).
Physiological processes are most often the result of highly

complex interactions. As a consequence quasi-periodic events
such as deflections in the body surface electrocardiogram
(ECG), which are related to the cardiac cycle are expected to
change in height, width and morphology [7] in a much more
complex way than it is addressed by current warping tech-
niques. To measure the similarity of such physiological patterns
it might be necessary to allow for more complex adaptation.
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Similarity and matching have been quantified to measure
subtle changes in time intervals from ECG, particularly the
QT interval. Increased beat-to-beat variability of QT intervals
(QTV) was shown to be a strong predictor of cardiac mortality
[17]. Recent works applied modern signal processing strategies
to deepen the understanding of QT variability [18]–[22] and
its extraction in face of noise and artifacts. ECG artifacts that
are typically encountered in long-term recordings remain a
challenge. The QT interval comprises the time interval of
ventricular de- and repolarization, i.e. QRS complex and ST-T
segment in ECG. While the duration of the QRS complex can
be considered rather stable, the ST-T segment duration changes
notably, depending on heart rate and autonomic tone. A widely
used algorithm to determine beat-to-beat QT interval variability
relies on homogeneously stretching the ST-T segment of the
beat under consideration until it matches best a ST-T template
[23]. Based on pre-defined borders of Q peak and ST-T segment
in the template, the QT interval of the beat under consideration
can be calculated by considering the optimal stretch. The
algorithm provides reliable results and was successfully used in
many clinical studies [17], [24]. From a physiological point of
view such homogeneous stretching might not be able to capture
details of morphological changes within the QT interval. To
account for more complex modifications, Vullings et al. [8]
and Zifan et al. [25] extracted ECG time intervals in a more
flexible manner by allowing inhomogeneous stretching, using
DTW and a modified version of derivative DTW, respectively.
Since existing warping techniques do not cover the wide

spectrum of physiologically plausible variations the aim of our
work was to develop a technique that complies with the phys-
iological reality by allowing for temporal shifts and changes
in magnitude at the same time. We propose two-dimensional
signal warping (2DSW) as a powerful tool that enables complex
adaptations. We apply this technique to measure QT variability
to exemplify its potential.
The remainder of the article is structured as follows: in

Section II we introduce the concept of 2DSW, provide the the-
oretical framework and present an implementation of its basic
functionality. Section III covers the integration of 2DSW into
a scheme to estimate QT interval variability in surface ECG.
Section IV contains the results of computational considerations
as well as the application to simulated and real ECG. Sections V
and VI discuss our results and highlight future developments
and applications.

II. TWO-DIMENSIONAL WARPING OF

ONE-DIMENSIONAL SIGNALS

A. Basic Notation

Two-dimensional warping adapts a waveform to a reference
waveform by accounting for differences in time and amplitude.
Therefore, a warping grid is superimposed on the waveform to
be adapted (see Fig. 1). The warping grid establishes column
and row borders. The intersection points of the warping grid
define so-called warping points denoted as . Each with

and is defined by its absolute
position in a two dimensional space and its position

Fig. 1. Notation of 2DSW’s basic elements for an exemplary grid of size
and and rectangular warping areas.

in the warping grid , where specifies the column
and the row of . Note that index is incremented over
columns first. defines the set of all ordered pairs with

to

(1)

In the remainder is used as identifier of a warping point when
its absolute coordinates or its grid position are not addressed
specifically.
Given a quadrangle spanned by four warping points , ,

and with and , its lower
boundary , i.e. the line connecting and , can be ex-
pressed as

(2)

with its components

(3)

(4)

where is a scalar. The length of line , i.e. between and
, in x-direction and y-direction, respectively, is thus given

by

(5)

(6)

                                                                                                                                          



                                                            5579

Fig. 2. Illustration of the position of an arbitrary point in a non-rectangular
warping area.

In analogy to (2) we define lines , and , where connects
and with and and so forth

(see Fig. 2) such that

(7)

(8)

(9)

Let be the area of the quadrangle spanned by four warping
points. Using the aforementioned definitions can be described
as the set of points for which holds

(10)

where the right-hand side bracketed terms, which use the def-
initions from (2)to (7), account for the fact that is not nec-
essarily rectangular nor paraxial to the abscissa or ordinate. An
area defined by four neighboring warping points is referred to
as warping area. A grid as previously introduced imposes
areas with , where
. Indexing starts in the left lower corner of the grid and

increments through the column first.

A warping point is said to be an active warping point if
it contains a part of the waveform in at least one of his four adja-
cent areas. Points that do not fulfill this condition are referred to
as passive warping points . The sets of active and passive
warping points form again the set , i.e. and

.

B. Warping Concept

2DSW is accomplished by primarily shifting active warping
points. A shift of a point by affects , i.e.

(11)

Any shift of one or more warping points adjacent to a warping
area results in a modified warping area denoted as that
is defined by its adapted boundaries and . Waveform
segments within are consecutively adapted according to the
change in the area they belong to.
The rules for deforming a waveform in the 2DSW process are

based on absolute coordinates, i.e. those belonging to the input
space, and relative coordinates, i.e. those which are defined in
relation to a warping area’s boundaries. Shortly, given a point

, where is an arbitrary warping area, 2DSW shifts
this point in such a way that its coordinates rela-
tive with respect to remain unchanged, i.e.

. Fig. 2 and Fig. 3 illustrate the process (the un-
derlying mathematical consideration is given below).
Searching for the that allows for the optimal waveform de-

formation is guided by minimizing a cost function, which max-
imizes the similarity between the waveform to be adapted and
its reference.

C. Mathematical Framework of Waveform Deformation

After having outlined the concept, the following section de-
tails the mathematical framework which underlies the deforma-
tion of a waveform during 2DSW.
Let and be the lower and upper boundaries of . Given

any point its relative abscissa is determined by
finding the points and for which

(12)

where for .
Here denotes the line connecting and . Following

the identification of and the relative abscissa is
calculated as

(13)

Similarly, the relative ordinate is determined by finding
and for which holds

(14)

where for .
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Fig. 3. Illustration of the effect of 2DSW on the area and point exemplified in
Fig. 2.

Here is the line connecting and . The relative
ordinate is computed as

(15)

Fig. 2 gives a graphical example of the initial situation.
Now consider any shift by so that with

, changing to and its boundaries
to , , and , respectively (see Fig. 3). For a single point

warping aims at finding , which maintains its
relative coordinates with respect to . Thus, its new abscissa
is given by

(16)

In (16) the expression is the absolute displacement in -di-
rection defined by the displacement of points and . The
factor considers this absolute displacement proportion-
ately and adds the portion to the original position .

In analogy for the ordinate it holds

(17)

Fig. 3 gives an example for 2DSW of a single point and illus-
trates the elements of (16) and (17).
When dealing with a function or waveform instead of a single

point, the waveform can be considered as a set of vectors
, . If the set represents a wave-

form, then between single pairs and it must hold
. Unequal values result from the func-

tional relationship of the waveform, i.e. for each value there
is only one value. and denote the series of x and y
values, i.e. and for , contained in
and sorted in ascending order of the x-value of each pair. The
waveform belonging to area , denoted as , is given by

. By defining a waveform as a set
of vectors the previously given ideas on shifting a single point
are extended to waveforms.

D. Waveform Comparison and Cost Function

The shifting of and its resulting deformation aims at min-
imizing the cost function between the waveform to be adapted
and the reference waveform. As cost function we use the nor-
malized Euclidean distance, which has previously been applied
to similar problems [1], [26]. The normalized Euclidean dis-
tance between the sets of vectors and with

is given by

(18)

where and denote the values of the vectors
and . Compared to the Euclidean distance its normalized
version accounts for the range in which two sets are compared.

The condition ensures identical domains of .
If the waveform to be adapted and the reference waveform do
not fulfill this requirement an initial projection of their domains
must be carried out. In practice, this might be the case for two
waveforms sampled at different sampling rates of which one
must be linearly scaled (i.e. interpolated/down sampled).

E. Shifting Constraints Of Warping Points

To allow for a flexible adaptation only few constraints should
be imposed to the shifting of warping points. One constraint is to
preserve the functional character of the waveform to be adapted,
i.e. warping points are not allowed to change in a way that the
adapted waveform has multiple y-values for a single x value.
A second constraint, which similarly exists in other warping
techniques, imposes a maximum range to each warping point in
which it is allowed to move (see the warping range in Fig. 1).
The warping range is specific to each warping point and defined
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by the maximum deflection in both horizontal and vertical di-
rections of . The vector denotes the resulting stretch of
the warping range associated with in x and y directions. The
range restriction hinders warping areas to reduce below a given
size, which may otherwise cause the cost function to produce
misleading results. From a practical point of view this constraint
also proves beneficial regarding the computational effort.

F. Algorithmic Implementation

Most of the concepts can be readily implemented. Consid-
ering the theoretical framework only the resolution and

at which warping points are shifted needs to be defined.
Practical choices of and are application dependent
and specified in Section III-C.
To deal with the optimization problem we propose a heuristic

procedure, which relies on three fundamentals: (1) sequential
execution, (2) passive shifting and (3) local cost functions.
Warping points are sequentially shifted. The order of shifting
is chosen according to the index of the warping points. When
point is shifted by those points with
are equally shifted (referred to as passive shifting). As passive
shifts apply only to with , points, which
have previously been actively shifted do not change their
location afterwards. Note that passive shifting by identical
can cause the parallel translation of all points that define a
warping area. In that case the waveform included in the area is
not deformed but only displaced by . When searching for the
that optimizes the position of in terms of a minimized

cost function we restrict the range in which the cost function is
calculated to those points that lie in adjacent warping areas of
(local cost function). The search for the optimal position is

done in either one of two ways:
1) Brute force: Before shifting, the cost function is evaluated
for all possible shifts inside the warping range. The results
form the adaptation matrix with

with

In accordance with the pointwise definition of warping
ranges, and are allowed to differ between ,
leading to varying sizes of . The shift that results in the
minimum of is regarded as optimal shift.

2) Fast search: The fast search avoids computing all elements
of , but sparsely calculates by iteratively zooming
into . Zooming refers to the creation of submatrices

and and so forth on different
scales. A submatrix is extracted after evaluating the cost
function of its predecessor matrix on a 5 5 grid. The grid
spans the warping range associated with the preceeding
matrix in a preferably uniformmanner. Based on the calcu-
lated cost at the grid points those three with the minimum
cost are searched that together span a new rectangular ma-
trix . This procedure is repeated until the matrix size
does not allow a grid of the defined size to be established.
The costs of the last submatrix can be mapped to ,
which now constitutes a sparse matrix. The minimum of
this matrix defines the optimal shift.

Algorithm 1 depicts pseudo code of the heuristic implementa-
tion of 2DSW. It should be noted that the heuristic procedure
does not guarantee optimum matching, but empirical analyses
suggests the method to produces satisfactory results in adequate
computational time.

III. APPLICATION TO QT VARIABILITY ASSESSMENT

A. General Description of the Warping Based Method

Fig. 4 contains the general framework for the analysis of QT
variability using 2DSW. Structurally, our implementation re-
sembles the classical template stretching approach [24]: define
a template beat, allocate the QT interval in this template, adapt
the template by 2DSW to each single beat and derive from each
adapted version of the template the QT interval. The following
sections details our implementation, including the parametriza-
tion of 2d warping. Pre- and postprocessing steps follow con-
ventional ECG signal processing conventions and can be easily
modified. However, the procedure should be regarded as an im-
plementation whose components might be replaced by alterna-
tive algorithms or even semi-automated processing steps.

B. Preprocessing

QRS detection: If QRS annotations are available (applies for
the used real data where the detections from [27] were used
for the sake of comparison) they are readily used. If not, the
algorithm by Afonso et al. [28] included in the biosig toolbox
[29] is applied.
Signal filtering: Digital high pass filter (cut-off frequency 0.3

Hz) is applied to the raw ECG (for real data only).
QT extraction: Time delay estimation (TDE) by the Improved

Woody’s Method [30] is used initially to temporally adjust an-
notations. The Improved Woody’s Method displaces annota-
tions in the way that the correlation of annotations’ surrounding
signal segments is maximized. TDE is applied to signal seg-
ments of 100 ms, which are initially centered around the de-
tections (100 ms are used as the approximated maximum QRS
width). By optimizing the joint similarity TDE yields temporal
aligned beat locations . For each beat a predefined QT
window represented by the samples between and
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Fig. 4. General scheme of QT variability using 2DSW. Boxed items indicate processing steps.

is than extracted. Based on Laguna et al. [31] and
are calculated as

,
(19)

where represents themean RR-interval over all beats. Equa-
tion (19) was chosen because it typically yields a segment that
exceeds the actual QT window.
Template construction: To construct the waveform template

all detected beats occurring in the first 100 s of a record are con-
sidered. The 100 s windowwas set empirically.What one would
expect by using shorter time periods is a reduced suppression of
noise by coherent averaging [32]. Those QT windows are ex-
cluded, whose normalized Manhattan distance, given by

(20)

to the mean QT window exceeds a empirically predefined
threshold of 30 . If less than 50% of the QT windows
remain, all beats in a window shifted by 50 s are used for
template construction. The predefined threshold is increased
by 20 when the end of the signal has been reached and
no window with more than 50% remaining QT windows has
been found. The average of the remaining QT windows is used
as template for further processing. Depending on the signal
quality a smooth template was constructed. Fig. 5 depicts the
results at different stages of the template generation procedure.
Template delineation: Template delineation yields the tem-

plate’s fiducial points, i.e. points that carry diagnostic informa-
tion. The onset of the Q wave and the end of the T-wave are
defined in the template and tracked afterwards. Fiducial points
are located by comparing the derivate of the signal to prede-
fined thresholds [33]. The search for threshold crossings and
flat sections is carried out in predefined time windows. Those
windows are gained by using the mean of the beats which
established the template and Bazett’s normalized QT estimate

Fig. 5. Superimposed QT windows of single beats (black) and the resulting
mean QT window (red) at different stages of the template construction. (a) Be-
fore alignment; (b) after alignment by TDE; (c) after removal of inappropriate
beats.

[34]. The software program allows for manual editing of fidu-
cial points, similar to other programs [24].

C. Application of Warping

Grid preparation: Template segmentation refers to all oper-
ations that are related to the warping grid. In general, 2DSW
supports an arbitrary number and arrangement of horizontal and
vertical segments. For the current application we divided the
template in vertical direction homogeneously into 3 segments.
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In horizontal direction we performed an inhomogeneous seg-
mentation into 6 segments. The segments were fixed automat-
ically on the basis of piecewise linear approximation (PLA) as
proposed by Keogh et al. [10]. PLA approximates a signal with
straight lines by minimizing the residual. Consequently, line
breaks occur where the slope of the signal changes abruptly. We
established the segment borders halfway in-between the breaks
of approximation lines (see Fig. 6) so that each segment contains
some variation in the signal. The vertical segmentation was car-
ried out uniformly, i.e. the overall signal range was divided into
three segments. The warping range for each point in each
direction was 20% of the distance to its neighbouring warping
point in that direction (The range was set empirically. In prin-
ciple the algorithm supports arbitrary deviations). The temporal
resolution for shifting warping points was 1 sample. The ampli-
tude resolution was set to 1 .
2DSW of each segment: 2DSW for each segments incorpo-

rates the procedure described in algorithm 1 applied to each
beat. The current beat is regarded as reference to which the tem-
plate adapts.
QT interval calculation: Based on the location of the fiducial

points in the optimally warped template the QT interval of the
current beat is extracted.

D. Post-Processing

Beat rejection: Beat rejection is directed at removing unus-
able heart beats. The applied post-processing scheme assumes
that 2DSW is generally able to match the template closely to the
reference waveform. If only a poor matching can be achieved
the beat under consideration is likely to be corrupted by noise,
incorrect QRS annotations or ectopic and excluded from fur-
ther analysis. A beat is excluded if the normalized Manhattan
distance (see (20)) exceeds 100 . We parameterized
the exclusion criterion, i.e. determined the threshold for exclu-
sion, empirically so that exclusion rates similar to those reported
by Hasan et al. [27] were achieved for the real data (see below).
QTV quantification: After excluding unusable beats QTV is

assessed by calculating the standard deviation of the re-
maining QT intervals. Other commonly used QTV metrics such
as the QT variability index can be easily implemented.

E. Performance Evaluation Using Simulated and Real ECG

To evaluate the performance of our method with respect to
accurateness against typical factors known to affect QT mea-
surement we used simulated data previously described by Porta
et al. [35]. Briefly, a simulated ECG is composed of a single
heart beat, which was repeated 500 times (the single beat was
extracted from lead II of an ECG recorded at 1000 Hz with 12
bit amplitude resolution). The degree of difficulty to determine
the QT interval was varied by lowering the T-wave amplitude

of the template beat in steps of 1/10 to 1/10 . Thus,
10 recordings of decreasing T-wave amplitude were obtained.
Additional distortions, namely white Gaussian noise, baseline
wander or sinusoidal amplitude modulation of ECG, were in-
troduced resulting in a total of 30 recordings overall. Given the
constant QT interval, one would expect an algorithm to measure
QTV equal to 0.
Baumert et al. [36] compared three algorithms, template

stretch [24], template shift [37] and a conventional (derivative)

Fig. 6. Examples of templates before (gray) and after (bold red) adaptation to
heart beats (black) by 2DSW. The warping grids are shown by gray (before) and
red (after) dashed lines. 2DSW yielded normalized Euclidean distances of 0.4
(a), 3.7 (b) and 5.7 (c), respectively. (a) Example with low noise. (b) Example
with noise. (c) Example with spikes.

approach [35], and showed that using these data the template
based algorithms outperform the other method in most cases.
However, the authors emphasize certain limitations of the
comparison, arising e.g. from differing beat rejection strategies.
Moreover, as the artificial data do not necessarily comprise
physiological variations of the QT interval one might not be
able to deduce the best real world performance from this test.
Nevertheless the data provide a good way to characterize a
method’s behavior in face of typical problems encountered in
QT interval analysis. In our work, results obtained by using
2DSW are compared to the results of Baumert et al. [36].
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To assess the sensitivity of the proposed method to capture
pathophysiological QT variability, we used real recordings from
the PTB Diagnostic ECG Database [38], which is freely avail-
able on Physionet [39]. These data have previously been applied
by Hasan et al. [27] to investigate if
1) post myocardial infarction (MI) patients can be distin-
guished from healthy controls by using QTV.

2) there are differences in QTV and T-wave amplitudes as
derived from different leads.

In detail, 79 MI patients (22 female, mean age 63 12 years; 57
male, mean age 57 10 years) and 69 healthy subjects (17 fe-
male, 42 18 years; 52 male, 40 13 years) were considered.
Standard resting 12-lead ECGs that were recorded between one
and two weeks after the infarction date were considered for this
study. The duration of recording was on average 2 mins. The
variability of the beat-to-beat RR intervals expressed as stan-
dard deviation is 44.89 ms in healthy subjects 20.80 ms and
35.91 ms 52.63 ms (mean std) in MI patients. To derive
QT interval Hasan et al. used the template stretching method of
Berger et al. [24] extended by a custom made pre-processing
stage. Significant differences in QTV between different leads
were reported which seem to be closely related to the varying
T-wave amplitudes across leads. Further it was found that a dif-
ferentiation of post-MI patients and healthy controls by using
QTV is possible where lead II distinguished the groups most
effectively.
The present work seeks to compare selected results published

in [27] to the ones obtained by using our processing scheme,
including 2DSW. We compared QTV obtained from lead II
in MI patients and healthy controls because significant differ-
ences would be expected. Differences between MI patients and
healthy controls are assessed by using the student t-test.
In addition, we used the QT database (QTDB), which is freely

available on Physionet [40], to compare measured beat-to-beat
QT interval changes to manual and automated annotations ob-
tained with other methods. The database was designed for the
evaluation of algorithms for the measurement of QT and other
time intervals in ECG. TheQTDB consists of 105 fifteen-minute
excerpts of two-channel ECGHolter recordings. The recordings
include a broad variety of QRS and ST-T morphologies. Each
recording contains reference annotations for at least 30 heart cy-
cles. Templates were constructed as described in Section III-B.
To minimize the influence of manually set annotations the QT
interval in the template was automatically derived from three
reference annotations of the annotated beats that resemble the
template most closely. Strategies for the measurement and eval-
uation of time intervals using the QTDB differ betweenmethods
and researchers. Algorithmic measurements most often make
use of a single lead only, whereas the reference annotation of
the QTDB is based on two leads. One commonly used procedure
involves delineation in a single channel and comparing the algo-
rithmic results to the reference (single lead evaluation). Another
strategy involves delineating in the two leads independently and
incorporating the reference annotation to select the algorithmic
annotation that best matches the reference annotation for each
beat (supervised two lead evaluation) [41].

IV. RESULTS

Fig. 6 gives examples of templates that were adapted to single
beats by using 2DSW.

Fig. 7. Comparison of brute force and fast calculation methods for finding the
optimum of the adaptation matrix. Computational times are normalized by the
median computational time of the brute force method. We used a standard PC (6
CPU cores, 8 GB RAM). The computing time per beat was 14.9 s (brute force)
and 0.2 s (fast calculation). (a) Computational time. (b) Euclidean distance.

Fig. 7 compares the computational times that result from
using the brute force method to those spent by using the fast
calculation. Additionally, the degree of matching between the
adapted waveforms and its reference in terms of a normalized
Euclidean distance is shown. The fast calculation significantly
increased the computational efficiency ( , using
student t-test applied to computational times) while providing
comparable results with respect to template adaptation. The
algorithm reduces the median computational time by factor
71. Fig. 7 also illustrates the effectiveness of the proposed
heuristic to find the optimum of the adaptation matrix. The
median degree of adaptation in terms of normalized Euclidean
distance stays below 0.5, which corresponds to close matching
(see Fig. 6 for an illustration of different degrees of matching).
Fig. 8 shows the results that have been obtained by applying

2DSW to simulated data. Our results are compared to those
presented in [36]. Our algorithm outperforms the other algo-
rithms in the presence of white Gaussian noise and ECG ampli-
tudemodulation, while it performs second best during simulated
baseline wander. Taken together, i.e. averaged over noises types
and strength, 2DSW improved the results by 30% (i.e. mea-
sured QTV is 30% lower than the second best method, paired
one-tailed Student’s t-test: ).
Fig. 9 shows the results that have been obtained by applying

2DSW to real data. Post-processing excluded 0.2% of the beats
in normal subjects and 1.1% of the beats in the MI group. Our
results are compared to the ones obtained byHasan et al. [27] for
the same task. A two-way ANOVA (factors: method and pop-
ulation) revealed a significant difference for the
factor population. Both methods, 2DSW and template stretch,
show highly significant difference between MI and healthy con-
trols (pairwise testing using student-t-test). Using a F-test we
found no significant difference between the methods regarding
inter-subject variability (healthy , MI ).
Table I shows the results of QRS-onset and T-end calcula-

tion by 2DSW using QTDB in comparison to other methods.
Mean errors and standard deviations of 2DSW were computed
by averaging the intrarecording mean errors and standard de-
viations. Because 2DSW is directed at capturing beat-to-beat
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Fig. 8. Results obtained with the 2DSW algorithm (fast calculation) in comparison to previously published algorithms using simulated data with zero QTV [36].
White Gaussian noise, baseline wander or sinusoidal amplitude modulation were introduced resulting in a total of 30 recordings. Lower QTV values refer to a
more accurate measurement. (a) White Gaussian noise. (b) Baseline wander. (c) Amplitude Modulation.

Fig. 9. QTV results obtained with the 2DSW algorithm (fast calculation)
in comparison to the template stretching method for MI patients and healthy
controls.

changes, the algorithmic capacity is assessed best by the stan-
dard deviation, whereas the mean deviation is of minor interest.
Our results show lower standard deviations compared to most
other algorithms while the number of evaluated beats compares
to the average usage rate.
Fig. 10 shows Bland-Altmann plots of themeasured QT inter-

vals and manually annotated QT intervals of QTDB. No depen-
dence of the differences between referenced and the calculated
QT interval to the mean QT interval is recognizable.

V. DISCUSSION

In this contribution we presented the theoretical fundamen-
tals and application of a technique for 2d adaptation of two
1d patterns. To the best of our knowledge this is the first time
that 2d deformation of 1d signals was addressed in the way
we presented here. 2DSW constitutes a powerful technique
to quantify the similarity between patterns. By employing
two-dimensional piecewise stretching 2DSW is able to take
into account inhomogeneous variations in shape. In comparison
to DTW approaches that have been used before in signal pro-
cessing, 2DSW does not require amplitude normalization that
is essential to other methods [45]. By avoiding a global normal-
ization but introducing segmented adaptation 2DSW allows for

TABLE I
QTDB RESULTS OBTAINED WITH 2DSW AND OTHER METHODS.
MEAN ERRORS AND STANDARD DEVIATIONS OF 2DSW WERE

COMPUTED BY AVERAGING THE INTRARECORDING
MEAN ERRORS AND STANDARD DEVIATIONS

more flexibility. Simulation studies showed high robustness of
our approach in presence of typical ECG artefacts. Comparison
of short-term ECG recorded in normal subjects versus patients
with myocardial infarction (MI) showed significantly increased
QTV in patients.

A. QT Evaluation

Ourmethod proves to be very effective for QT interval extrac-
tion. Using simulated data 2DSW yields in almost all situations
accurate results. Using real data, the sensitivity, i.e. the capa-
bility of the method to find differences between MI patients and
healthy controls, is comparable. A slight decrease in QTV was
observed in healthy subjects and MI patients when using 2DSW
compared to Hasan et al. [27] while between-group differences
were similar; the latter demonstrating equivalent sensitivity to
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Fig. 10. Bland-Altman plots for reference QT intervals and QT intervals cal-
culated by 2DSW. Mean differences are shown by black lines, upper and lower
limits are shown by black dashed lines. (a) Bland-Altman plot of lead one.
Mean difference: 2.2 ms, upper limit 40.9 ms, lower limit 45.2 ms, out-
liers 5.0%. (b) Bland-Altman plot of lead two. Mean difference: 0.4 ms, upper
limit 44.5 ms, lower limit 45.3 ms, outliers 4.7%. (c) Bland-Altman plot of
supervised two lead evaluation. Mean difference: 0.8 ms, upper limit 34.4 ms,
lower limit 36.0 ms, outliers 5.3%.

temporal repolarization heterogeneity. The F-test shows no sig-
nificant differences between the methods, i.e. similar inter-sub-
ject variabilities, which points to a likewise behavior of 2DSW.
Taken together, similar sensitivity but increased robustness, the
proposed method based on 2DSW is a very promising approach
to extract the QT interval. However, our results need to be val-
idated with different data sets. The results obtained by 2DSW
using the QTDB are competitive with the most accurate results
that have been published. However, our algorithm uses a-priori
information by incorporating three reference cycles to construct

the waveform boundaries of our template. Aiming at beat-to-
beat QT variability extraction this step does not imply a fun-
damental restriction, but it shows 2DSW superiority compared
to delineation methods that aim at a fully automated measure-
ment. When evaluating the results in terms of absolute values
one should also consider the limitations of the reference annota-
tions. Although those annotations are regarded as gold standard,
the comparison of reference annotations by two human annota-
tors for selected records of the QTDB revealed deviations (mean
std) of 5.3 ms 11.1 ms and 2.1 ms 22.4 ms for QRS-onset

and T-end, respectively. Bland-Altman plots show no system-
atic under- or overestimation of short and long QT intervals.
When comparing the performance between software imple-

mentations of different algorithms one should bear in mind that
quantitative assessment of QTV not only depends 2DSW, but
may also be affected by other algorithmic steps such as beat
rejection. Beat rejection aims at the exclusion of beats for which
an accurate QT interval cannot be obtained. An insufficient
template adjustment by 2DSW is indicative of such cases. The
observation of higher exclusion rates in MI patients compared
to normal subjects, which is probably caused by a higher
number of abnormal beats, suggests effective beat rejection
criteria. However, the lack of an empirical value for the degree
of adjustment in face of technical and/or pathophysiological
impact factors renders the definition of threshold values for
beat rejection difficult. For comparability, we parameterized the
exclusion criterion so that exclusion rates similar to those re-
ported by Hasan et al. [27] were achieved. The same parameter
setting has been applied to the simulated data, where no single
beat had to be discarded because of the beat rejection proce-
dure. Baumert et al. showed the template stretch algorithm to
produce high exclusion rates, particularly for baseline drift and
amplitude modulation [36]. 2DSW appears to cope particularly
well with those conditions. However, a thorough examination
of beat rejection criteria should be carried out in the future.
Besides the strategy for beat rejection, the template construc-

tion is assumed to affect the results. We decided to use a conven-
tional approach instead of incorporating 2DSW in the template
generation process. Caiani et al. successfully included DTW in
the template generation [45]. However, even though including
DTW in the template generation is, in principle, more adequate
to follow the stretching and shrinking of the cardiac cycle due
to the variability of heart period, the performance of the adopted
conventional template construction procedure was remarkable.
Future studies should focus on introducing 2DSW in the tem-
plate construction and testing whether this introduction further
improves the performance of the proposed method.

B. Comparison of the Proposed 2DSW With Other Algorithms

2DSW utilizes features that are typical for DTW and COW.
In analogy to DTW, a distance measure is used that incorpo-
rates information on the signal’s amplitude. The partitioning
into segments, on the other hand, strongly relates to COW. To
overcome the lack of robustness of DTW concerning signal
artifacts and local differences in amplitude values [10], 2DSW
introduces piecewise amplitude normalization. By segmenting
the signal, a higher robustness can be achieved by the pre-
serving signal characteristics. A conceptual difference exists
regarding the boundary condition. Many variants of DTW and
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COW project the first and last data points of the pattern to
be compared to each other. This restriction is avoided in our
implementation. Moreover, the implementation of DTW and
COW usually find the global optimum in terms of the cost
function to be optimized. Thus, the applied strategy of dynamic
programming requires the evaluation of many possible com-
binations of shifts. 2DSW expands the search space vastly.
A procedure similar to those used in 1d warping is computa-
tionally not feasible in case of 2DSW. We thus introduced a
heuristic procedure to solve the optimization problem imposed
by 2DSW. Multiscale search procedures within the heuristic
may further speed up computations.
As 2d warping approaches have been previously described

in the literature it is important to distinguish 2DSW from pre-
viously proposed methods, which have been used for image
processing. Both, DTW and COW have been adapted to 2d
warping of 2d images [46]–[48]. In the context of image pro-
cessing warping does not account for temporal shifts, but for
spatial ones. They are performed on pixels and pixel intensities,
while our approach focuses on signals.

VI. CONCLUSIONS

The two-dimensional warping approach introduced in this
paper is able to detect subtle changes in noisy quasi-periodic
biomedical signals. We illustrated its implementation for ECG
processing and demonstrated its performance by measuring
beat-to-beat QT interval variability in simulations and clinical
data. 2DSW might also be beneficial to solve problems where
1d warping techniques have been used in the past [7], [8]. More
generally, 2DSW might be useful in situations where coherent
averaging of signals is used to increase the SNR or construct
templates [32], [49].
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