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Abstract

Introduction: The ECG Bayesian filtering framework
has been shown to be a promising method to extract the
foetal electrocardiogram (FECG) from abdominal record-
ings. This framework requires an estimation of the ECG
morphology, which is obtained by approximating an aver-
age beat with a number of Gaussian kernels. This approx-
imation results in a high dimensional nonlinear optimiza-
tion problem (finding ideal positions, width and height for
these kernels).

Methods: Proposed methodologies in the literature ini-
tialize the optimization algorithm using fixed positions for
the kernel functions. This contribution benchmarks al-
ternative schemes for finding the Gaussian parameters,
namely an approach based on the stationary wavelet trans-
form and random search. The goal is minimizing the nor-
malized mean squared error between the average beat and
the approximated model, while increasing foetal QRS de-
tection accuracy.

Results: The suggested methods are able to produce im-
proved morphology approximations of the averaged beat
up 4.05% (depending on the selected method). The pro-
posed method using the stationary wavelet transform im-
proves the goodness of the fit, while reducing the compu-
tational load. However, no immediate improvement on the
accuracy of FQRS detections was noticed. Such findings
render the proposed method a promising tool. However,
further research should be directed at transferring the im-
proved fit to an improvement of FQRS detections.

1. Introduction

Non-invasive foetal electrocardiogram (FECG) provides
an alternative mean for ante and intrapartum assessment
of an unborn child’s cardiac activity. It can be measured
using standard ECG electrodes attached to the abdomen
of pregnant women. The abdominal recordings deliver a
mixture of FECG, maternal ECG (MECG) and noise (e.g.

muscular and movement artefacts). The FECG and MECG
signals overlap in both the time and frequency domain and
often mix in a non-stationary manner [1], making source
separation a difficult task.

Motivated by current standard techniques’ inability to
reduce rates of neonatal mortality/morbidity [2], over the
past decades a number of studies focused on the process-
ing of abdominal FECG signals. Recently, a significant
advance for such techniques was achieved by the Comput-
ing in Cardiology Challenge 2013 (here denoted as ‘Chal-
lenge’) [1,3], which focused on accurate detection of foetal
peaks from abdominal recordings. In order to extract the
foetal signal from the abdominal mixture, the challenge
participants (including some top scorers) have successfully
made use of the of the Bayesian filtering framework, which
is based on the Extended Kalman Filter (EKF).

The EKF is a flexible framework for filtering nonlinear
dynamical systems. In the scope of FECG extraction, it
was firstly introduced by Sameni et al. [4] who used the
EKF for estimating the MECG signal within a single chan-
nel abdominal ECG. The estimated MECG signal was sub-
sequently subtracted from the mixture, thus obtaining an
estimate of the FECG and the noise. EKF processes sig-
nals based on a dynamic ECG model suggested by Mc-
Sharry et al. [5] (used for the prediction step) and the
observations (i.e. abdominal signal itself) for the correc-
tion step. The dynamic model is obtained by wrapping and
coherent averaging MECG beats to generate the so called
MECG template, here denoted as Tm. For simplifying the
notation, Tm was transformed to polar coordinates system,
hence Tm(θk) being {θk} ∈ [−π, π] the phase as a func-
tion of k bins [4], in this work k ∈ {1, ..., 300}. In order to
obtain a mathematical description of the modelled system,
the template Tm(θk) is then approximated using a number
N of Gaussian kernels. Each kernel is defined by three
parameters, namely αi (amplitude), bi (width/standard de-
viation) and φi (position), so that i ∈ {1, ..., N}. Adapt-
ing N Gaussian kernels into the averaged template results
in a nonlinear optimization problem. In order to solve
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Figure 1: Example of Gaussians used in approximating an average beat
Tm(φi). In the example N = 5 and Tm(φi) is shown in gray.

this problem, Clifford et al. [6, 7] used a nonlinear least-
squares optimization approach.

This procedure was initialized using for each Gaus-
sian a height defined by the local template amplitude (i.e.
αi = Tm(φi)) and the fixed width bi = 0.04 rad. Al-
though Clifford [7] allowed these positions to vary, Sameni
et al. [4] fixed the initial positions for these kernels (φi) for
simplicity and stability. This fitting is here denoted as the
“Fixed Fitting” (FF).

This work aims at improving the abdominal FECG ex-
traction based on the hypothesis that:
1. The approximation of the mean beat Tm(φi), compared
to fitting models depicted in literature, can be improved by
i) introducing an intelligent initialization procedure; and ii)
relying on a repetitive procedure and exploiting the effects
of random initialization.
2. A better approximation of the MECG template might
result in an improvement of fetal QRS detection accuracy.

2. Materials and Methods

2.1. Gaussian Fitting

This section presents different models used to approxi-
mate Tm(θk) using Gaussian kernels (see Figure 1). Be-
yond FF described in the literature, this work compares
alternative methods for initializing the optimization func-
tion. The proposed methods allow the model to adapt itself
to a waveform not requiring any prior information on the
expected locations of PQRST waves.

2.1.1. Fixed and Uniform Fitting

For the FF initialization, the kernel positions were ob-
tained from publications that followed McSharry’s [5]
work, i.e. for N = 5 [5], N = 6 [6], N = 7 [6, 8] and
for N = 9 − 11 [9]. A model for N = 15 was extrapo-

lated from the model using 11 kernels by inserting 4 new
kernels between the existing ones. A similar approach for
the FF can be achieved by simply distributing theseN ker-
nels uniformly within the interval [−π, π], which is here
denoted “Uniform Fitting” (UF).

The optimization procedure was performed considering
as lower/upper bounds ±2 its initial values for each pa-
rameter αi, bi and φi, indenpendently of their units (i.e.
mV or rads). For these experiments, the number of steps
permitted for the optimization procedure was 100×N .

2.1.2. Stationary Wavelet Transform Fitting

Clifford [7] proposed an intelligent algorithm for po-
sitioning the Gaussian kernel functions using cross-
correlation between the MECG template and pre-defined
Gaussian functions with varying standard deviations. As
suggested by Clifford, the use of wavelet scaling func-
tions is an immediate alternative to the procedure. There-
fore, in this contribution, the Stationary Wavelet Trans-
form (SWT) using the quadratic spline wavelet [10] is ap-
plied. The SWT provides a computational efficient frame-
work, meanwhile using the scaling function belonging to
the quadratic spline wavelet is qualitatively comparable to
having Gaussian-like approximations at different resolu-
tions. The SWT is a variant of the discrete wavelet trans-
form, that permits translation-invariant decompositions at
cost of being a redundant scheme, i.e. signals are not deci-
mated at each level. The SWT was calculated by applying
the algorithme à trous [11], i.e. on every level zeros are
inserted between the low-pass filter coefficients.

The kernels used to approximate Tm(θk) were posi-
tioned at the absolute maxima of the low-pass coefficients,
which can be interpreted as cross-correlation between the
template and the scaling function at different widths. In
other words, the approach does not rely on the wavelet
coefficients itself, but exploits a side effect of the itera-
tive scheme to calculate the transform, namely the low-
pass coefficients. The first six dyadic scales were used i.e.
2, j ∈ {1, ..., 6}. Since the scaling function represent low-
pass filters with different widths, the power of the scaling
functions vary. In order to normalize the scaling functions,
the SWT was calculated and divided by the standard de-
viation of the scaling coefficients and template. The SWT
model was applied iteratively to obtain each kernel’s initial
position. For each kernel, the nonlinear least squares opti-
mization procedure was employed with a maximal number
of 100 steps, for fitting αi and bi parameters, allowing a
small shift in φi of ±π/10. This iterative variant is de-
noted as “SWT Fitting” (SWTF).

Alternatively, the selected positions were used as input
for the optimization procedure described in section 2.1,
i.e. performing the optimization of all N kernels at once,
method here named “SWTF2”.
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2.1.3. Random Search Fitting

A random search for positioning the used kernels pro-
vides an alternative to the deterministic approaches (e.g.
SWTF approach). This method, denoted as RSF, initially
centers the Gaussian kernels in random positions and re-
peats the optimization procedure several times. The best
results, defined as the minimal normalized mean square
error (NMSE) in fitting the Gaussian to the ECG template,
are kept and further used. This approach was previously
used to determine the Gaussian parameters by Behar et al.
[12, 13]. To initialize each iteration, the Gaussian kernels
were randomly positioned using hundred iterations. In or-
der to reduce the total number of iterations, a tolerance can
be included i.e. when the model reaches an acceptable fit-
ting error, the optimization procedure is terminated.

2.2. Database and Validation

In order to evaluate hypothesis 1, i.e. which of the
proposed methodologies can most accurately approximate
Tm, 23 abdominal ECG recordings were used [14]. Each
abdominal recording consisted of 5 minutes and 7 abdom-
inal channels. Template generation was performed on 30
seconds epochs for each abdominal channel, therefore to-
talizing 1,610 templates. The goodness of the fit (GOF)
was measured with respect to the NMSE as follows:

GOF = 1−

∥∥∥∥∥ TM(θk) − T̂M (θk)

Tm(θk)−mean(Tm(θk))

∥∥∥∥∥
2

︸ ︷︷ ︸
NMSE

,

T̂m(θk) =
N∑
i=1

αi · exp
(
− (θk − φi)2

2 · b2i

)
,

where NMSE = 1 represents a perfect fit.
After extracting the FECG signals using the proposed

methodologies, the accuracy of the foetal QRS (FQRS) de-
tection was evaluated to test the second hypothesis, using
N = 5, 10 and 15. The F1-measure was used, as in Behar
et al. [12], for assessing FQRS detection accuracy. The
measure equally weights sensitivity (SE) and positive pre-
dictive value (PPV) and is described as:

F1 = 2 · SE × PPV
SE + PPV

.

3. Results

Figure 2 demonstrates the goodness of the fit using the
different methodologies and number of kernelsN . UF per-
formed considerably poorly (GOF = 0.73 ± 0.08) and
no trend could be observed, therefore it is not shown in
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Figure 2: Goodness of the fit in terms of the NMSE.

Figure 2. The computational times using the various tech-
niques are shown in Table 1. Increasing the number of ker-
nels N did not shown relevant changes in terms of FQRS
detection accuracy. Using FF the average F1 for the best
channel across different N was 81.71± 0.55%, whilst us-
ing SWTF was 81.35± 0.60.

Table 1: Average computational time (in seconds) of algorithms us-
ing different N . Tests were performed using one recordings in a Dell
Optiplex 760 desktop computer with Intel R© CoreTM2 Duo E8400 3.00
GHz processor with 8 GB RAM. RSFTOL is a RSF variant considering
as tolerance the GOF value of SWTF2 for each N .

Number of kernels (N )
Model 5 10 15
FF 0.104 0.304 0.354
UF 0.149 0.487 0.524
SWTF 0.120 0.168 0.199
SWTF2 7.21·10−3 0.112 0.218
RSF 46.3 157 269
RSFTOL 0.531 17.7 34.1

4. Discussion and Conclusions

Figure 2 shows that both SWTF and RSF methodolo-
gies were able to provide better fits for the average MECG
beat than the fixed model in the NMSE sense. More-
over, the poor performance obtained by UF highlights how
sensible the nonlinear least-squares optimization proce-
dure is to its initialization, which enforces the use of non-
parametric techniques as SWTF and RSF. SWTF2 results
demonstrate that if the many initial parameters are well ad-
justed, the optimization routine is able to produce even bet-
ter results than iteratively positioning each kernels (as in
SWTF). Hence, hypothesis 1 was confirmed. The SWTF
and SWTF2 approaches allow much faster modelling than
RSF (see Table 1). The RSF method can provide a faster
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convergence if a tolerance criteria is included (i.e. RS-
FTOL is used), at cost of lowering the GOF.

Surprisingly, no direct link between the goodness of the
template fit and FQRS detection accuracy was found (hy-
pothesis 2). The finding may be attributed to the ability of
the EKF to produce good estimates of the maternal signal,
even if its dynamic model is imprecise. This result empha-
sizes the need for a more profound characterization of the
filtering steps after modelling the maternal beat, as well as,
the morphology of the estimated signals.

Aside from the lower computational load, using the
SWTF has some advantages over RSF. For example, the
wavelet coefficients could be used for segmenting the av-
erage template [15]. This segmentation can be used for
providing morphological analysis of the maternal or foetal
signal (i.e. using a Dual Kalman Filter using the wavelet
coefficients [13] scheme) assisted by the phase information
contained in EKF. Moreover, since the approach is non-
parametric, other biomedical signals (e.g. photoplethys-
mographic signals) can also be filtered efficiently.
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