
1.  Introduction
Fire in  the Amazon is  influenced by both human activity and climate (Aragão et al., 2018;  Butt  et al., 2021; 
Cochrane and Barber, 2009; Libonati et al., 2021; Silveira et al., 2020) but the strength of these relationships 
are still uncertain (Feldpausch et al., 2022). Droughts are strongly correlated with greater fire counts across the 
Amazon (Aragão et al., 2007, 2018),  increasing fire risk through reduced ground water and surface humidity 
(Ray et al., 2005). People use fires across the Amazon to create and maintain agricultural land (Cochrane, 2003; 
Morton et al., 2008). Forests are cut and the vegetation is left to dry before fires are lit to clear vegetation. The 
number of fires is therefore greater in years with more deforestation (Arãgao et al., 2008; Aragão et al., 2018; 
Chen et al., 2013; Reddington et al., 2015).The rate of deforestation in the Amazon has varied markedly over 
the past few decades (Hansen et al., 2013; Junior et al., 2020) but little is known about how this has impacted 
the occurrence and frequency of fire in recent years. Fires emit substantial quantities of carbon dioxide (Withey 
et al., 2018) and other air pollutants contributing to climate change, degrading air quality and damaging human 
health (Reddington et al., 2015). The complex interplay between climate, vegetation, and people make it chal-
lenging to establish clear links between deforestation and fire. A much clearer understanding of this link is there-
fore needed to inform sustainable management of the Amazon.

Abstract Climate, deforestation, and forest fires are closely coupled in the Amazon, but models of fire 
that include these interactions are lacking. We trained machine learning models on temperature, rainfall, 
deforestation, land-use, and fire data to show that spatial and temporal patterns of fire in the Amazon are 
strongly modified by deforestation. We find that fire count across the Brazilian Amazon increases by 0.44 
percentage points for each percentage point increase in deforestation rate. We used the model to predict that the 
increased deforestation rate in the Brazilian Amazon from 2013 to 2020 caused a 42% increase in fire counts 
in 2020. We predict that if Brazil had achieved the deforestation target under the National Policy on Climate 
Change, there would have been 32% fewer fire counts across the Brazilian Amazon in 2020. Using a regional 
chemistry-climate model and exposure-response associations, we estimate that the improved air quality due to 
reduced smoke emission under this scenario would have resulted in 2,300 fewer deaths due to reduced exposure 
to fine particulate matter. Our analysis demonstrates the air quality and public health benefits that would accrue 
from reducing deforestation in the Brazilian Amazon.

Plain Language Summary Fire in the Amazon is influenced by both climate and human activity 
such as deforestation, but the strength of these relationships remains uncertain. Understanding what influences 
fire severity is important due to impacts on climate, air quality and public health. Here, we trained machine 
learning models with multiple observational datasets including climate (temperature and rainfall) and land-
use characteristics (deforestation and land cover classifications) to predict fire in the Brazilian Amazon from 
2003 to 2020. We found that a good fire prediction was only possible when information on deforestation was 
included in model training. We showed that recent increases in Brazilian deforestation between 2013 and 2020 
resulted in a 42% increase in fire counts in 2020. Importantly, we found that had Brazil achieved deforestation 
targets under the National Policy on Climate Change, there would have been 32% fewer fire counts across the 
Amazon in 2020 resulting in 2,300 fewer deaths due to reduced exposure to fire-related fine particulate matter. 
Overall, our work demonstrates that achieving deforestation targets has positive benefits to air quality and 
public health.
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Despite the close links between deforestation, climate and fire, there are few spatially explicit models of fire for 
the Amazon region that capture both climatic and anthropogenic causes of fire (Silvestrini et al., 2011). Statistical 
models have been developed that predict fire activity based on sea surface temperature anomalies in the tropical 
Atlantic and Pacific (Chen et al., 2013; Fernandes et al., 2011; Lima et al., 2018). However, such models based 
solely on climate miss the important role of people in altering fire across the Amazon. Other models have also 
been developed to predict burned area using information on socio-economic features (e.g., population density or 
gross domestic product) and land cover (Bistinas et al., 2014; Forkel et al., 2019). However, such predictions do 
not fully account for connection between fire and deforestation. Consequently, we still do not fully understand 
how changes in deforestation have impacted the occurrence of fire.

Large-scale  deforestation  of  the  Amazon  started  in  the  1970s  (van  Marle  et  al.,  2017)  and  about  15% of  the  
Amazon had been deforested by 2010 (Aragao et al., 2014). Deforestation rates declined from 27,772 km 2 yr −1 
in  2004–4,571  km  2  yr −1  in  2012  an  impressive  84%  reduction  in  deforestation  (PRODES,  Measurement  of  
Deforestation by Remote Sensing). In, 2009, Brazil announced ambitious targets to reduce deforestation under 
the  National  Policy  on  Climate  Change,  which  committed  to  reducing  the  deforestation  rate  in  the  Brazilian  
Amazonia by 80% by 2020 compared to a 1996–2005 baseline (Junior et al., 2020). However, since 2012, the rate 
of deforestation across the Brazilian Amazon has increased by a factor of two, reaching 10,129 km 2 yr −1 in 2019 
and 10,851 km 2 yr −1 in 2020 (PRODES) (Barlow et al., 2019). By 2020, the deforestation rate was the highest 
rate in the last decade and 182% higher than Brazil's target (Junior et al., 2020).

The impacts of increased deforestation on the occurrence and frequency of fire have not been fully assessed and 
the implications of not meeting deforestation targets on fire are not known. Jones et al. (2022) found that trends 
in burned area in tropical forest regions, including the Amazon, were more closely related to deforestation trends 
compared to trends in fire weather. Increased fire in the Amazon during 2019 (Barlow et al., 2019) caused wide-
spread media coverage (De Oliveira Andrade, 2019) but the causes are not fully understood. Kelley et al. (2021) 
used a Bayesian inference method to show a low meteorological influence in the enhanced 2019 Amazon fires, 
suggesting  socio-economic  factors  were  the  main  cause  of  increased  fire.  To  further  explore  the  relationship  
between climate, deforestation and fire we combined spatially gridded observations of climate, land cover, and 
deforestation with machine learning techniques to predict monthly fire count from 2003 to 2020 across the Brazil-
ian Amazon Biome (BAB). We used the model to make a first detailed assessment of the impact of increased 
deforestation on fire. Next we assessed the implications of not meeting deforestation targets on the occurrence of 
fire. Finally, we combined our fire predictions with a chemistry-climate model and exposure-response associa-
tions to predict the impacts of different deforestation scenarios on air quality and human health.

2.  Methods
2.1. Feature Data for Machine Learning

Feature  data  used  in  machine  learning  models  include:  data  on  active  fire  count,  deforestation  rate,  climate  
(precipitation, temperature, and leaf area index), and land-cover. Before model training each dataset was masked 
to the Brazilian Amazon biome (Figure S1 in Supporting Information S1) then re-sampled from its native spatial 
resolutions to a 0.25° regular grid (approximately 27–28 km at the equator). This allowed for faster and efficient 
model training and matched the spatial resolution of the WRF-Chem model. Finally, all datasets were vectorized 
(tabulated) and placed in a single data frame for model training (see Data availability).

2.2. Active Fire Count Data

Daily active fire  counts  were taken from the MCD14DL MODIS product  on board Terra  and Aqua satellites  
(Giglio et al., 2003, 2006). Fire count data is provided as point vectors being the centroid of a 1 km by 1 km pixel 
in which one or more fires were detected. Fire count data is acquired continuously providing global coverage 
every 1–2 days. The overpass time of Terra is approximately 10:30 am and 10:30 pm each day (local time), while 
the overpass time of Aqua is approximately 1:30 pm and 1:30 am.

We obtained fire count data for the period from 1 January2,003 to 31 December 2020 from the Fire Informa-
tion for Resource Management System (FIRMS) platform [https://firms.modaps.eosdis.nasa.gov/download/, last 
accessed 14.04.2021]. We removed persistent land sources of fire whose characteristics do not represent that of 
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vegetation fires, such as gas flaring locations. Additionally, we removed fire counts with a confidence interval 
less than 66% leaving only high confidence active fires for analysis. Daily fire counts were summed to a monthly 
resolution. Due to the relatively coarse spatial resolution of MODIS, we were unable account for different fire 
types such as understorey fires (Berenguer et al., 2021).

2.3. Deforestation Data

We  used  annual  deforestation  areas  from  the  Brazilian  government's  satellite  monitoring  program,  PRODES  
(Program  to  Calculate  Deforestation  in  the  Amazon)  (Assis  et  al.,  2019).  PRODES  captures  new,  clear-cut  
deforestation of primary old-growth forests larger than 6.25 ha based on Landsat (30 m spatial resolution), Senti-
nel 2 (10–20 m), and CBERS 4 (10–20 m) satellites. Within a given year (reference year), PRODES monitor-
ing captures deforestation area spanning August 1st of the previous year to July 31st in the reference year. For 
example,  PRODES deforestation  in  2019  would  include  all  deforestation  spanning  1  August  2018  to  31  July  
2019. This monitoring window in the middle of the dry season, allows for better image collection since the forest 
is less likely to be covered by clouds, as well as coinciding with typical clearing cycles in the region. Because 
PRODES data represents deforestation of primary old growth forests, deforestation of secondary forest dynamics 
are excluded, as well as forest disturbances due to forest degradation. PRODES areas in the form of georeferenced 
polygons were taken from two separate sources: Global Forest Watch (GFW) for 2001 to 2007, and the National 
Institute for Space Research (INPE) TerraBrasilis platform (Assis et al., 2019) for 2008 to 2019. Deforestation for 
year 2020 were taken from TerraBrasilis based on 102 priority scenes published as of late November 2020. Older 
data collected through GFW use georeferencing methods in the Landsat 5/7 scenes compared to orthorectified 
images from Landsat 8 for newly processed data collected from TerraBrasilis. Differences between GFW data 
(Landsat 5/7 scenes) result in small displacements of between 60 and 90 m when compared to Landsat 8 scenes, 
however, these displacements were not relevant for the purpose of our analyses.

2.4. Precipitation Data

We used precipitation data from Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) version 
2.0  (Funk  et  al.,  2014).  The  CHIRPS  dataset  is  a  blended  rainfall  product  combining  a  5-year  precipitation  
climatology,  satellite  observations,  atmospheric model  simulated rainfall  fields,  and in situ observations from 
gauge stations. Quasi-global gridded products are available from 1981 to near-present at 0.05° spatial resolution 
(∼5.3 km) (Funk et al., 2014). Daily data spanning the period 1 January 2002 to 31 December 2020 was averaged 
to monthly data.

2.5. Land Surface Temperature Data

We used monthly mean day-time land surface temperature (LST) from MODIS MYD11C3 (LST) on board the 
Aqua satellite (Wan et al., 2015) for the period 1 January 2003 to 31 December 2020. Aqua has an overpass time 
of approximately 1:30 pm (LT), which is close to the afternoon peak in fire activity (GIGLIO, 2007). Monthly 
mean LST is derived by averaging daily files on a 0.05° resolution grid.

2.6. Leaf Area Index Data

We used  leaf  area  index  (LAI)  from MODIS  collection  6  LAI  (MOD15A2H)  (Myneni,  2015).  LAI  (m  2/m 2) 
is defined as the one-sided green leaf area per unit ground area in broadleaf canopies. LAI is calculated from 
MODIS reflectances and ancillary data on surface characteristics such as land cover type. We averaged 8-day to 
monthly mean data after applying quality control filtering to remove cloud-contaminated pixels.

2.7. Land Cover Data

Land cover data was provided by the MapBiomas project (Mapbiomas, 2020), which provides annual land cover 
characteristics a on 30 m grid for the period 1985 to 2019. We used data spanning years 2003–2019, using 2019 
land cover for the year 2020. We identified three land cover types: pasture, cropland and savannah or.
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2.8. Machine Learning Simulations

We used machine learning (ML) to predict gridded total monthly fire counts at 0.25° × 0.25° resolution across 
the Brazilian Amazon biome from 2003 to 2020 using various climate,  land cover,  and deforestation features 
(Table 1). In each simulation, three supervised ML models were used: a random forest (RF) (Breiman, 2001), a 
gradient boosting decision tree algorithm Xgboost (XGB) (Chen & Guestrin, 2016), and a Neural Network (NN) 
(Howard & Gugger, 2020). Model architectures and hyperparameters are briefly described in Tables S1–S3 in 
Supporting Information S1 with code for each model provided in Supporting Information S1. Hyperparameter 
selection for each model was based on results from a 5-fold cross validation grid search approach. Test data was 
withheld for a specific year of interest and used to predict monthly fire count at the grid level for that year, while 
data  from all  other  years  were  used  for  model  training  and  validation.  Under  historical  fire  count  prediction,  
prediction on test data were run chronologically; such that data for year 2003 was withheld as test data and data 
for years 2004–2020 was used as training and validation datasets. This process was repeated each year in the study 
period, so that the predictions for each year represented data in the test dataset. For 2020 fire count prediction, test 
dataset comprised data in 2020 with training and validation datasets making up data from 2003 to 2019. We used 
a 5-fold cross validation approach for training and validation such that all data could be used for both training 
and validation. We averaged test dataset predictions (specific year of interest) across folds, as well as across the 
different models in that model combination which can improve predictive performance compared to predictions 
from any single model (Erickson et al., 2020). We found the average of predictions from models XGB and NN 
outperformed any single model or other combination of models (Table S4 in Supporting Information S1), so we 
used the average predictions from these two models. Results for individual models are reported in Supporting 
Information S1. Permutation feature importance was also performed using all models and model combinations to 
show the difference across models in terms of which features were perceived to be most important for fire count 
prediction.  In  addition,  we  incremented  surface  temperature  (+0.1 K to  +1K),  precipitation  (−1% to  −10%),  
deforestation (+1% to +50%) in all grid cells individually across all years to assess model (NN and XGB) sensi-
tivity to predicted fire count. The calculated average across all years was then used to show the overall prediction 
sensitivity to individual changes in these three features.

We predicted historical fire count under four different simulations (Table 2). The first simulation (Sim_Clim) 
used  only  climate  features  (temperature,  precipitation).  The  second  simulation  (Sim_Clim  +  LU)  used  both  
climate and land-use features. The third simulation included both climate and deforestation features, but did not 
include land-cover.  The final simulation (Sim_Clim + LU + Def) used climate,  land-cover,  and deforestation 
features. The separation of climate, land-cover, and deforestation features under these four simulations allows us 
to isolate the role of deforestation on fire activity.

Feature Units Description Data source

Fires Count Monthly total number of active fires (Jan 2003 to Dec 2020). MODIS (MCD14DL)

Deforestation km 2 Total deforestation area in reference year and the preceding 2 years, such that 
deforestation in reference year 2020 would be total deforestation from 2018 to 2020.

PRODES

Precipitation mm Monthly mean precipitation (Jan 2003 to Dec 2020). CHIRPS

Previous precipitation mm Total precipitation in the preceding 6 months (Jul 2002 to Dec 2020). Used to account 
for possible legacy effect on fires (Butt et al., 2021)

CHIRPS

Surface temperature Degrees Celsius Monthly mean land surface temperature. MODIS Aqua (MYD11C3)

LAI Area/area Mean LAI in the preceding 12 months (Jan 2002 to Dec 2020). MODIS (MOD15A2H)

Pasture fraction % Grid fraction of pasture (2003–2019). MapBiomas

Cropland fraction % Grid fraction of cropland (2003–2019). MapBiomas

Savannah fraction % Grid fraction of Savannah (2003–2019). MapBiomas

Note. We developed models to simulate monthly fire count based on a range of variables listed in the table. All features are gridded variables at a 0.25° spatial resolution 
grid.

Table 1 
List of Features Used in This Analysis
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To estimate the sensitivity of fires to deforestation, we predicted fire count from 2013 to 2020 under a range of 
scenarios using the most realistic (Sim_Clim + LU + Def) simulation. The control scenario used observed climate 
and observed deforestation. The average climate scenario applied a climatological monthly average of climate 
features over the period 2003 to 2020 with observed deforestation. The minimum deforestation scenario applied 
observed climate with the deforestation observed in 2012, which was the minimum deforestation from 2003 to 
2020. The target deforestation scenario applied observed climate with a target deforestation of 3,283.6 km 2 yr −1 
for each year from 2013 to 2020, which was calculated by reducing the Brazilian government's target deforesta-
tion of 3,925 km 2 yr −1 for the Brazilian Legal Amazon (BLA) by 16.34%, the difference in area between the BAB 
and the BLA. In the deforestation scenarios we scaled observed deforestation to the annual total across the BAB, 
so that the spatial pattern of deforestation was retained.

2.9. WRF-Chem Regional Climate-Chemistry Model

We used the Weather Research and Forecasting Model coupled to Chemistry (WRF–Chem) version 4.0.0 (Grell 
et  al.,  2005)  to  simulate  ambient  particulate  matter  concentrations  in  2020  under  the  different  deforestation  
scenarios.  WRF-Chem has  been  used  previously  to  simulate  the  impacts  of  biomass  burning  in  the  Amazon  
(Butt et al., 2020, 2021; Vara-Vela et al., 2021). The model domain included most of South America (Figure S1 
in Supporting Information S1) with a horizontal resolution of 30 km, with 33 vertical levels extending from the 
surface to 10 hPa. Gas-phase chemistry is calculated using the extended Model for Ozone and Related Chemical 
Tracers, version 4 (MOZART-4) (Emmons et al., 2010; Knote et al., 2014). Aerosol chemistry and microphysics 
is simulated using Simulating Aerosol Interaction and Chemistry (MOSAIC) with aqueous chemistry and four 
sectional  discrete  aerosol  size  bins:  0.039–0.156 μm,  0.156–0.625 μm,  0.625–2.5 μm,  2.5–10 μm (Hodzic  & 
Knote, 2014; Zaveri et al., 2008). A volatility basis set represents secondary organic aerosol (SOA) formation 
(Knote et al., 2015). Microphysics is simulated using the Morrison 2-moment scheme (Morrison et al., 2009), and 
the Grell 3-D parameterization is used for simulating convection (Grell & Dévényi, 2002). Initial and boundary 
chemistry and aerosol conditions were taken from 6-hourly simulation data from Whole Atmosphere Commu-
nity Climate Model (WACCM) (Gettelman et al., 2019), while initial and boundary meteorological conditions 
were taken from the European Center for Medium–Range Weather Forecasts (ECMWF) ERA5 global reanalysis 
(Hersbach et al., 2020). During WRF-Chem simulations, we nudged the meteorological components, horizontal 
and vertical wind, potential temperature and water vapor mixing ratio, to ERA5 reanalysis in all model levels 
above the boundary layer (BL) over 6 hr. Details of the WRF-Chem setup used in this study are shown in Table 
S5 in Supporting Information S1.

Anthropogenic emissions were taken from the Emission Database for Global Atmospheric Research with Task 
Force on Hemispheric Transport of Air Pollution (EDGAR-HTAP) version 2.2 for the year 2010 at 0.1° × 0.1° 
horizontal  resolution (Janssens-Maenhout et al., 2015),  while biogenic volatile organic compound (VOC) and 
were  calculated  online  by  the  Model  of  Emissions  of  Gases  and  Aerosol  from  Nature  (MEGAN)  (Guenther  
et al., 2006).

We used emissions for landscape fires from the Fire Inventory from NCAR (FINN) (Wiedinmyer et al., 2011) 
version 1.5. Daily FINN emissions are estimated on a 1 km 2 grid based on the location and timing of active fires 
taken from MODIS Fire  and Thermal  Anomalies  Product  (Giglio  et al., 2003).  Each fire  count  is  assigned a  
burned area of 0.75 km 2 for grassland and savannah and 1 km 2 for other land covers. In WRF-Chem, FINN emis-
sions were emitted using a diurnal cycle that peaks in the early afternoon (local-time) based on Giglio (2007) and 
are injected evenly throughout the BL, as supported by fire emission plume heights over the Amazon (Marenco 
et al., 2016).

Simulation

Sim_Clim Sim_Clim + LU Sim_Clim + Def Sim_Clim + LU + Def

Climate Yes Yes Yes Yes

Land cover No Yes No Yes

Deforestation No No Yes Yes

Table 2 
Description of the Four Simulations Used for Predicting Historical Fire Count
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Annual  WRF-Chem model  simulations  were  conducted  for  the  year  2020,  
with  1  month  spin-up.  We  conducted  three  simulations  with  different  fire  
emissions: (a) a control simulation in 2020 using default fire emissions from 
FINN, (b) scaled 2020 FINN emissions under the period minimum deforest-
ation  scenario,  and  (c)  scaled  2020  FINN  emissions  under  the  Brazilian  
government's deforestation target scenario. The difference between simula-
tions (a) and (b) and (a) and (c) were used to quantify the impact of different 
deforestation scenarios on regional air quality and human health in 2020.

Based  on  the  strong  relationship  between  fire  counts  and  emissions  (Butt  
et al., 2021), we used changes in predicted fire count from our deforestation 
scenarios to scale default FINN emissions (FINNcontrol) according to:

FINN������ =
(

ML ��������
ML �������

)

× FINN�������  (1)

where FINNscaled  is  the  FINN  emissions  under  the  deforestation  scenario,  
MLcontrol is predicted monthly fire count in 2020 under the control scenario, 
and MLscenario  is  the  predicted  fire  count  in  2020  under  the  deforestation  
scenario.  Reduced  deforestation  scenarios  show  reduced  annual  predicted  
fire count (Figure S2 in Supporting Information S1) and organic carbon (OC) 
emissions (Figure S3 in Supporting Information S1).

2.10. Health Impact Assessment

We quantified the disease burden due to long-term exposure to ambient air pollution using simulated annual-mean 
PM2.5 concentrations under different deforestation scenarios. Fires in the Amazon exhibit low interannual varia-
bility as a result of widespread and routine human-induced burning (Giglio et al., 2013) that has been occurring 
since large-scale deforestation began in the late 1980's (van Marle et al., 2017). Our focus on long-term PM2.5 
exposure impacts is therefore justified because populations across the Amazon region have been exposed to PM2.5 
from fires consistently for more than 30 years.

The disease burden is estimated using relative risk (RR) estimates of disease outcomes from the Global Expo-
sure  Mortality  Model  (GEMM) exposure-response  function  (Burnett  et  al.,  2018).  Disease  outcomes  include  
specific  non–accidental  mortality  from  non-communicable  diseases  (NCD)  and  lower  respiratory  infections  
(LRI), with age–specific modifiers for adults over 25 years of age in 5–years intervals. The function has a mean, 
lower, and upper uncertainty interval with a theoretical minimum-risk exposure level of 2.4 μg m −3 under which 
no  excess  health  risk  is  assumed.  Due  to  a  lack  of  associations  among epidemiological  studies  (e.g.,  Burnett  
et al., 2014; Burnett  et al., 2018),  the GEMM treats all  PM2.5  as  equally toxic regardless of source,  shape,  or  
chemical composition.

Excess premature mortality (MORT) in each age group was calculated using:

MORT = � ×��������� (1 − 1∕��EXP)  (2)

where P  is  the  exposed population  and MBaseRate  is  the  baseline  mortality  rate  for  disease  outcome in  the  age  
group. Population count are from the United Nations adjusted Gridded Population of the World dataset (Version 
4, Revision 11, at 15 arc−minute resolution) for the year 2020 (CIESIN, 2018), while population age composition 
were taken from the GBD2017 for 2015 for early–neonatal (0–6 days), late–neonatal (7–27 days), post–neonatal 
(8–364 days), 1–4 years, 5–95 years in 5–years intervals, and 95 years plus (Roth et al., 2018). Country-level 
baseline mortality rate for each health outcome (NCD: group category B and LRI: specific category A.2.2) were 
taken from GBD2017 (Roth et al., 2018).The effect of chronic exposure to air pollution is known to be signif-
icantly  different  for  morbidity  and mortality  regarding cardiovascular  outcomes (ischemic heart  disease,  IHD 
and stroke, STR) (Cohen et al., 2017). We therefore calculated years lived with disability (YLD) using RRadjusted 
based on:

��EXP,�������� = ����� ×��EXP − ����� + 1  (3)

Figure 1. Annual time-series of total fire count and total deforestation area 
(increments) across the Brazilian Amazon biome (BAB). Drought years 
indicated by gray shading. Pearson's correlation coefficient (and p-value) is 
included as part of the inserted scatter plot.
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applying a ratio of 0.141 for IHD and 0.553 for STR from the GBD2016 (Cohen et al., 2017).

Modifying Equation 2 from calculating premature mortality, we then estimated years of life lost (YLL) and YLD 
per health outcome and age bracket using country-level baseline rates of YLL and YLD from GBD2017 (Roth 
et al., 2018). As a final step, we estimated disability–adjusted life years (DALYs), that is, the total loss of healthy 
life, as the total of YLL and YLD:

DALYs = YLL + YLD  (4)

Final health burden assessment included total burden values of premature excess mortality and morbidity (deaths 
and DALYS) and rates of deaths and DALYS per 100,000 population. Mean estimates were quantified in addition 
to  upper  and lower uncertainty intervals  corresponding to  the GEMM function.  Shapefiles  were then used to  
aggregate results at the country level (Hijmans et al., 2012).

Health burden impacts due to ambient PM2.5 depend non-linearly on long-term exposure, with impacts starting 
to saturate at high PM2.5 concentrations (Burnett et al., 2014, 2018). Using the “subtraction” method (Conibear 
et al., 2018; Kodros et al., 2016), we estimate the averted health burden in 2020 based on WRF-Chem simulated 
PM2.5 concentrations under different deforestation scenarios relative to a control scenario. We use the subtraction 
method because this method provides the averted health burden due to the reduction in fire emissions associated 
with a reduction in deforestation rather an attributing the health burden to fires in general.

3. Results and Discussion
3.1. Fires and Deforestation

Figure 1 shows the relationship between annual fire count and deforestation area from 2003 to 2020 across the 
Brazilian  Amazon.  Deforestation  area  and  fire  count  are  consistent  with  those  reported  previously  using  the  
same datasets (Libonati et al., 2021; Silveira et al., 2020). The connection between climate and fire is apparent 
with  higher  fire  count  occurring  during  drought  years  (2005,  2007,  2010,  and  2015).  Annual  fire  count  and  
deforestation are also strongly correlated (r = 0.78, p < 0.01) and previous suggestions that fire and deforestation 
have decoupled (Aragão et al., 2018) are less clear in this longer time series. Declines in fires follow declines 
in  deforestation  during  2001–2014,  as  reported  previously  (Reddington  et  al.,  2015).  Since  the  minimum  in  
deforestation and fire count observed in 2012–2013, both fire count and deforestation have more than doubled 
(Arãgao et al., 2008; Aragão et al., 2018; Barlow et al., 2019). Analysis of monthly deforestation and fire count 
shows that deforestation peaks at the end of the wet season, before the dry season peak in fires, suggesting that 
within a specific year, fires are not the dominant cause of deforestation (Butt et al., 2021).

3.2. Historical Fire Prediction

Figure 2 shows annual total observed and predicted fire count from 2003 to 2020. When the model is trained 
only using climate-related features, fire count predictions are relatively poor (Figure 2a; coefficient of determi-
nation [r 2] = −0.42, p-value [p] = 0.92, root mean squared error [RMSE] = 53.43e3). The negative r 2 under this 
model signifies a poorer model prediction than if the mean of the target observed fire count had been used. The 
model performance improves marginally if land-cover features are also included in model training (Figure 2b; 
r 2 = −0.12, p = 0.53, RMSE = 47.41e3). Including annual deforestation in addition to climate greatly improved 
predicted annual fire count (Figure 2c; r 2 = 0.83, p = 7.84e − 09, RMSE = 18.23e3). The best prediction occurs 
when climate, land-cover, and deforestation rate are used to train the model (Figure 2d: r 2 = 0.88, p = 2.65e−09, 
RMSE = 15.84e3). Spatially predicted fire count is also improved when deforestation features are included in 
model training (Figure S4 in Supporting Information S1). The tight link between annual deforestation rate and 
annual fire count suggests fire is largely caused by deforestation rather than legacy effects of increased suscepti-
bility of fragmented forests to fire (Silva Junior et al., 2018).

Predicted  fire  count  is  sensitive  to  temperature,  deforestation  rate,  leaf  area  index  (LAI)  and  precipitation  
(Figure 3a; Figure S5 in Supporting Information S1). The importance of temperature on fire prediction is consist-
ent with previous work (Lima et al., 2018). We find that fire count increases by 3.5% for every +0.1 K increase 
in surface monthly temperature, by 0.8% for every percentage point reduction in monthly precipitation and by 
0.44% for every percentage point  increase in annual deforestation rate (Figure 3b).  Deforestation impacts fire 
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count under both cool/wet as well as dry/warm conditions (Figure 3c). In a wet and cool year, fire counts increase 
from about 50,000 under low deforestation to 145,000 under high deforestation (an increase of 205%). In a warm 
and dry year, fire count increases from about 100,000 under low deforestation to 250,000 under high deforestation 
(increase of about 155%). Crucially, this result suggests that reduced deforestation is likely to reduce fire risk even 
under warmer, drier conditions that will become more prevalent under climate change (Marengo et al., 2018).

Fire count predictions that do not include deforestation provide further information on the role of climate and 
land cover in decadal fire trends in the Amazon (Figures 2a and 2b). Under these predictions, annual predicted 
fire count increases from 2003 to 2012, opposite to the observed trend. This result is consistent with deforestation 
contributing to the high fire count during the early 2000s (Chen et al., 2013). The predicted positive trend in fire 
count in these models suggests that increased pasture fraction (Figure S6 in Supporting Information S1), warming 
and increased drought frequency have contributed to increased fire. We can use the model sensitivity to temper-
ature to estimate the 0.6–0.7 K warming of the Amazon over the past 40 years (Marengo et al., 2018) is likely to 
have contributed to a 21%–25% increase in fire count. Our findings show that good performance in predicting 
the variability and trend in fire count over the study period is only achieved when accounting for deforestation.

3.3. Fires Under Different Deforestation Scenarios

Figure 3d compares annual predicted fire count under different deforestation scenarios. The increase in deforest-
ation between 2012 and 2020 has caused a 43% increase in fire count from the fire minimum year 2013–2020. 
Under Brazil's target deforestation rate we predict fire count would have been 32% lower in 2020 than observed 
(Figure  3d).  The  largest  reductions  in  fire  occur  across  the  deforestation  frontier  (Figure  S7a  in  Supporting  

Figure 2. Annual observed (blue line) and predicted (red line) fire count across the Brazilian Amazon biome (BAB) under simulations using (a) only climate 
features: Sim_Clim, (b) climate and land-use cover features: Sim_Clim + LU, (c) climate and deforestation features: Sim_Clim + Def, and (d) climate, land-use, 
and deforestation features: Sim_Clim + LU + Def. Predictions are shown for the model combination XGBoost (XGB) and artificial neural network (NN) because 
this was found produce the lowest RMSE for any model or model combination under the most realistic simulation (Sim_Clim + LU + Def) (Table S4 in Supporting 
Information S1). Pearson's correlation coefficient (r), p-value, coefficient of determination (r 2), and root mean squared error (RMSE) are reported in each panel.
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Information S1)  during  August  to  October  (Figure  S7b,  Table  S6  in  Supporting  Information S1).  The  strong  
control of climate in the inter-annual variability in fire count is apparent with similar variability of fire in the 
simulations  driven  by  observed  climate  and  much  weaker  variability  in  the  simulation  with  average  climate  
(Figure 3d).

3.4. Air Quality Under Reduced Deforestation

Fires  degrade  regional  air  quality  over  the  Amazon  (Butt  et  al.,  2020, 2021;  Johnston  et  al.,  2012;  Lelieveld  
et al., 2015; Reddington et al., 2015, 2019) resulting in increased hospital admissions, adverse respiratory health 
outcomes  and  premature  mortality  (Do  Carmo  et  al.,  2013;  Ignotti  et  al.,  2010;  Jacobson  et  al.,  2012, 2014; 
Machado-Silva  et  al., 2020;  Smith  et  al., 2014).  We used  the  Weather  Research  and  Forecasting  Model  with  
Chemistry (WRF–Chem) to simulate annual-mean ambient particulate matter concentrations in 2020 under the 
different deforestation scenarios. Under Brazil's target deforestation scenario, annual-mean PM2.5 concentrations 
were reduced by 7 μg m −3 near and downwind of fire locations relative to the control simulation (Figure 4a), with 
population-weighted PM2.5 concentrations being reduced by 1.3 μg m −3, 0.7 μg m −3, and 0.1 μg m −3 in Bolivia, 
Peru,  and  Brazil,  respectively.  Using  simulated  PM2.5  concentrations  and  epidemiological  exposure-response  

Figure 3. (a) Permutation importance across all years (2003–2020) representing the importance of features for fire count prediction. Boxes show quartiles of the 
calculated permutation importance across individual years the median of which showing 50th percentile. Calculated permutation importance is taken as an average 
combination of neural network (NN) and XGBoost (XGB). Permutation importance for individual models and all model combinations are shown in Figue S3 in 
Supporting Information S1. (b) Model (NN and XGB) prediction sensitivity showing annual change in total fires across the BAB as a function of incremental changes 
in surface temperature (+0.1 K to +1K), precipitation (−1% to −10%) and deforestation (+1% to +50%) calculated as an average across all years (2003–2020). 
(c) Annual predicted fire count for both lowest measured (low) deforestation year (2013) and highest measured (high) deforestation year (2004) under different 
climates: wettest and coolest (wet/cool) year (2013), driest and warmest (dry/warm) year (2015), and average climate. (d) Predicted annual total fire count for the 
control (observed deforestation, climate, and land-cover for each individual years from 2003 to 2020) and the minimum deforestation (observed climate, but with 
deforestation area reduced to the period minimum), Brazil's deforestation target (observed climate, but with deforestation area reduced to the Brazilian government's 
target), and average climate (observed deforestation area, but with average of climate features for years 2003–2020) scenarios. All scenarios used features in the Sim_
Clim + LU + Def simulation (Table 2) averaged across XGB and NN models.
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associations,  we  estimate  PM2.5  reductions  achieved  under  Brazil's  target  deforestation  scenario  would  have  
resulted in 2,300 (95CI: 2,000–2,650) fewer deaths and 88,140 (95CI: 68,250–111,720) fewer disability adjusted 
life  years  (DALYs)  (Figure  4b  and  Table  3)  in  2020.  Health  benefits  are  greatest  in  Brazil  but  also  extend  
regionally to Peru and Bolivia (Figure 4b). Our results are consistent with our previous work using non-spatial 
state-wide data on deforestation, climate and fire (Butt et al., 2021). Modeling studies have estimated that smoke 
from vegetation fires across the Amazon causes 7,000 to 17,000 air pollution-related premature deaths annually 
(Butt  et  al.,  2020,  2021;  Johnston  et  al.,  2012;  Reddington  et  al.,  2015).  Achieving  Brazil's  target  deforesta-
tion rate  could therefore  reduce the number of  premature mortalities  due to  exposure to  smoke from fires  by 
14%–32%. The range in the health impact due to vegetation fires are partly caused by the differences in health 
burden assessment methods used across these studies. Previous work has shown that reductions in deforestation 
and associated fires during 2001–2015 resulted in improved air quality and the prevention of 400 to 1,700 prema-
ture deaths annually across South America (Reddington et al., 2015).

3.5.  Limitations

Our study demonstrates relationships between deforestation rate, climate and fire, but does not explicitly include 
additional interactions and feedbacks which may further amplify these relationships. Deforestation impacts local 
and  regional  climate,  causing  local  and  regional  warming  (Baker  & Spracklen, 2019),  reduced  evapotranspi-
ration   and  reduced  regional  and  downwind  rainfall  (Costa  & Pires, 2010;  Leite-Filho  et  al.,  2019;  Spracklen  
et al., 2012; Staal et al., 2018). Smoke from fires results in modifications to atmospheric heating and alters cloud 
droplet concentrations, which may impact rainfall (Kolusu et al., 2015; Twohy et al., 2021). A combination of 
hotter and drier conditions caused by deforestation and smoke will further strengthen the relationship between 
deforestation and fire, making the Amazon increasingly prone to fire (Brando et al., 2020; Le Page et al., 2017). 

Figure 4. (a) Reduction in simulated annual-mean surface ambient PM2.5 concentrations (μg/m 3) in 2020 under Brazil's deforestation target under the National Policy 
on Climate Change relative to the control simulation (Sim_Clim + LU + Def: models XGB and NN (target – control). (b) Deaths avoided due to the reduction in fire 
associated PM2.5 under Brazil's deforestation target and minimum deforestation scenario for the total domain (all countries show in a) and separately for Brazil, Peru, 
and Bolivia.

Scenario Deaths DALYs

Target deforestation 2,320 (95CI: 2,000—2,650) 88,140 (95CI: 68,250—111,720)

Minimum deforestation 2,600 (95CI: 2,270—2,950) 99,510 (95CI: 77,590—125,550)

Note.  Health  burden  estimates  were  calculated  using  epidemiological  exposure-response  associations  and  WRF-Chem  
simulated PM2.5 concentrations.

Table 3 
Domain-Wide Avoided Health Burden Deaths and DALYs (Disability Adjusted Life Years) in 2020 Due To the Reduction in 
Fire Associated Annual Ambient PM2.5 Concentrations Under the Target and Minimum Deforestation Scenarios
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Southeast Amazonia, which has been subject to greater deforestation, warming, moisture stress, and fire, is now 
a net carbon source to the atmosphere (Gatti et al., 2021) contributing to warming at a global scale.

Our  work  focuses  on  the  impacts  of  primary  clear-cut  deforestation.  Forest  degradation  caused  by  fires  and  
selective logging (Silva Junior et al., 2021) makes tropical forests more flammable and susceptible to future fire 
(Barni et al., 2021; Cochrane & Laurance, 2008). Together these interactions and feedbacks are likely to amplify 
the connections between deforestation, climate and fire in the Amazon. Our findings show that deforestation rate 
strongly impacts fire count, but legacy effects of increased susceptibility of fragmented forests to fire, which we 
do not account for directly, likely play an important role (Silva Junior et al., 2018). Droughts spanning several 
months cause gradual drying of the forest canopy and increase susceptibility of forests to fire (Ray et al., 2005). 
The intense drought induced by the 2015/2016 El Niño was sufficiently strong to dry out primary forests and 
more than 1 million hectares burned (Withey et al., 2018). While we do account for total rainfall in the preceding 
6 months, future work may benefit from treatment of a lagged drought feature.

Increasing the number of features can lead to collinearity between features. In our study, there is limited collin-
earity  between  features  except  deforestation  and  pasture  fraction  (Figure  S8  in  Supporting  Information  S1). 
However, we find that the inclusion of pasture fraction without deforestation results in poor fire count prediction, 
while the inclusion of deforestation rate without pasture fraction results in good fire count prediction (Figure 2) 
suggesting deforestation rate is the most important feature and this collinearity is not important.

Our estimates of the air quality benefits of reduced deforestation relies on a linear scaling between fire count and 
fire emissions, with this relationship confirmed by our previous work (Butt et al., 2021). FINN emissions account 
for  different  land  covers  and  biomass  loads  (Wiedinmyer  et  al.,  2011)  meaning  our  projected  emissions  also  
include this variability. However, future work may benefit from prediction of fire emissions directly rather than 
fire count. We predict monthly fire count at a scale of ∼30 km. Future work needs to consider the importance of 
different spatial and temporal scales in these predictions (McLauchlan et al., 2020).

Our work shows how achieving deforestation targets reduces fire frequency and improves air quality resulting 
in  reduced  air  pollution  health  impacts.  However,  placing  our  health  burden  estimates  into  context  of  previ-
ous work is difficult. The sensitivity of health burden estimates to chosen assessment methods, particularly the 
concentration exposure-response association used, is well known (e.g., Ostro et al., 2018). We use the GEMM 
exposure-response function calculated exclusively from ambient outdoor PM2.5 concentrations and health outcomes 
(Burnett et al., 2018), which is superior to older exposure-response associations (e.g., Burnett et al., 2014; Cohen 
et al., 2005) used in other studies (e.g., Johnston et al., 2012; Lelieveld et al., 2015; Reddington et al., 2015). 
The spatial resolution of simulated PM2.5 will further contribute to differences across health burdens estimates. 
We simulate PM2.5 at resolution of around 30 km compared to resolutions of >100 km used by global modeling 
studies (Johnston et al., 2012; Lelieveld et al., 2015; Reddington et al., 2015). While employing higher spatial 
resolution would likely further improve simulated PM2.5 concentrations, such simulations are at the expense of 
greater computational cost.

4.  Conclusions
We use machine learning with satellite datasets to estimate that a 1% point reduction in deforestation rate leads 
to a 0.44% point reduction in fire counts across the Brazilian Amazon. We show that if Brazil had achieved its 
Amazon deforestation target there would have been a 32% reduction in fire count in 2020 relative to the observed 
fire count. We combined this prediction with a regional air quality model and exposure-response relationships 
to  estimate  that  the  improved  air  quality  due  to  this  reduction  in  fire  would  result  in  2,300  fewer  premature  
mortalities. New research is needed to understand how future fire risk varies under different scenarios of land 
use, deforestation rate and climate change. We estimate that warming over the Amazon over the past 40 years 
has already driven a 21%–25% increase in fire. Future climate change will further increase flammability of the 
Amazon forest highlighting the urgent need to find sustainable solutions to reduce deforestation, forest degra-
dation  and  fire  (Brando  et  al.,  2020).  Previous  work  has  called  for  forest  fire  reduction  to  be  integrated  into  
reduced deforestation programs (Barlow et al., 2012). Our findings highlight that fire management and reduction 
programs  must  also  integrate  efforts  to  reduce  deforestation.  Our  work  demonstrates  the  benefits  of  reduced  
deforestation on air quality and public health across the Amazon through a reduction in fire. Brazil's past success 
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in reducing deforestation and fire (Reddington et al., 2015) through effective environmental governance demon-
strates considerable potential to be a global leader in sustainable management of tropical forests.
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