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Abstract—Carbon fiber reinforced polymers (CFRP) offer
highly desirable properties such as weight-specific strength and
stiffness. Liquid composite moulding (LCM) processes are promi-
nent, economically efficient, out-of-autoclave manufacturing tech-
niques and, in particular, resin transfer moulding (RTM), allows
for a high level of automation. There, fibrous preforms are
impregnated by a viscous polymer matrix in a closed mould.
Impregnation quality is of crucial importance for the final part
quality and is dominated by preform permeability. We propose
to learn a map of permeability deviations based on a sequence of
camera images acquired in flow experiments. Several ML models
are investigated for this task, among which ConvLSTM networks
achieve an accuracy of up to 96.56%, showing better performance
than the Transformer or pure CNNs. Finally, we demonstrate that
models, trained purely on simulated data, achieve qualitatively
good results on real data.

                                                    
                                           

I. RTM AND PERMEABILITY MEASUREMENTS

Carbon fiber reinforced polymers (CFRP) are superior to

other engineering materials in terms of weight-specific me-

chanical properties such as strength and stiffness. Replacing

conventional steel or aluminum with CFRP helps reduce fuel

consumption and CO2 emissions. These composite materials

are made from a polymer matrix that is reinforced with fibers

made from carbon. To produce CFRP parts industrially, liquid

composite moulding (LCM) processes are one of the most

prominent, economically efficient out-of-autoclave manufac-

turing techniques. More specifically, resin transfer molding

(RTM, [1]) is a commonly applied manufacturing process for

medium volumes (1,000s to 10,000s of parts per year): A

liquid thermoset polymer (called a resin) is injected under

pressure into a mold cavity that contains the reinforcement

material, i.e., a textile of carbon fibers (called the preform).

During injection, this results in a “flow front” that sepa-

rates impregnated material from dry material (cf. Fig. 2).
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Fig. 1. Overview of the sequence-to-instance learning task: a sequence of flow
front images is mapped to an image that contains the permeability values of
the material, i.e,. the permeability map.

The temporal progress of the flow front is predominantly

influenced by the permeability characteristics of the preform,

which describes the ability of a porous medium to transmit

fluids.In CFRP, the preform permeability is dominated by

(i) fiber volume content (FVC) and (ii) preform architecture.

Local changes of preform permeability can occur at curved

sections of the component or at locations of wall thickness

changes. In addition, they may be caused by imperfect material

properties (e.g., missing or misaligned fiber bundles) or by

manual handling of the fibrous structure The variation of

permeability can reach up to 20% [2]. Local variations in

permeability affect the temporal progress of the flow front

and can thus cause suboptimal impregnation quality or even

dry spots, deteriorating the mechanical performance. These

variations are typically unknown for an individual preform

prior to or during an industrial RTM process – a map of FVC
or permeability values would be highly desirable to diagnose
issues early on. Equipping the mold with sensors facilitates

in-situ monitoring of the injection process [3].

Aside from industrial RTM instances, permeability char-

acteristics of preform materials can be experimentally de-

termined by means of permeability characterization cells, as

shown in Fig. 2. For the study at hand, an 2-D in-plane, optical

permeability characterization cell (called a permeameter) was
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Fig. 2. Permeameter experiments: Left: In-plane permeameter system with
an optically transparent upper mould half. Middle: Beginning of injection trial
in permeameter, a dark spot is visible between the frame. Right: the injection
is in progress, with a visible deviation of the flow front caused by the patch
with changed permeability, which is visible on both images.

used, which follows the radial flow technique combined with

optical flow front tracking. Using an optical permeameter

offers the advantage that almost the entire flow front can be

tracked in the form of planar images instead of sensory time

series at certain locations only.

Therefore, we propose to use machine learning (ML) models

that predict changes in the permeability, given an observed

sequence of flow front images during an injection process in

a permeameter, i.e., a sequence-to-instance task (cf. Fig. 1).

The training data is obtained from PAM RTM, an industrially

applied FEM simulation tool for RTM processes (see Sec-

tion II). This task constitutes a part of a larger pipeline that

eventually leads to a permeability map prediction from in-

mold sensory data. For that, an intermediary step that maps

sensors to flow front images would be necessary: e.g. using

transposed convolutions [3] or other generative models. To

sum up, our contributions are: We compare several ML models

for this sequence-to-instance task in an engineering domain.

We apply these networks, trained on simulated data only, also

on real permeameter data and demonstrate that they are able

to reliably predict permeability deviations. This approach can

be seen as a part of a digital twin of the process [4]. If the

component does not show excessive variations in permeability

and, consequently, in FVC, it can be considered acceptable.

A. Related work

The online measurement of the permeability or its deviation

has received attention in the composites processing literature.

Barkoula et al. [5] estimate global and local permeability

during the injection with pressure and flow front sensors by

calculating it with Darcy’s law [6]:

v = −1

η
K∇p, (1)

with volume-average flow velocity v, fluid viscosity η, perme-

ability tensor K and pressure drop∇p. Darcy’s law is central to

liquid composite molding simulation. For 2-dimensional flow

(as addressed in the work at hand), the planar, anisotropic

permeability tensor is set up as follows:

K2D,aniso =

[
kx kxy
kxy ky

]
(2)

Fig. 3. Left: Measures of the final setup for the injection trials. Middle:
projected kx, Right: projected ky (from simulation).

The permeability x and y direction is shown by kx and ky ,

whereas kxy describes the dependency of the flow in one main

direction on a pressure gradient in the other main direction.

Gonzales et al. [7] used CNNs to detect changes in the flow

front from pressure sensors to be able to detect changes in

permeability. They use the data of whole recorded runs, but

can only detect single, rectangular changes in permeability.

Our approach is more versatile by not only detecting fixed

features of the patch (such as length, width or center point)

but constructing the entire permeability map of the preform.

Besides online permeability estimation, other papers combine

RTM analysis and ML: Stieber et al. [3] present a learning-

based dry spot classifier, working only on simulated data.

II. DATA REGIME

The available data either stem from FEM-based RTM-

simulations or the optical permeameters depicted in Fig. 2.

a) Simulated data: To obtain the simulated data , we

followed a setup comparable to [3]: On a 2D plate of homoge-

neous material, we randomly inserted small patches of changed

permeability and FVC into the textile of a simulated RTM

process within an automated pipeline (cf. “label” in Fig. 1).

These modified permeability maps provoke altered flow fronts

and need to be re-discovered by the ML models. As input,

the models get a sequence of flow front images, as shown in

Fig. 1. We only predict the kx permeability (as a first feasibility

check of this approach), for ky the models would needed to be

retrained with an additional output, kxy is 0 in the simulation.

A total of 10, 990 runs was produced.

b) Real data from permeameter: To generate the real

data, we introduced one patch of lower permeability at the

same spot to each of six runs in the permeameter (cf. Fig. 2).

To ensure that we use a patch of sufficient size and FVC to

actually provoke a dry spot, we simulated different patch con-

figurations, Fig. 3 shows the final measures. The experiments

were run with a glass fiber woven fabric, type Hexion 1202

of Hexcel. Table I lists the most relevant properties of the

preform in both the neat and the patch region. The reinforcing

material used for the experiments in this paper shows principal

flow directions well aligned with the directions of the woven

fiber bundles, i.e.: kxy ≈ 0. Moreover, standard plant oil was

used as a test fluid for the experiments. It exhibits a viscosity
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TABLE I
PREFORM SETUP FOR REAL WORLD TRIALS

Region # of layers FVC kx [mm2] ky [mm2]

Preform mat. 11 41.7 % 72.47e−6 17.21e−6
Patch region 16 60.7 % 1.19e−6 15.32e−6

of 65 mPas at room temperature and was colored with a red

color pigment to enhance image contrast of saturated preform

regions against unsaturated preform regions.

To use the experimental data, especially passing it through a

model trained on simulation-only data, the acquired sequence

images had to be preprocessed. We transformed the perme-

ameter images to align them with the images created by the

simulation: We removed the empty area around the textile,

removed the stiffing frame and approximated the parts of the

image that were covered by the stiffening frame. This is done

by fitting an elliptical geometry model to selected sets of

flow front data [8]. After these processing steps, the approach

is identical to the simulated data; the image sequences are

sampled over the filling percentage of the visible flow front,

while adding padding to create sequences of the same length.

We conclude the section on data by noting that creating

real-world experiments is costly in a lab or in an industrial

environment and thus limited data are available. Further,

some fixed preprocessing necessary is required to align real

images with simulated ones, e.g., due to the stabilising metal

frame. While there is no measured permeability map of the

real injection experiments, we can rely on the simulation

permeability maps that were implemented using well-defined

glass fiber woven fabrics for our evaluations in Section IV-A2.

III. APPROACH - MODEL COMPARISON

Several models are suitable to address our sequence-to-

instance task. The first model we employed is a basic con-

volutional neural network (CNN) with four conv2D layers.

From a subsampling step, we get 100 single-channel images of

the time steps of the injection process. Since 2D convolutions

work over any number of channels, we use the 100 time

steps as independent channels for the first convolutional layer.

The second approach emphasizes the temporal aspect by

using a Convolutional Long Short Term Memory (ConvLSTM)

architecture [9]. In contrast to regular LSTMs, ConvLSTMs

work over sequences of two dimensional matrices, instead

of one dimensional vectors, which makes them suitable for

our task. The last proposed model relies on the transformer

mechanism [10] which works on one-dimensional embed-

dings. Hence, the input image sequence needs to be converted

into an embedding sequence. To do so, a fully convolutional

encoder creates feature vectors for the individual images and

is trained end-to-end in the sequence-to-instance pipeline. The

transformer output creates the permeability map using 2D

transposed convolutions. For further details, see the code1.

1We published the code, data and checkpoints: https://github.com/
isse-augsburg/PermeabilityNets

TABLE II
RESULTS OVERVIEW - MODEL COMPARISON. TRAIN. TIME: ONE EPOCH

Model IOU Acc. Train.
time

Inf. time Real data
perf.

CNN 0.6277 94.74 52 s 24 s ��

ConvLSTM 0.7496 96.56 27:30 m 40 s � � �

Transformer 0.6373 95.08 1:45 m 27 s �

IV. EVALUATION

To evaluate our models, we had to define a set of met-
rics aside from the “expert eye” that solely investigates the

output images. Defining a metric faithful to the observed

performance (cf. Figure 4) turned out to be more difficult

than expected since, e.g., pixelwise accuracy tends to focus

too much on “blurry” predictions. Exact accuracy further

proved to be uninformative due to large portions of the

permeability maps having roughly similar base permeabilities.

We therefore allowed ε-tolerances to still classify individual

pixels as correct. On normalised images (between 0 and 1), we

empirically determined ε to be 0.03 by manually inspecting

prediction-label pairs. Values greater than 3% decrease the

sensibility of the metric, while values smaller than 3% are

too sensitive to create comparable results. In addition, we

employed the intersection over union (IOU). This metric

focuses on the extent of the detected variation in permeability

and ignores the absolute value of the variation. Table II shows

that the CNN and the Transformer network are the fastest

models for training and inference. Certainly, the importance

of speed is debatable, given the excellent performance of the

slowest network, the ConvLSTM, which is further discussed

in Section IV-A. The most interesting finding here is that

in our case study, the Transformer shows promising results,

given their short training time – albeit not outperforming

the more conventional ConvLSTM. Regarding the evaluation

on real data, Section IV-A2 gives a detailed insight, where

the performance of the Transformer is much worse than on

simulation-only data.

A. Results

1) Sim-only: Table II presents an overview on how each

of the models performed. The ConvLSTM outperforms all

other models in both IOU and accuracy. But it also takes the

longest to train. The CNN model offers a reasonable tradeoff

between training speed, ease of development, and quality for

our problem. The Transformer gives a two-sided impression:

the metrics on simulated data are close to the best models and

it has very short training times, but the performance on real

data is poor, as described in Section IV-A2.

Figure 4 displays the qualitative performances of the differ-

ent models on selected exemplary runs2. Here, the background

in green shows the same base permeability, whereas higher

permeability is depicted in yellow, and lower permeability is

2More examples at: https://figshare.com/s/1d0ac937e739620fadb9
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Label CNN ConvLSTM Transformer

Sim

Real

Fig. 4. Example outputs of different models on simulated and real data. Real
data “labels” are taken from simulation.

shown in dark blue. The winner is again the ConvLSTM, with

Transformer as the runner-up. In run Sim, the ConvLSTM

shows the ability to detect higher permeabilities. Only the

Transformer is able detect the area of higher permeability as

well, but in a more blurry fashion. To sum up, the ConvNet

networks performs worse than ConvLSTM and Transformer,

which matches the numbers from Table II.

2) Real data as test set - qualitative comparison of out-
comes: We do not claim to measure absolute values of the per-

meability during the process, but only relative changes to the

permeability. Thus, we used our models, trained on simulated

data, on the same task with real data from the permeameter:

showing relative changes to the permeability. Figure 4 shows

the result for one run for the different models. Since we do not

have the measured permeability map in real life to serve as a

label, we have to use the permeability map from simulation,

presented in the setup in Fig. 3, for qualitative comparison.

When inspecting Fig. 4, several aspects stand out directly.

The qualitative performance is rated with stars in Table II. (1)

The ConvLSTM outperforms every other approach by far, for

every run. The patches of lower permeability have relatively

clear borders and show the same, darker color, referring to

lower permeability, as expected. Other than that, the rest of

the textile is fairly homogeneous, with some slight artifacts,

resembling the flow front (3/3 stars). (2) For the CNN, these

artifacts are much stronger. When taking a closer look at

these related approaches, we can observe stronger deviations

for the CNN model, especially for run Real, while the other

two show acceptable or even good results for both patch and

base permeability. The CNN receives 2/3 stars. (3) Lastly, the

Transformer performs the worst, by far. The outputs on the

different runs look very much alike, with patches of lower

permeability at all places, but the correct one. There are

even slightly lighter spots at the locations, above the center,

where darker patches (of lower permeability) should be for

all runs. This unsatisfying performance on real data of the

pretrained Transformer is an interesting result. Despite their

recent popularity, for our case study, ConvLSTMs are the most

accurate model and standard CNNs are also more desirable.

Given the Transformer’s performance on simulated data (there,

second best), these results were rather disappointing, resulting

in the lowest rating of 1 star.

V. DISCUSSION AND FUTURE WORK

As already mentioned in Section I, in-situ sensor data would

be necessary to apply the results of this paper to an industrial

setting. Another step would be using more real data.With that,

we could try real transfer learning from simulation to reality,

not just testing on real data in order to capture real-life effects

that are not properly captured by simulations mainly based

on Darcy’s law. We could try to learn these effects from real

data and become more accurate than the simulation. Examples

of these effects are channels in the textile that lead to race

tracking, the faster advancement of resin at certain places, and

general divergence regarding timing.

VI. CONCLUSION

We presented a comparison of three network architectures

on a sequence-to-instance task in an engineering domain. This

approach is geared towards a digital twin of the injection

process for CFRP. Models were trained to predict permeability

deviation maps from flow front image sequences. The models

trained on simulated data performed well on real data stem-

ming from a permeameter. Depending on the available training

time, CNNs and ConvLSTMs showed the most promising

results both on simulated and real data.
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