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Abstract
The fetal ECG derived from abdominal leads provides an alternative to 
standard means of fetal monitoring. Furthermore, it permits long-term and 
ambulant recordings, which expands the range diagnostic possibilities for 
evaluating the fetal health state. However, due to the temporal and spectral 
overlap of maternal and fetal signals, the usage of abdominal leads imposes 
the need for elaborated signal processing routines.

In this work a modular combination of processing techniques is presented. 
Its core consists of two maternal ECG estimation techniques, namely the 
extended Kalman smoother (EKS) and template adaption (TA) in combination 
with an innovative detection algorithm. Our detection method employs 
principles of evolutionary computing to detect fetal peaks by considering 
the periodicity and morphological characteristics of the fetal signal. In a 
postprocessing phase, single channel detections are combined by means of 
kernel density estimation and heart rate correction.

The described methodology was presented during the Computing in 
Cardiology Challenge 2013. The entry was the winner of the closed-source 
events with average scores for events 4/5 with 15.1/3.32 (TA) and 69.5/4.58 
(EKS) on training set-A and 20.4/4.57 (TA) and 219/7.69 (EKS) on test set-B, 
respectively. Using our own clinical data (24 subjects each 20 min recordings) 
and statistical measures beyond the Challenge’s scoring system, we further 
validated the proposed method. For our clinical data we obtained an average 
detection rate of 82.8% (TA) and 83.4% (EKS). The achieved results show 
that the proposed methods are able produce reliable fetal heart rate estimates 
from a restricted number of abdominal leads.
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1. Introduction

Congenital heart defects are one of the most common birth deformities (Sameni 2008). Similarly 
to adult electrocardiography, the morphological analysis of the fetal electrocardiogram (FECG) 
provides additional diagnostic information, since most cardiac defects have some manifestation 
on ECG tracings (Sameni and Clifford 2010). However, accurate and reliable detection of fetal 
peaks is a pre-requirement for further morphological analysis of the FECG.

Since its introduction in the 1960s, electronic fetal monitoring has become part of routine 
maternal care (Bailey 2009), which includes the analysis of fetal heart rate (FHR) patterns. 
Standard methods of electronic fetal monitoring are either non-invasive (i.e. cardiotocogra-
phy) or, more recently, invasive (i.e. fetal scalp electrode). Despite their broad acceptance, 
these methods are not suited for long-term antepartum monitoring, due to lack of specificity 
or the exclusive compatibility with intrapartum period. Cardiotocography for instance, aside 
from usually providing an averaged estimate for FHR, requires a skilled specialist to position 
the ultrasound probe during the complete measurement. As a consequence, cardiotocography 
is known for its low specificity (van Laar et al 2009) and poor inter and intraobserver reliabil-
ity (American College of Obstetricians and Gynecologists 2009). Moreover, cardiotocogra-
phy has been associated with an increase in the number of medical interventions, meanwhile 
the mortality and morbidity rates have not decreased (Amer-Wåhlin and Maršál 2011, Bailey 
2009). On the other hand, a fetal scalp electrode does provide information about the electrical 
activity of the a fetal heart with high frequency resolution (on a beat-to-beat basis). However, 
its use is limited to the intrapartum period and since dealing with an invasive method, it may 
incur the risk of infection.

The FECG derived from surface abdominal leads (abdominal electrocardiogram—abdECG) 
is regarded as a promising alternative, which allows non-invasive long-term monitoring of the 
fetal heart (e.g. with a portable abdominal Holter device). Although many studies have con-
templated the topic (e.g. Widrow et al 1975, Peters et al 2001, Ungureanu et al 2009), FECG 
extraction (i.e. maternal interference estimation and cancellation) along with trustworthy fetal 
QRS detection remains an unsolved problem. The varying (usually low) fetal signal-to-noise 
ratio (SNR), temporal and spectral overlap of FECG and maternal electrocardiogram (MECG) 
signals and the morphological similarity between QRS complexes of mother and fetus entail 
difficulties concerning FECG’s clinical usage.

Aiming at accurate detection of fetal QRS (FQRS) complexes and FHR, the Computing in 
Cardiology (CinC) Challenge 2013 (Silva et al 2013, Clifford et al 2014) addressed the field 
of FECG processing and promoted the development of processing methods by providing a 
large database of abdECG records. This work, which was presented during CinC (Andreotti 
et al 2013), is the further development of Zaunseder et al (2013), which compared methods 
for MECG estimation, namely the extended Kalman smoother (EKS), (Sameni 2008) and 
the event synchronous canceller (Ungureanu and Wolf 2006). For this contribution, the latter 
method was further developed to allow a more flexible adaptation of maternal templates, here 
referred to as template adaptation (TA). EKS and TA are applied in parallel in order to extract 
the FECG. A newly developed FQRS detector and postprocessing scheme is sequentially used 
in deriving the FQRS and FHR.
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2. Material and methods

2.1. Data

Our analysis made use of the data available within the CinC Challenge for the closed-source 
events as well as clinical recordings provided by the University Hospital of Leipzig within a 
collaboration on FECG analysis.

2.1.1. Challenge data. Closed-source data consisted of 175 records drawn from five different 
sources (including real and simulated data). The records were divided into a training set (set-A) 
of 75 recordings4 and a test set (set-B) containing 1005 recordings. Each recording contained a 
1-minute abdECG measurement with four channels at 1000 Hz. For set-A along with the raw 
signals, reference for FQRS locations was provided. For both sets references were annotated by 
different specialists using fetal scalp electrode recordings (Silva et al 2013,  Clifford et al 2014).

2.1.2. Own clinical data. Clinical recordings were acquired at the Department of Obstet-
rics and Gynecology at the University Hospital of Leipzig. The study was approved by the 
University Hospital of Leipzig’s ethics commission record 348-12-24092012 and written 
informed consent was obtained from each patient. Twenty-four 20-minute abdECG record-
ings of variable fetal-maternal SNR were selected from a larger collective of measurements. 
These recordings were taken from ten women (both healthy and pathological patients were 
present), aged between 21 and 33 years (27.1 ± 4.3 years) and gestational weeks between 20 
and 28 weeks (25.0 ± 2.5 weeks). No ectopic beats have been found for either mother or fetus.

Data were collected by a bipolar lead configuration (see figure 1) at 1000 Hz sampling fre-
quency using the ADInstruments ML138 Octal Bio Amp and ADInstruments PowerLab 16/30 
(ADInstruments, Dunedin, New Zealand). The abdominal leads were filtered by a mains filter 
and a high pass filter (cut-off frequency 1 Hz). The measuring range of the abdominal record-
ings was 500 µV. To be used as gold standard, each record had its maternal QRS (MQRS) 
and FQRS annotated by one and corrected by two other trained specialists (see figure 1(b)). 
Reference annotation was performed on channel 1 (for the maternal reference) and the full set 
of abdominal leads (2–8, in figure 1) for the fetal reference. As preliminary works identified 
leads 6–8 (black coloured in figure 1(a)) as the most suitable ones, only these leads were used 
during signal processing. Moreover, a low number of leads provides the processing algorithm 
a more challenging situation which portable devices usually face.

2.2. Performance evaluation

In order to assess the accuracy of our FQRS detection, different measures were used. The first 
two indexes were provided by the CinC Challenge (function score2013.m) for event 4 and 5. 
Namely the mean squared error between smoothed and re-sampled versions of the reference 
FHR (F H Ri) at time i and detected FHR (FHR )i

d  (Score1, in bpm2) and the root mean square 
difference of corresponding RR intervals (Score2, in ms), respectively (Silva et al 2013). 
Equations (1) and (2) describe the scoring calculus, with i being the detection index and I the 
total number of FQRS detections present on the reference

∑= −
=I

Score1
12

· (FHR FHR )
i

I

i i
d

1

/12
2 (1)

4 This work disregards ‘a54’ since it was discarded by the Challenge’s organizers.
5 The Challenge organizers might not have used all these recordings for providing statistical results.
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Aside from the Challenge’s scoring system, we used sensitivity (SE) and positive predic-
tive value (PPV) as defined in (ANSI/ AAMI EC57 1998):

=
+

SE
TP

TP FN
, (3)

=
+

PPV
TP

TP FP
(4)

where true positive (TP) denotes correctly detected peaks, false negative (FN) being existing 
peaks which were not detected, and false positive (FP) nonexistent peaks that were falsely 
detected. Differing from ANSI/ AAMI EC57 (1998) we defined a  ± 50 ms acceptance interval 
between detection and the closest reference annotation to account for the higher expected 
heart rate (in the norm  ± 150 ms is suggested).

Finally, equations  (5) and (6) describe two measures that were used to summarize the 
accuracy of FQRS detections (i.e. TP in comparison to FP and FN): accuracy (ACC) as in 
Karvounis et al (2007) and the F1-measure (Behar et al 2013).

=
+ +

ACC
TP

TP FN FP
(5)

=
+

=
+ +

F 2·
PPV·Se

PPV Se

2·TP

2·TP FN FP
.1 (6)

For our own data, each statistic was calculated for every consecutive 1-minute segment 
(non-overlapping), to better illustrate how the algorithm’s performance may vary along the 
same recording. Afterwards both intra and interindividual results were evaluated.

2.3. Signal processing

The workflow for signal processing is depicted in figure 2. Its modular design permits the sub-
stitution of processing blocks. Each block is composed of several subroutines. In the following 
subsections, each individual block is thoroughly explained.

Figure 1. (a) Electrode configuration for patient recording. Three bipolar leads were used 
in this study as input to signal processing methods (leads 6–8); (b) exemplary raw data 
(no unit—NU), reference annotations are represented as maternal ( ) and fetal ( ).
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2.3.1. Preprocessing. To reduce baseline wander, muscular artifacts and power-line 
interference we used 1000 taps FIR filters. The first two types of noise were partially sup-
pressed with a bandpass between 3–80 Hz. For power-line removal two notch-filters (at 
50 Hz and 60 Hz) were applied, since the origin of the Challenge data was unknown. The 
three filters were consecutively applied in the forward and backward direction, perform-
ing zero-phase filtering. Figure 3 shows the magnitude and phase plots for the resulting 
filter.

2.3.2. Maternal QRS detection. Considering the non-standardized abdominal deriva-
tions, we augmented the maternal signal by using spatial filtering before performing 
MQRS detection. Independent component analysis (ICA) has been previously proposed 
for separating FECG and MECG components (De Lathauwer et al 2000), thus FastICA 
algorithm (Hyvärinen  1999) was applied for the purpose of isolating the MECG. The 
ICA algorithm was used symmetrically, incorporating whitening and making use of a 
hyperbolic tangent contrast function (as suggested by Hyvärinen (1999)). To account for 
non-stationarities inside recordings, ICA was applied on non-overlapping sub-segments 
of 30 s duration.

Permutation indeterminacy denotes a common difficulty which goes along with ICA. 
The a priori unknown positioning of independent components (ICs) inside the ICA’s output 
imposes a challenging task of automatic selection of the IC of interest (i.e. MECG) (Wedekind 
et al 2013). For automated selection, first MQRS detection was performed using a maximal/
minimal search algorithm (Sameni 2010) in each of the preprocessed channels (i.e. prior to 

Figure 2. Workflow diagram of signal processing. ① represents the N raw channels; 
1’  stands for the M = N·(N − 1)/2 pairwise subtracted ①; ② depicts the N (or N + M) pre-
processed channels; ③ represents the MQRS detections over ② (one decision); ④ is N 
(or N + M) channels with suppressed maternal signals (extracted FECG); ⑤ is the FQRS 
detections using evolutionary detector; 5’  represents the statistically decided and FHR 
corrected FQRS detections.
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ICA—primary detection) and in all ICA output channels (secondary QRS detection). Figure 4 
depicts the results of using ICA on two of the Challenge’s data.

Each channel-based detection was then compared to the others by a voting system, using 
ACC (from equation (5)—using a ± 25 ms matching window around reference detection) as 
measure of correctness. Based on the assumption that MQRS complexes are predominantly 
detected in both input and output channels, the agreement between primary and secondary 
QRS detections can be considered as an indicator of the MECG presence on that IC (see fig-
ure 3). The detection-channel with highest ACC was then chosen as the best output channel.

To cope with cases when ICA fails to produce reliable ICs, the chosen ICA detections were 
once more compared to the primary MQRS detections. This was performed based on a statistical 
decision-making procedure to generate a consensus between primary MQRS detection and best 
secondary MQRS detection. This consensus took into account the value of FP and FN by using 
kernel density estimation of the peak distributions in multiple channels as in Silverman (1986). 
Gaussian kernel functions with 30 ms standard deviation and unitary amplitude were centered 
at the time instants of each detected peak. The sum of these kernels resulted in a distribution of 
peaks which ranged from zero to the number of considered channels, so that the height of the 
local maxima represented the match of detections in multiple channels. Values above a given 
threshold (defined as half of the number of channels) were accepted as MQRS complexes.

Next, MECG morphology was exploited by making use of a matched filter detection 
approach. For this purpose, the primary detection channel that showed the strongest agree-
ment with our statistical decision was used. A template (length 120 ms) was obtained by 
aligning individual beats based on their correlation coefficients, low correlating beats were 
then excluded and a trustworthier template was generated. The template was cross-corre-
lated with the preprocessed best channel, where high-correlated new peaks were accepted 
as correct if either (1) they overlapped with previous detections in a given window (three 
times the size of the template)—these detections were re-aligned to match the R-peak using 
matched filter’s output; or (2) a correlation superior to 80% was achieved outside this win-
dow. Previously detected beats were removed, in cases of poor correlation (less than 50%) 
between template and signal.

Lastly, differences between RR-series and a 5th order smoothed version of the RR-series 
greater than 150 ms were corrected by adding/removing detections.

Figure 3. (a) Magnitude of frequency response to cascaded filters; (b) phase response 
of the resulting filter.
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2.3.3. Abdominal lead augmentation. Before estimating the maternal signals, we exploited the 
MQRS amplitudes and created a rule for linear combining raw channels. This step is only rele-
vant for Challenge data, where the lead configuration was unknown (see figure 5). A large mater-
nal peak amplitude (i.e. abdominally recorded peak with absolute value greater than 150 mV) 
was assumed to indicate a sort of unipolar measurement. By means of linear combining the four 
raw channels (through subtraction) and using the six available combinations of these channels, 
we augmented the FECG components. The resulting six channels were then preprocessed and, 
for the further steps, used concurrently with the four initial channels (see figure 2).

2.3.4. Fetal signal extraction. In this work, two temporal methods were used. These methods, 
often called template subtraction methods, make use of the pseudo-periodicity of MECG and 
time-decorrelation with the FECG for generating a maternal template beat (Martens 2003). 
By re-adapting this template onto the preprocessed signals, the maternal component within 
a single channel can be estimated. Both our methods started from a common ground, which 

Figure 4. (a) Preprocessed signals (record ‘a02’ from set-A) before ICA; (b) output 
signals after spatial filtering6 for (a); (c) preprocessed signals (record ‘a08’ from set-A) 
before ICA; (d) output signals from ICA for (c). MQRS detections are represented by 
circles. On (a), the FECG component has low SNR, while on (c), channels 3 and 4, the 
FQRS have almost the same amplitude as MQRS. For both cases, a maximal/minimal 
peak detector from Sameni (2010) was used. For (b) ICs 1, 3 and 4 show maximum ac-
curacy, on (d) IC 2 was selected as the best component.
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6 Figure 4(b) shows mainly MECG and noise ICs (i.e. no fetal component), which is because ICA requires at least 
the same number of leads as sources (Karvounis et al 2007).
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was an average maternal template. This template was obtained by wrapping (as in Sameni et 
al  (2005) and Sameni (2008)) 30 s segments of abdominal signals and coherent-averaging 
( Rompelman and Ros 1986) the wrapped beats.

In order to keep the consistency with the previous processing steps, we applied the further 
mentioned methodology to every 30 s of measurement. Lastly, after obtaining maternal esti-
mates for each channel (using either of the methods), these estimates were subtracted from the 
respective preprocessed channels, therefore obtaining estimates for FECG plus noise.

2.3.5. Maternal estimation by means of extended Kalman smoother. The Kalman filter is a 
versatile framework that has been applied for filtering diverse biomedical signals. Its use for 
FECG extraction was first proposed by Sameni et al (2005), a more complete description is 
present in Sameni (2008) and an implementation is available in Sameni (2010). For our pur-
pose, the Kalman filter was used in estimating the MECG for each channel based on:

(a) average maternal beat, previously described;
(b) a dynamic model comprising a phase information and a mathematical description to the 

maternal ECG template. The first is derived from MQRS detections, where for each beat 
a linear interpolation between [ − π, π] is assigned, with zero being the maternal R-peak, 
therefore resulting in a sawtooth-shaped signal. The latter is based on McSharry et al’s 
(2003) electrocardiogram model, which approximates ECG waveforms by adding N 
shifted Gaussian kernels;

(c) the observed signals (preprocessed abdominal signals).

Since dealing with a non-linear model, its dynamical model has to be linearized before filter-
ing. This extension is called the extended Kalman filter. During filtering, the Kalman gain 
provides a weight between observations and inner model, which is based on estimations of 
noise for observations and model (covariance matrices). After filtering, a backward smooth-
ing stage is applied to provide a more trustworthy estimation of the MECG projection within 
the abdominal leads, therefore the method is called the extended Kalman smoother (EKS).

Figure 5. Exemplary CinC recording ‘a59’ where 2 linear combination of channels is 
advantageous. The top panel represents raw channel 2; middle shows the raw channel 
3; bottom the result of subtracting raw channel 3 from 2 (notice that fetal peaks are 
visible). Reference maternal and fetal annotations are represented by ( ) and ( ), 
respectively.
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The implementation is available in Sameni (2010). The steps for obtaining a maternal esti-
mate can be summarized as follows.

(a) Approximate an averaged beat with N Gaussian kernels, therefore obtaining 3 · N param-
eters (amplitude, width and position).

(b) Filter the signal on sample basis, with the Kalman gain serving as a weight between 
observation and inner model by means of covariance matrices.

(c) Non-causal backward fixed-interval smoothing.

2.3.6. Maternal estimation by means of template adaptation. Based on the event-synchronous 
canceller (ESC, Ungureanu and Wolf (2006)) and our previous work (Zaunseder et al 2013) 
we developed the template adaption (TA) method.

Similarly to the ESC, TA makes use of an average maternal beat which is directly adapted 
back to the original signal without any fixed mathematical modelling (as EKS does). Differing 
from ESC, TA also allows a width adaption (stretching the template around the QRS-complex) 
which grants more flexibility. In order to perform this adaption, the template was divided 
into three patterns (likely to represent the maternal Q, R and S waves). Each sub-pattern was 
then allowed to vary in width and height, which gave the extraction method some additional 
degrees of freedom. Furthermore, based on the overall signal trend (height of preceding Q, R 
or S waves) a template adaption constraint was added to avoid complete cancellation of fetal 
peaks in cases of complete temporal overlap with maternal QRS. The steps for performing 
MECG estimation by means of TA are as follows.

(a) Locate sub-patterns (Q, R and S waves) on the previously described template.
(b) Identify the corresponding sub-patterns of each maternal beat on the preprocessed channel 

(cross-correlating sub-patterns of the template with the preprocessed signal).
(c) Evaluate and constrain the gain for templates whose amplitudes exceed a smoothed ver-

sion of the beats’ amplitude-series (using a 9 beat span).
(d) Temporally re-sample both template and preprocessed channel and selection of 350 fea-

ture points (Fp) for width adaptation of the template.
(e) Stretch template’s segments for optimal adaption (based on Euclidean distance) to each 

Fp on the preprocessed channels.

2.3.7. Fetal QRS detection. In order to cope with low fetal SNR due to noise and residuals 
from MECG extraction, we introduced a novel method for FQRS detection that makes use of 
basic concepts from evolutionary algorithm (EA). Essentially, based on a set of initial detec-
tions, our method corrects these detections following two basic principles: the overall beat-to-
beat interval periodicity and the beat morphology on the recording.

EAs have become a popular heuristic near-optimal solution for problems with large search 
spaces (Whitley 2001). In contrast to traditional algorithms for optimization, EAs are working 
with probabilistic rules thereby enabling parallel solutions. Due to the lack of boundaries in 
creating the global cost function, EAs can be applied in an easy and flexible way (Pohlheim 
1999). In EAs, artificial individuals (i.e. FQRS detections) are used to populate, compete 
with one another and discover optimal solutions within this search space (Bäck and Schwefel 
1993), i.e. the FECG signal.

Although the EA population is often arbitrarily initialized (Bäck and Schwefel 1993), for 
the purpose of faster convergence we chose to start our method with initial FQRS detections 
using a simple maximal search algorithm (Sameni 2010). During initialization, a fitness value 
(FVi, depending on periodicity and morphology of FQRS detections) was assigned to every 
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individual (i). The value of our global optimal solution is expressed using a fitness func-
tion. Possible FQRS were allowed to originate, change location or cease existence on every 
iteration. Following the ideas of simulated annealing (Kirkpatrick et al 1983), the amount of 
changes (i.e. number of detections to originate/move/vanish) was reduced after every cycle.

Periodicity (or ‘FHR plausibility’, see figure  6) was determined based on a smoothed 
RR-interval curve. The algorithm looped through each detection and, based on the local 
smoothed RR-curve, it placed six Gaussian kernels (three on each side of actual detection) 
centered on plausible neighbouring peaks. The amplitude of such kernels depended on two 
factors: (i) local value of FVi (amplitude increase with rising FVi) and (ii) distance from 
actual individual, i.e. {1· FVi ± 1, 0.9· FVi ± 2, 0.8· FVi ± 3} (decaying amplitude with increasing 
distance). The Gaussian standard deviation was defined as 20% of the recording’s shortest 
smoothed RR-interval. The sum of the individually generated curves resulted in the FHR 
plausibility curve. The neighbouring Gaussian kernels provided a rough measure for certainty 
about FQRS positions and generated competition between neighbouring individuals. As the 
number of iterations increased, the kernels were expected to interfere constructively with one 
another and generate a more skewed FHR plausibility curve (see figure 7).

On the other hand, morphological features can not be described by one single feature 
signal, particularly due to the presence of noise. In order to assess morphology, we made 
use of two sub-functions, namely conformity and extravagance. Conformity is a cross-
correlation-based measure of likeness between each detection and a generated fetal beat 
template, while extravagance is a measure of contrast between the detected peak and its 
surroundings (see figure 6).

The optimization procedure stopped when convergence occurs, i.e. the majority of the detec-
tions settled (did not move), or the maximum number of iterations was achieved (i  = 1000). After 
providing viable FQRS within each channel, the detector uses the annotation channels which 
were considered to be most trustworthy (largest overall FV) to generate a set of multichannel 
detections. Since the optimization was affected by the choice of its process variables, the proce-
dure might get stuck in local optima or not converge producing random differences in its results.

2.3.8. Decision-making and correction. Decision making aims at combining single channel 
annotations in one consensus annotation. In order to do so, an adaptation of the approach 
applied for MQRS consensus was used. For creating this consensus, lower local maxima 

Figure 6. Different parameters used for defining the fitness curve.
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between two accepted neighbours were deleted if both peaks had a temporal distance which 
was smaller than a defined refractory period (300 ms).

Last, heart rate corrections were performed while attempting to obtain a plausible FHR. 
This correction was done by means of including peaks at the borders of gaps indicated by 
FHR jumps. Furthermore, FHR ‘zigzag’ pattern (i.e. a smaller value followed by a higher one 
and vice versa) were corrected switching the position of the central detected peak to decrease 
FHR variability. After looping through all fetal RR-intervals, persistent sudden heart FHR 
greater than 70 ms were removed and existing gaps were filled without regarding any distri-
bution information.

3. Results

The proposed extraction methods were able to separate the MECG and FECG. The evolution-
ary FQRS detector obtained reliable detections in the presence of noise, even when MECG 
residuals persisted. Figure 8 shows an example of extraction using EKS and TA.

Table 1 shows the average interindividual performance measures obtained for each dataset. 
Despite the overall similar results for EKS and TA, both methods behave differently (see  figure 8 
and table 1). Particularly around maternal QRS complexes, EKS tended to cross-out FQRS 
complexes in cases where temporal overlap with maternal complexes occurred. Meanwhile TA 
produces some artefacts on the resulting FECG signal, due to the non-linear adaptation.

EKS produced more variable results which is reflected in the standard deviation of the per-
formance measures. This variance is particularly strong for the value of Score1 (mean squared 
error between FHR), which may be caused by the removal of overlapping beats and attempt to 
re-insert these missing beats in a later stage. In average, TA’s accuracy outperforms EKS’s for 
CinC data but the opposite happens for our own recordings. The results were obtained from 
a single run of the proposed work flow for signal processing. Due to the stochasticity of our 
detector results may slightly differ.

In figure 9 intraindividual results using own clinical data are shown. Record 8, the record 
exhibiting the most pronounced differences between EKS and TA, is separately shown in 
figure 10. Recordings 12–14 were included even though no FECG was visible on channels 6–8 
during visual inspection (channels 2–5 were used when creating fetal reference annotations).

Figure 7. Iterations of the evolutionary algorithm for record ‘a01’ from the CinC Chal-
lenge. The continuous line depicts the ‘FHR plausibility’ curve (from figure 6). The detec-
tion quality indexes (FV) are represented by the height of the actual detection at time i ( ). 
Initial detections (at i = 0) are depicted by ( ) (a) detector at iteration step i = 119, 
FV = {1.5, 1.5, 1.9}; (b) at i = 126, FV = {3, 2.3, 2.6}; (c) at i = 742, FV = {5.3, 4.2, 4.5}.

(a) (b) (c)



                 

1562

                             

4. Discussion

4.1. Relation to other FECG extraction methods

According to Martens (2003), approaches to estimate the fetal signal from abdECG leads can 
be categorized into spatial, temporal and, the combination of both, spatio-temporal methods. 
Spatial methods attempt to separate the fetal signal by using information about the spatial 
distribution of the sources within the abdECG mixture. Methods that appear in the literature 
include ICA (De Lathauwer et al 2000, Zarzoso and Nandi 2001), principal component analy-
sis (PCA) (Martens 2003), singular value decomposition (SVD) (Callaerts et al 1990, Kanjilal 
et al 1997) and non-linear state-space projections (NSSP) (Richter et al 1998).

Some CinC competitors made use of such methods (alone or combining them with tem-
poral methods) for separating the maternal and fetal ECG (e.g. Behar et al 2013, Fatemi 
et al 2013, Lipponen and Tarvainen 2013, Varanini et al 2013). Despite its successful usage, 
even during CinC’s Challenge, some of these methods (e.g. ICA) have some drawbacks, e.g. 
(i) require a large number of channels (Karvounis et al 2007), that equals or exceeds the 
number of sources (Martens et al 2007); (ii) assume a stationary mix of the sources, which in 
cases of varying fetal SNR throughout the channels, fetal movement or appearance of noise is 
invalid; (iii) they unintentionally separate atrial and ventricular components (Rieta et al 2004), 
which makes further morphological analysis impracticable.

Temporal methods are also widely used in the literature and some competitors made use 
of them as well (e.g. Behar et al 2013, Lukosevicius and Marozas 2013, Kropf et al 2013). 
Our work focuses on such methods because they imply the fewest restrictions on the record-
ing setup (a single channel can be used). Within this contribution two temporal methods (TA 
and EKS) were exploited and certain limitations were presented for each method. TA is a 
modification of template subtraction methods which allows not only and amplitude adapta-
tion, as in Lukosevicius and Marozas (2013) and Martens et al (2007), but in width which 
provides the method an extra degree of freedom. EKS, on the other hand, was applied simi-
larly to other competitor’s schemes (e.g. Behar et al 2013, Akhbari et al 2013, Haghpanahi 
and Borkholder 2013). Results show that both extraction methods can be considered suitable 

Figure 8. Five seconds segment of our own clinical dataset 2. Maternal QRS detections 
are marked with (◻), fetal reference by ( ), FQRS detections over TA output by ( ) 
and FQRS detections over EKS output ( ). The top panel shows preprocessed abdom-
inal channel 6; the middle the extraction results for TA over the channel is displayed; 
the bottom shows the extraction results for EKS.
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for FECG extraction. In terms of challenge scores, our scheme outperformed similar schemes, 
a finding the authors attribute mainly to our novel FQRS detector.

4.2. Limitations and future work

While dealing with clinical data, some limitations on the methodology were noticed. One of 
them being gestational age, i.e. case 15 (own data) as the earliest recording (20th week of 
gestation) indicates a low fetal SNR to strongly affect the accuracy of the detections. Another 
limitation could be associated with premature rupture of membrane and/or breech presentation 
as in the cases 8 and 12–14, where extraction/detection fails. While comparing EKS and TA, 
the fact that for most of our own clinical data EKS outperforms TA, indicates that TA may 
be over-trained for the Challenge’s data (although better results were obtained for unknown 
set-B). These results highlight EKS’s best feature: the versatility to adapt to different conditions.

However, EKS still needs improvements. Qualitative analysis reveals that EKS tends to 
remove fetal QRS complexes in cases of temporal overlap with maternal complexes (see 
figure  8), which is in accordance with the literature (Sameni 2008). The reason for this 
phenomenon is the unconstrained Kalman gain. Ideally, the Kalman filter should be able 
to track amplitude variations, most importantly introduced by the maternal respiration. At 
the same time, the filter should reject amplitude variations due to fetal maternal overlap. At 
the moment, EKS works on a sample basis not taking into consideration the amplitude of 
previous maternal beats. A viable solution would be an approximation of the cases inter-
polating the amplitude’s modulation by means of splines or a Kalman filter (Nemati et al 
2010). Amplitude ratios of other segments which undergo amplitude modulation due to 
respiration, e.g. QRS to T-wave amplitude (Langley et al 2010), could be exploited in order 
to improve the behavior of the Kalman gain as well. The usage of sub-segments’ amplitude 
information, supported by TA, is responsible for successful FECG extraction even in cases 
of complete overlaps. Kalman filter constraints could also be added in order to allow the 
filter to behave in a similar manner.

Aside from constraining the Kalman gain, the dynamical model from McSharry et al (2003) 
can be improved by considering the non-linear temporal ECG changes (over PR, QRS and 
QT intervals). By means of dynamic template warping (Niknazar et al 2012), a trustworthier 
phase information (thus, wrapped template) is achieved. Improvement in our model can also 
be obtained by optimizing Gaussian kernel placement in approximating the maternal template 
beat and better designing the process and observational covariance matrices.

The evolutionary FQRS detector can be regarded as a sound approach for FQRS detec-
tion. Despite its development and adjustment over the CinC data, its applicability in longer 
and noisier datasets was validated using own clinical data. The observed drop in the results 

Table 1. Interindividual performance of FQRS detection depending on extraction 
method used for CinC data and our own data.

Data Trial Se (%) PPV (%) ACC (%) F1 (%) Score1 Score2

Set-A TA 97.4 ± 11.0 97.2 ± 10.7 96.0 ± 13.4 97.3 ± 10.8 15.1 ± 57.5 3.32 ± 14.1
EKS 93.1 ± 20.3 92.8 ± 20.3 91.2 ± 23.2 93.0 ± 20.3 69.5 ± 245 4.58 ± 14.9

Set-B TA — — — — 20.4 4.57
EKS — — — — 219 7.69

Own Data TA 85.8 ± 23.7 85.0 ± 23.3 82.8 ± 26.5 85.4 ± 23.5 102 ± 192 26.5 ± 27.8
EKS 86.8 ± 23.4 85.9 ± 23.3 83.4 ± 26.9 86.3 ± 23.3 118 ± 201 27.0 ± 29.4

Values represented as (mean ± standard deviation). For hidden set-B, results for Se, PPV, ACC and F1 are 
not available.
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can be attributed to the more challenging data (see figure 10). Leaving Leipzig recordings 
12–14 out of the accuracy calculation increases ACC using TA to 91.9 ± 10.1% and for EKS 
92.4 ± 12.1%. By weighting between the signal periodicity and morphology a more consistent 
approach than mere interpolating missing peaks is obtained. Despite its capabilities, the evo-
lutionary approach should be further studied. For example, additional sub-functions to capture 
morphology and/or periodicity could be easily included.

In general our methodology was able to perform robust FQRS detections for a total of 
175 min (Challenge data) and approximately 470 min (own data). However, since neither 
Challenge nor our own data contained recordings with significant arrhythmia or ectopic 
beats, a more complete noise stress test is required. For instance, the negative effects of 
post-processing maternal/fetal QRS detections was not evaluated. Indeed, such a heart rate 
correction stage should be avoided, for example by better adjusting the EA detector’s sub-
functions to only allow RR-series smoothing in segments where the signal is not buried into 
noise. An inference about this work’s clinical relevance is not possible due to the difficulty 
in obtaining FECG recordings with reliable FQRS annotations (for gold standard) and the 
fact that fetal electrocardiography is still in its early stages. Therefore, only a comparison 
between methods is possible. For the purpose of benchmarking methods for FECG extrac-
tion, the simulator presented in Behar et al (2014) and Sameni  et al (2007) is a better option 
since it allows a variety of realistic scenarios.

5. Conclusion

In this work, we presented the workflow for our winning closed-source entry on the Computing 
in Cardiology 2013. The scheme was further evaluated and validated using our own clinical 
recordings (comprising 7.8 h of multichannel abdominal data). The described methods were 
able to adapt to the extended clinical test data, performing satisfactory FECG extraction for 
robust FQRS detection. After our analysis, the most promising direction for future research 

Figure 9. Boxplot showing the accuracy inter and intrapacient variability for our own 
clinical data using TA and EKS. Outliers are represented with  + , the first and third 
quartiles depict the box’s ends, the line within the box represents the median and non-
outlier maximum and minimum values are at the ends of the whiskers.
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might be the extension of the proposed Kalman based approach using additional information, 
e.g. expected amplitudes. By doing so, the mathematical framework of EKS and the flexibility 
of TA can be combined to generate better maternal estimates.
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