Universitét IT-Infrastrukturen
lN k Augsburg M s I fir die Translationale
University Medizinische Forschung

DISSERTATION

for the degree of

Doctor of Natural Sciences (Dr. rer. nat.)

Frameworks in Medical Image Analysis
with Deep Neural Networks

Dominik Miiller

University of Augsburg
Department of Computer Science
IT-Infrastructure for Translational Medical Research
December 2022



Universitit IT-Infrastrukturen
Augsburg I fur die Translationale
University Medizinische Forschung

Examiner:

Supervisor: Prof. Dr. Frank Kramer
Department of Computer Science,
University of Augsburg, Germany

Secondary Advisor: Prof. Dr. Bernhard Bauer
Department of Computer Science,
University of Augsburg, Germany

Tertiary Advisor: Prof. Dr. Tim Beif3barth

Department of Medical Bioinformatics,

University Medical Center Gottingen, Germany

Examination Board:

Prof. Dr. Frank Kramer Prof. Dr. Bernhard Bauer
Prof. Dr. Elisabeth André Prof. Dr. Tim Beif3barth
Defense: 17. March 2023

Copyright © Dominik Miiller, Augsburg, December 2022






ABSTRACT Wb

Abstract

In recent years, deep neural network based medical image analysis has become quite powerful
and achieved similar results performance-wise as experts. Consequently, the integration of
these tools into the clinical routine as clinical decision support systems is highly desired. The
benefits of automatic image analysis for clinicians are massive, ranging from improved
diagnostic as well as treatment quality to increased time-efficiency through automated
structured reporting. However, implementations in the literature revealed a significant lack of
standardization in pipeline building resulting in low reproducibility, high complexity through
extensive knowledge requirements for building state-of-the-art pipelines, and difficulties for
application in clinical research.

The main objective of this work is the standardization of pipeline building in deep neural
network based medical image segmentation and classification. This is why the Python
frameworks MIScnn for medical image segmentation and AUCMEDI for medical image
classification are proposed which simplify the implementation process through intuitive
building blocks eliminating the need for time-consuming and error-prone implementation of
common components from scratch. The proposed frameworks include state-of-the-art
methodology, follow outstanding open-source principles like extensive documentation as well
as stability, offer rapid as well as simple application capabilities for deep learning experts as
well as clinical researchers, and provide cutting-edge high-performance competitive with the
strongest implementations in the literature.

As secondary objectives, this work presents more than a dozen in-house studies as well as
discusses various external studies utilizing the proposed frameworks in order to prove the
capabilities of standardized medical image analysis. The presented studies demonstrate
excellent predictive capabilities in applications ranging from COVID-19 detection in computed
tomography scans to the integration into a clinical study workflow for Gleason grading of
prostate cancer microscopy sections and advance the state-of-the-art in medical image analysis
by simplifying experimentation setups for research. Furthermore, studies for increasing
reproducibility in performance assessment of medical image segmentation are presented
including an open-source metric library for standardized evaluation and a community guideline
on proper metric usage.

The proposed contributions in this work improve the knowledge representation of the field,
enable rapid as well as high-performing applications, facilitate further research, and strengthen
the reproducibility of future studies.
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Zusammenfassung

In den letzten Jahren ist die auf tiefen neuronalen Netzwerken basierende medizinische
Bildanalyse besonders leistungsfiahig geworden und konnte dhnliche Vorhersagegenauigkeiten
wie Experten erzielen. Daher ist die Integration dieser Werkzeuge in die klinische Routine als
Entscheidungsunterstiitzungssysteme besonders erhofft. Die Vorteile der automatischen
Bildanalyse fiir Kliniker sind enorm und reichen von verbesserter Diagnose- und
Behandlungsqualitdt bis hin zu erhdhter Zeiteffizienz durch automatisierte strukturierte
Befundung. Die Implementierungen in der Literatur zeigten jedoch einen erheblichen Mangel
an Standardisierung bei der Erstellung von Pipelines, was zu geringer Reproduzierbarkeit,
hoher Komplexitdt durch umfangreiche Wissensanforderungen fiir den Bau von modernen
Pipelines und Schwierigkeiten bei der Anwendung in der klinischen Forschung fiihrte.

Das Hauptziel dieser Arbeit ist die Standardisierung des Pipeline-Baus fiir die Segmentierung
und Klassifizierung medizinischer Bilder mittels tiefer neuronaler Netze. Aus diesem Grund
werden die Python-Frameworks MIScnn fiir die Segmentierung medizinischer Bilder und
AUCMEDI fiir die Klassifizierung medizinischer Bilder vorgestellt, die den
Implementierungsprozess durch intuitive Bausteine vereinfachen und die zeitaufwéndige als
auch fehleranfillige Implementierung gingiger Komponenten iiberfliissig machen. Die
vorgeschlagenen Frameworks beinhalten modernste Methodik, folgen herausragenden Open-
Source Prinzipien wie ausfiihrliche Dokumentation sowie Stabilitdt, bieten schnelle und
einfache Anwendungsmoglichkeiten fiir Deep-Learning Experten sowie klinische Forscher und
bieten wegbereitende Hochleistung in Sachen Genauigkeit, welche sich mit den stirksten
Implementierungen in der Literatur messen kann.

Als sekundire Ziele werden in dieser Arbeit mehr als ein Dutzend interner Studien vorgestellt
sowie verschiedene externe Studien diskutiert, die die vorgeschlagenen Frameworks nutzen,
um das Potenzial der standardisierten medizinischen Bildanalyse zu beweisen. Die
vorgestellten Studien demonstrieren hervorragende Vorhersagefahigkeiten in Anwendungen,
die von der COVID-19-Erkennung in Computertomographie-Scans bis zur Integration in einen
klinischen Studien-Workflow zur Gleason-Einstufung von Prostatakrebs-Mikroskopie-
Schnitten reichen, und bringen den Stand der Technik in der medizinischen Bildanalyse mittels
Vereinfachung der Durchfiihrung von Experimenten fiir die Forschung voran. Dariiber hinaus
werden Studien zur Verbesserung der Reproduzierbarkeit bei der Leistungsbewertung der
medizinischen Bildsegmentierung vorgestellt, einschlieBlich einer Open-Source Metrik-
Bibliothek zur standardisierten Auswertung und Community-Richtlinien zur korrekten
Verwendung von Metriken.

Die in dieser Arbeit erbrachten Beitrdge verbessern die Wissensreprasentation des Fachgebiets,
ermOglichen schnelle und leistungsstarke Anwendungen, erleichtern die weitere Forschung und
starken die Reproduzierbarkeit zukiinftiger Studien.
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Introduction

“An expert is a man who has made all the mistakes which can be made in a very narrow field.”

Niels Bohr, Danish physicist, 1885-1962, [1].

In this chapter, the Author presents the motivation for this dissertation and points out multiple
challenges in the field of deep neural network based medical image analysis. To solve these
challenges, four objectives are defined and corresponding contributions by the Author are
highlighted. Furthermore, this chapter provides an outline of the content in this thesis and an
overview of the achieved publications.
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1.1 Motivation

In the last decade, artificial intelligence (AI) has become a powerful tool that is involved in our
everyday lives [2—5]. The Oxford Dictionary defines ‘artificial intelligence’ as follows [6]:

“The theory and development of computer systems able to perform tasks normally requiring
human intelligence, such as visual perception, speech recognition, decision-making, and
translation between languages.”

The most widely utilized concept behind Al algorithms is machine learning (ML) [3, 7].
Hereby, an Al model is trained on sample data, which is also called training data, in order to
generate artificial data or predictions. The difference between ML-based Al to traditional
algorithms is that the model itself learns the required knowledge from the training data instead
of being explicitly implemented as program code in order to conduct the task [8]. A core feature
of ML is the generalization that allows the definition of an entity by its characteristics resulting
in the capability of handling variance in samples. By analyzing large quantities of complex data,
Al demonstrated to be capable of solving tasks that were thought to could be done only by
humans [8—10]. To achieve such capabilities, ML algorithms are often based on statistical
models enabling the representation of complex settings [8]. Today, the most popular ML
algorithm for Als is the deep neural network [8, 9, 11, 12]. A deep neural network is inspired
by the human brain in which linked neurons form a large network capable of solving
challenging tasks [8, 10]. Due to deep neural networks being one of the major methods used in
this dissertation, the theory of this ML algorithm is introduced further in detail in Chapter 2.2.

“Following the trend towards a human-level general Al, researchers predict that Al will
automate many tasks, including translating languages, writing best-selling books and
performing surgery — all within the coming decades” (Hosny et al. [8]).

In the last years, research on Al has seen rapid growth with deep neural network models [8, 13,
14]. The progress of the digital era with a large quantity of devices in any household and
industry enabled the collection of massive amounts of data [8]. In combination with the
advancements in computational hardware, Al models can utilize the increasingly available data
for training. This allowed researchers to develop Al models which demonstrate powerful
prediction capabilities and achieve similar performance as or even surpass humans [8, 11, 13,
15]. Consequently, Al methods have been used in a wide variety of applications ranging from
autonomous driving to natural language processing [8, 16]. One of the most popular fields of
Al application is computer vision in which the objective is to teach a computer the ability of
visual understanding [8, 13, 17]. The breakthrough which makes this objective possible was
enabled by the convolutional architecture for deep neural network models [8, 9, 11, 13, 17].
Due to computer vision in medicine being one of the central topics in this dissertation, the
research field is introduced further in detail in Chapter 2.3.

“With the emergence of big data, advanced deep learning algorithms and powerful hardware
accelerators, modern computer vision systems have dramatically evolved” (Feng et al. [14]).

Dominik Miiller - Frameworks in Medical Image Analysis with Deep Neural Networks



CHAPTER 1 - INTRODUCTION YN

Popularity of relevant Fields for Medical Image Analysis
Source: PubMed  Date of Measurement: 04.11.2022

Research Field

9500 | === clinical decision support
=== computer vision

deep neural network

medical image analysis

7500 |

6500 medical imaging

Number of Publications

Figure 1.1: Literature search for publications in relevant fields for medical image analysis via PubMed.

In the year 1895, Roentgen discovered the characteristics of X-rays to generate non-invasive
visualizations of the insides of a human body and created thereby the first medical imaging
modality [9, 18]. Since then, medical imaging became a standard in diagnosis and medical
intervention for the visual representation of the functionality of organs and tissues [10, 19-21].
Even though the increasing availability of high-resolution imaging and advanced 3D imaging
techniques like magnetic resonance imaging resulted in higher sensitivity and accuracy, these
improvements also increased the workload. Additionally, annotations of medical images are
highly influenced by clinical experience [22, 23]. Currently, medical image assessment is a
manual and tedious process. To shorten the time-consuming inspection and evaluation process,
computer-assisted analysis methods for medical images are strived by medical experts [24, 25].

“In recent years the number of publications applying computer vision techniques to static
medical imagery has grown from hundreds to thousands” (Esteva et al. [9]).

The field of automated medical image analysis has shown immense growth in recent years [13,
26, 27]. Medical image analysis describes the computer-assisted processing and analysis of
medical images in order to generate further insights or support for medical experts [10, 19, 28].
The field can be categorized according to the task into medical image classification, which
describes the recognition as well as interpretation of an image, and medical image
segmentation, which describes the detection as well as localization of structures within an
image. Whereas the subfield of medical image classification aims to automatically label a
complete image to a predefined class, the subfield of medical image segmentation aims to
automatically label one or multiple regions of interest within an image [10]. In recent studies,
medical image analysis models based on deep neural networks proved powerful prediction
capabilities and achieved similar results as radiologists regarding performance [8, 9, 13, 15].
Due to medical image analysis being the core topic of this dissertation, the research field is
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introduced further in detail in Chapter 2.4. Esteva et al. [9] described the potential of Al in
medical imaging as follows:

“As medical Al advances into the clinic, it will simultaneously have the power to do great good
for society, and to potentially exacerbate long-standing inequalities and perpetuate errors in
medicine.”

The integration of deep neural network based medical image analysis into the clinical routine
is currently a highly popular research topic [8, 11, 13, 25, 29]. The idea is to use these powerful
models as clinical decision support to improve diagnosis reliability or automate time-
consuming processes [13, 30]. Whereas the majority of methods for medical image analysis are
currently only applied in research labs, the concept behind clinical decision support is the real-
world application in clinical workflows. While clinicians like radiologists visually assess
medical images to characterize the condition of a patient based on education and experience
resulting in a qualitative assessment, Al models are able to provide a quantitive assessment by
automated detection and analysis of medically relevant conditions [8]. The benefits of deep
neural network based medical image analysis as a tool for physicians are massive through
potential improved diagnostic as well as treatment quality, higher decision reliability by
additional information, increased reproducibility, transparency, and time-efficiency by
automated structured reporting [8, 9, 11, 13, 25, 29]. The progress of utilizing the capabilities
of Al methods has just begun in the field of medical imaging and signals a new era of digital
medicine.

The ultimate goal of a medical image analysis pipeline is the integration as clinical decision
support in a clinical routine [10]. This is why the central topic of this dissertation is to contribute
to deep neural network based medical image analysis in order to advance the progress of
utilizing Al models for medical imaging in clinical workflows.
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1.2 Challenges

In this chapter, four major challenges are presented that impact the implementation and
integration of medical image analysis pipelines based on deep neural networks in clinical
workflows. In the following, these challenges are briefly introduced to provide an overview of
the objectives of this dissertation. The challenges are further discussed in the corresponding
chapters.

» Knowledge of state-of-the-art Medical Image Analysis

The setup of a modern medical image analysis pipeline utilizing a state-of-the-art deep neural
network to be capable of accurate as well as reliable prediction capabilities is a challenging task
[8]. The design and implementation of such pipelines require extensive knowledge in the fields
of medical imaging and deep learning [31]. Whereas deep learning experts lack the knowledge
in adequate preprocessing of medical images, clinicians lack the computer science background
in implementing deep neural networks [31-33]. Therefore, the interdisciplinary field of modern
medical image analysis demands highly skilled experts experienced in multiple research fields.
To solve this issue and enable clinical applications, enhanced and comprehensive knowledge
representations for the implementation of medical image analysis pipelines are needed [31, 33].

» Lack of Reproducibility

Applications for medical image analysis are widely prevalent in the literature and demonstrated
excellent performance [8, 13, 34-37]. However, clinicians reported immense issues with the
reusability of these published models making it impossible for practical usage in clinical
research [32, 35, 38, 39]. The causes for this lack of reproducibility could be identified in
inferior generalizability through overfitting and intentional optimization on a single dataset [40,
41]. In particular, custom implementations without any standardization are a huge contributor
to the deficiency of reproducibility [42, 43]. Another critical cause that was identified in
multiple studies is the statistical bias in performance assessment including cherry-picking,
incorrect metric implementation, and flawed validation procedures [32, 44-48]. These serious
issues in reproducibility present a major threat to the value of medical image analysis pipelines
for clinicians and have to be solved to be integrable in health-sensitive workflows.

» Lack of Standardization in Implementation

Implementations in the literature commonly are ‘island solutions’ which were developed and
optimized for a single dataset [32, 35, 39, 43, 45, 49]. Even though these pipelines are capable
of achieving strong performances, the implementations were not designed for reusability in
other environments or on other datasets [32, 43, 45]. Such a pipeline often consists of custom-
implemented data loaders and optimized preprocessing as well as architectures for a specific
dataset. This issue revealed a significant lack of standardization for pipeline implementations
in the field which drastically hampers reproducibility, generalization, and reusability [32, 35,
39]. Furthermore, custom implementations also unnecessarily increase the required knowledge
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for application due to mandatory modifications for utilizing the pipeline on new data. The
current lack of standardization has a critical impact on the research progress in the field through
the constant need of reimplementing the ‘wheel’ in any pipeline-building process [43]. As the
previously introduced challenges are closely linked to or even a direct consequence of the
lacking standardization in the field, this major challenge is the main focus of this dissertation.

» Clinical Application

Regardless of the achieved strong prediction capabilities of modern medical image analysis
models, recent articles like “Hundreds of Al tools have been built to catch covid. None of them
helped” [50] and studies revealed that clinicians are not able to integrate such pipelines into
clinical workflows [32, 38, 39] representing a major challenge in the field. Through the direct
impact on diagnosis and treatment decisions, the correctness and reliability of clinical
applications are crucial. In addition, the IT infrastructure in hospitals or other medical
institutions is critical for modern healthcare [24, 25, 51, 52] which is why novel tools have to
be capable of secure integration into such sensitive infrastructures. As a consequence of the
required interdisciplinary knowledge resulting in complexity for setup, application as well as
maintenance, the lack of reproducibility as well as reusability, and the missing standardization
in pipeline implementations, clinicians currently face an insuperable obstacle for utilizing deep
neural network based medical image analysis methods as clinical decision support. In order to
make reliable clinical application possible, it is essential to solve the presented challenges.
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1.3 Research Objectives and Contributions

In the previous chapter, four major challenges in the field of deep neural network based medical
image analysis were identified. The Author addressed these challenges by presenting four
objectives in this dissertation for which multiple contributions were developed.

1.3.1 Objective I: Development of Frameworks for standardized Pipeline
Building

The main objective of this dissertation is the development of frameworks for the standardization
of deep neural network based medical image analysis pipelines focusing on medical image
segmentation and classification as the most widely applied tasks. Such frameworks would allow
rapid and state-of-the-art pipeline building without the need for continuous reimplementation
of common components. As all presented challenges are linked to the lacking standardization
in the field, solutions for this objective would contribute to an improved knowledge
representation of the field, simplify application as well as experimentation by standardization,
and strengthen the reproducibility of studies. Consequently, achieving this objective would
solve the presented challenges and pave the way for reliable clinical applications.

To enable standardized pipeline building, this dissertation presents the following contributions:

» A comprehensive meta-analysis for defining the state-of-the-art in deep neural network
based medical image analysis pipelines

» The development of a framework for state-of-the-art medical image segmentation utilizing
deep neural networks

» The development of a framework for state-of-the-art medical image classification utilizing
deep neural networks

1.3.2 Objective I1: Application Studies demonstrating the Capabilities of the
proposed Frameworks

In order to standardize pipeline building and reduce custom implementations, created pipeline
applications have to demonstrate excellent capabilities to be competitive in the field. For the
reliable application of pipelines created by the proposed frameworks in clinical workflows, it
is essential to prove adaptability, state-of-the-art methods, robustness, and high performance.

To demonstrate the capabilities of the proposed frameworks, this dissertation presents the
following contributions:

Kidney tumor segmentation utilizing the proposed segmentation framework

Standardized medical image classification utilizing the proposed classification framework
Multi-disease detection in retinal imaging utilizing the proposed classification framework
COVID-19 infection and severity prediction utilizing the proposed classification framework

YV V VYV

Analyzing the informative value of explainable Al utilizing the proposed classification
framework
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1.3.3 Objective III: Research Studies utilizing the proposed Frameworks to
advance the state-of-the-art of Medical Image Analysis

Besides the advantages of application via frameworks, standardized pipeline building has the
potential to substantially support research. Frameworks are capable of rapidly integrating novel
methods for experimentation or comparison with existing methods without the efforts of
reimplementing a complete state-of-the-art pipeline. Thus, standardization of medical image
analysis directly contributes to progressing the field by facilitating further research.

To further advance the state-of-the-art in medical image analysis utilizing the proposed
frameworks, this dissertation presents the following contributions:

» Nucleus segmentation based on noise-introduced annotations utilizing the proposed
segmentation framework

» COVID-19 lung infection segmentation based on limited training data utilizing the
proposed segmentation framework

» Analyzing the performance impact of ensemble learning utilizing the proposed
segmentation and classification framework

1.3.4 Objective IV: Improvement of Reproducibility in Medical Image
Segmentation

Next to the substantial impact of standardization by frameworks for pipeline building to
reproducibility in the field, medical image segmentation revealed significant statistical biases
in the performance assessment within studies. For increasing the reproducibility in medical
image segmentation as well as the reusability of models in clinical applications, it is essential
to strengthen performance assessment for robust evaluation.

To improve the reproducibility of medical image segmentation, this dissertation presents the
following contributions:

» The development of a metric framework for medical image segmentation evaluation
» A guideline for evaluation metrics discussing pitfalls as well as metric behavior
» A novel metric for performance assessment in the presence of control samples

1.3.5 Grouping of Contributions into Research Fields

Due to the large number of conducted studies and to provide a better overview, the contributions
were grouped according to the utilized framework and into the corresponding research fields.
Studies in the context of ensemble learning research and reproducibility improvement were
summarized in the ‘further research fields’ group.

» Medical image segmentation
» Medical image classification
» Further research fields: Ensemble learning and reproducibility of performance assessment
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The respective categorization of contributions into research fields is outlined in the next chapter.
In order to provide an overview of the objectives and contributions that are presented in this
dissertation, Figure 1.2 illustrates a summary of the conducted studies categorized to the

corresponding objectives.
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Figure 1.2: Overview of the objectives and contributions presented in this dissertation.
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1.4 Thesis OQutline

This chapter outlines the structure of the dissertation. The overall structure consists of an
introduction, a background chapter as well as a literature review, two core chapters presenting
the Author’s contributions in medical image segmentation as well as classification, two chapters
presenting the contributions in further research fields, the discussion, and the conclusions.

The individual chapters can be summarized as follows:

» Chapter 1: The Introduction chapter describes the motivation, challenges, and objectives
of the dissertation. Furthermore, the thesis outline and achieved publications are provided.

» Chapter 2: The Background chapter summarizes the foundation of this work in a brief
literature review.

» Chapter 3: The Workflow in Medical Image Analysis chapter provides a meta-analysis to
define the state-of-the-art of deep neural network based medical image analysis pipelines.

» Chapter 4: The Medical Image Segmentation chapter is one of the core parts of this
dissertation presenting a short introduction to the current state of the research field (Chapter
4.1), the proposed framework MIScnn for standardized medical image segmentation
(Chapter 4.2), and three studies utilizing the framework: One application study about kidney
tumor segmentation (Chapter 4.3) and two research studies about noise-introduced
annotations (Chapter 4.4) as well as limited training data (Chapter 4.5).

» Chapter 5: The Medical Image Classification chapter is one of the core parts of this
dissertation presenting a short introduction to the current state of the research field (Chapter
5.1), the proposed framework AUCMEDI for standardized medical image classification
(Chapter 5.2), and four application studies utilizing the framework: Standardized image
classification across medical disciplines (Chapter 5.3), the first challenge participation
study about multi-disease detection in retinal images (Chapter 5.4), the second challenge
participation study about COVID-19 infection and severity prediction (Chapter 5.5), and
the clinical study about the informative value analysis of explainable Al (Chapter 5.6).

» Chapter 6: The Ensemble Learning chapter belongs to the further research field section
and presents a short introduction to the field including the idea, methods, as well as
challenges (Chapters 6.1-6.3), and two research studies analyzing the performance impact
of ensemble learning in medical image segmentation (Chapter 6.4) as well as classification
(Chapter 6.5) utilizing the proposed frameworks.

» Chapter 7: The Reproducibility of Performance Assessment chapter belongs to the further
research field section and presents three studies about increasing reproducibility in medical
image segmentation by providing a metric framework (Chapter 7.1), a guideline for
evaluation metrics (Chapter 7.2), and a novel metric for performance assessment in presence
of control samples (Chapter 7.3).

» Chapter 8: The Discussion chapter discusses individually the advancements of medical
image segmentation (Chapter 8.1) and classification (Chapter 8.2) with a focus on general
changes in the field, the proposed framework, contributions of the Author to the field, and
limitations as well as further challenges. Moreover, the advancements in and contributions
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to further research fields are discussed (Chapter 8.3). In addition, the software integration
process from the university research into clinical application is addressed (Chapter 8.4).
Finally, a future outlook on deep neural network based medical image analysis is provided
(Chapter 8.5).

Chapter 9: The Conclusions chapter summarizes the achieved contributions in the context
of the defined objectives in this dissertation.
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1.5 Publications

From this dissertation, multiple parts and results have been already published in peer-reviewed
scientific journals and conferences (SJR listed [53]) or summarized in preprints, which are
currently in the submission process. Therefore, this dissertation contains selective text passages
from these publications. The publications are listed and summarized in this subchapter, in which
the Author’s contribution is also highlighted. The contribution by the Author to all presented
publications was either as first author, representing the majority contribution to the work, or as
team leader indicated through the role of corresponding author for the work. Exceptions to this
are the two STOIC studies as well as the EKIPRO study, which were created in equal
collaborative team efforts, and the RFMiD review, which was drafted by the RIADD challenge
organizers. The chapters containing text passages from these publications are also highlighted
in this section. The publications of the Author are not cited again in the associated chapters.

Workflow in Medical Image Analysis

> Title: A comprehensive Review: The Basics of Semantic Medical Image Segmentation using Deep Convolutional Neural
Networks
Authors: Dominik Miiller, Adrian Pfeiderer, Inaki Soto-Rey, Frank Kramer
Role: First Author - Project lead, literature review, meta-analysis, and manuscript drafting
Journal: Unpublished (currently still in drafting process)
DOI: /
Chapter: 3

Medical Image Segmentation

> Title: MIScnn: a framework for medical image segmentation with convolutional neural networks and deep learning
Authors: Dominik Miiller, Frank Kramer
Role: First Author - Project lead, study design, implementation, data analysis, interpretation, and manuscript drafting
Journal: BMC Medical Imaging. Volume 21, Article 12,2021.
DOL: https://doi.org/10.1186/s12880-020-00543-7
Note: Awarded as Editor Highlights for the year 2021 in the journal BMC Medical Imaging
Chapter: 42and 4.3
> Title: Nucleus Segmentation and Analysis in Breast Cancer with the MIScnn Framework
Authors: Adrian Pfleiderer, Dominik Miiller, Frank Kramer
Role: Corresponding Author - Project lead, interpretation, and manuscript review
Journal: Submitted as full article to the ISBI 2023 conference.
Auvailable as preprint in arXiv (Cornell University). 2022.
DOL https://doi.org/10.48550/arXiv.2206.08182
Chapter: 44
> Title: Robust chest CT image segmentation of COVID-19 lung infection based on limited data
Authors: Dominik Miiller, Ifiaki Soto-Rey, Frank Kramer
Role: First Author - Project lead, study design, implementation, data analysis, interpretation, and manuscript drafting
Journal: Elsevier - Informatics in medicine unlocked. Volume 25, 2021.
DOI: https://doi.org/10.1016/j.imu.2021.100681
Chapter: 4.5
» Title: Assessing the Role of Random Forests in Medical Image Segmentation
Authors: Dennis Hartmann, Dominik Miiller, Ifiaki Soto-Rey, Frank Kramer
Role: Corresponding Author - Project lead, study design, interpretation, and manuscript review
Journal: German Medical Data Sciences 2021: Digital Medicine: Recognize—Understand—Heal

Poster at the 66" conference of the German Association for Medical Informatics, Biometry and Epidemiology
(GMDS). 2021 in Kiel, Germany.

DOL: https://doi.org/10.3205/21gmds015

Chapter: Not mentioned
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Medical Image Classification

>

Title:

Authors:

Role:
Journal:

DOI:

Chapter:

Title:

Authors:

Role:
Journal:
DOL

Chapter:

Title:

Authors:

Role:
Journal:

DOI:

Chapter:

Title:

Authors:

Role:
Journal:
DOI:

Chapter:

Title:

Authors:

Role:
Journal:
DOI:

Chapter:

Title:

Authors:

Role:
Journal:

DOI:

Chapter:

Title:

Authors:

Role:
Journal:

DOI:

Chapter:

Title:

Authors:

Role:
Journal:
DOI:

Chapter:

AUCMEDI: a Framework for Automated Classification of Medical Images

Dominik Miiller, Simone Mayer, Dennis Hartmann, Inaki Soto-Rey, Frank Kramer

First Author - Project lead, implementation, and presenter

German Medical Data Sciences 2022: Future Medicine: More Precise, More Integrative, More Sustainable!
Presentation at the 67" conference of the German Association for Medical Informatics, Biometry and Epidemiology
(GMDS). 2022 in Kiel, Germany.

Conference Talk: https://doi.org/10.3205/22gmds051

Repository: https://doi.org/10.5281/zenodo.6633540

52

Standardized Medical Image Classification across Medical Disciplines

Simone Mayer, Dominik Miiller, Frank Kramer

Corresponding Author - Project lead, study design, data analysis, interpretation, manuscript drafting, and reviewing
Auvailable as preprint in arXiv (Cornell University). 2022.

https://doi.org/10.48550/arXiv.2210.11091

5.3

Multi-Disease Detection in Retinal Imaging Based on Ensembling Heterogeneous Deep Learning Models

Dominik Miiller, Ifiaki Soto-Rey, Frank Kramer

First Author - Project lead, study design, implementation, data analysis, interpretation, and manuscript drafting

10S Press - German Medical Data Sciences 2021: Digital Medicine: Recognize—Understand—Heal

Published as full article in the proceedings of the 66" conference of the German Association for Medical Informatics,
Biometry and Epidemiology (GMDS). 2021 in Kiel, Germany.

https://doi.org/10.3233/shti2 10537

5.4

RFMiD: Retinal Image Analysis for multi-Disease Detection Challenge

Samiksha Pachade, Prasanna Porwal, Manesh Kokare, Girish Deshmukh, Vivek Sahasrabuddhe, Zhengbo Luo, Feng
Han, Zitang Sun, Li Qihan, Sei-ichiro Kamata, Edward Ho, Edward Wang, Asaanth Sivajohan, Sacrom Youn, Kevin
Lane, Jin Chun, Xinliang Wang, Yunchao Gu, Sixu Lu, Young-tack Oh, Hyunjin Park, Hung Yeh, Kai-Wen Cheng,
Chia-Yen Lee, Haoyu Wang, Jin Ye, Junjun He, Lixu Gu, Dominik Miiller, Inaki Soto-Rey, Frank Kramer, Hidehisa
Arai, Yuma Ochi, Takami Okada, Luca Giancardo, Gwenolé Quellec, Fabrice Mériaudeau

Drafting a subchapter and reviewing

Submitted to Elsevier - Medical Image Analysis. 2022.

/

Mentioned in 8.2.2 Application Research

COVID-19 Severity Prediction with Transfer Learning based SOTA Image Classification Networks, Infection-Lung-
Ratio, and Meta-Data

Dominik Miiller, Silvan Mertes, Niklas Schroter, Fabio Hellmann, Miriam Elia

All authors contributed equally to the project - Focus on implementation

Submitted to the MICCAI challenge STOIC2021. 2022.

/

55

Towards Automated COVID-19 Presence and Severity Classification with Ensembles, Transfer Learning and Deep
Learning

Dominik Miiller, Silvan Mertes, Niklas Schroter, Fabio Hellmann, Miriam Elia

All authors contributed equally to the project - Focus on implementation and manuscript drafting

Submitted to Medical Informatics Europe 2023: “Caring is Sharing - Exploiting Value in Data for Health and
Innovation” (EFMI MIE 2023). Géteborg, Sweden 22-25 May 2023. 2022.

/

5.5

Klinische Entscheidungshilfen dank erkldrbarer Kiinstlicher Intelligenz am Beispiel des Prostata-Karzinoms
(,,EKIPRO")

Ifaki Soto Rey, Johannes Raffler, Ralf Huss, Lukas Rentschler, Dominik Miiller, Philip Meyer, Christoph
Wengenmayr, Robin Manz, Samantha Craemer, Jonas Bécker

All authors contributed equally to the project - Development lead for Al and XAI
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Background

In this chapter, the Author provides an overview of the important fundamentals that are relevant
for this thesis. The development of frameworks for medical image analysis with deep neural
networks is a highly interdisciplinary topic that combines the broad fields of medical imaging
and computer vision. This review focuses on methods, concepts, and domains that are essential
for understanding and contextualizing the described challenges as well as proposed solutions in
this work.

The overview consists of an introduction to medical imaging including imaging modalities as
well as digital imaging data, artificial neural networks including the theory, supervised learning,
deep learning, as well as convolutional neural networks, computer vision including image
classification, segmentation, as well as hardware requirements, and medical image analysis
including major research fields as well as clinical decision support.
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2.1 Medical Imaging

Medical imaging is defined as procedures and techniques for generating visual representations
of the body as well as of biological functions [18, 19, 28]. These visual representations are
referred to as medical images. Techniques for medical imaging are utilized by health
professionals from a large number of different medical fields for assessing information about
the human body [18, 19]. This information provides essential insights for supporting the
diagnosis and treatment of diseases [10, 18, 19, 28]. Isaac Bankman from Johns Hopkins
University describes medical imaging in his work as follows [28]:

“The discoveries of seminal physical phenomena such as X-rays, ultrasound, radioactivity, and
magnetic resonance, and the development of imaging instruments that harness them have
provided some of the most effective diagnostic tools in medicine.”

Medical imaging is present in all phases of patient treatment, starting from possible prior
documented conditions by the patient to diagnosis as well as treatment by a physician and
ending with possible documentation [10, 18, 19]. There are various purposes for medical
imaging application: From providing insights into internal structures hidden by skin and bones,
visual representation of the functionality of organs or tissues, visualization of disease and
progression, and magnifying body features for detailed analysis up to documentation as well as
archiving medical conditions [10, 18, 19, 21, 28, 54]. Therefore, medical imaging has four
objects for supporting medical decision-making:

» Gain information for the diagnosis, clinical analysis, and medical intervention for disease
treatment.

» Enable monitoring and visualization of disease progression.

» Allow collecting samples of abnormal conditions for research and education.

» Enable detailed documentation of visual features as well as prior conditions.

Whereas a large number of medical fields utilize medical imaging procedures, the largest field
of processing medical images is radiology [10, 19, 21, 28]. Since the discovery of X-rays in
1895 which marks the start of medical imaging, multiple distinctive techniques for medical
image generation have been developed [10, 18]. These techniques can be categorized according
to the following features: Representation of internal or external structures, imaging of the full
body or a specific organ, invasive or non-invasive procedure, two- or three-dimensional
imaging, and the requirement of prior body modification through e.g. contrast or radioactive
agents.

2.1.1 Imaging Modalities

The individual types of techniques for medical imaging are called medical imaging modalities.
This subchapter provides a brief overview of the major imaging modalities in medicine. Further
details on the fundamentals of medical imaging can be found in the work by Paul Suetens [21]
or in the work by Roger Bourne [19]. The figures demonstrating the imaging modalities
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originate from multiple datasets which were utilized in this thesis and the devices from license-
free image databases [55—63].

Radiography

The field of radiography is defined as utilizing X-rays, gamma rays, or similar ionizing radiation
for viewing the internal form of an object. The X-ray imaging technique was discovered first
by Wilhelm Conrad Rontgen in the year 1895 which also dates the start of medical imaging
field [10, 18]. By measuring the absorption rate of sending ionizing radiation through an object,
it is possible to visualize as well as compute the density of the object and its structural
composition [10, 21, 54]. Whereas the simple X-ray projection of an object returning a two-
dimensional representation is a standard procedure in medical diagnostics and commonly
referred to as ‘X-ray’, the further advanced technique is computed tomography (CT) in which
multiple X-ray projections from different angles are combined into a three-dimensional
representation of the object by computer algorithms [10, 21, 54]. However, repeated exposure
to ionizing radiation can lead to DNA damage resulting in cancer [19, 21]. Nevertheless,
radiography methods like X-ray and CT are widely used for imaging today due to the low costs
and high-resolution [10, 21].

X-Ray Computed Tomography CT Scanner

Figure 2.1: Example visualizations of radiography based imaging modalities and corresponding devices.

Magnetic Resonance Imaging

The technique of magnetic resonance imaging (MRI) utilizes powerful magnets to polarize and
align hydrogen protons with the magnetic field [10, 21, 54]. Through a radiofrequency current
pulse, the protons are stimulated and spin out of their equilibrium [10]. Afterward, the protons
realign back to the magnetic field leading to the protons producing detectable signals [10].
These proton signals can be used to distinguish between different chemical environments of
their molecules, which can be used to determine the specific human tissue and environment [ 10,
21, 54]. Additionally, the frequency of the magnetic dipole change, which is also called MRI
sequence, allows also highlighting of different chemical environments [10, 21]. The most
popular sequences for MRI scans are T1 and T2 [10, 21, 54]. Through computer-assisted
processing, the signals are utilized to generate three-dimensional visualizations [10, 21, 54].
Magnetic resonance imaging is a non-invasive and painless procedure that can produce high-

Frameworks in Medical Image Analysis with Deep Neural Networks - Dominik Miiller



INM CHAPTER 2 - BACKGROUND Page 18

resolution imaging of organs, tissues, and disease states [21]. However, MRI scans require that
the patient is capable of laying still for a couple of minutes which is ineffective for quick
imaging assessment or for patients suffering from high pain like in an emergency department
[21].

Magnetic Resonance Imaging MRI Scanner

Figure 2.2: Example visualization of magnetic resonance imaging and an MRI scanner.

Nuclear Medicine

The strategy of nuclear medicine is to utilize isotopes and energetic particles emitted from
radioactive material to diagnose or obtain insight into pathologies [10, 21, 64]. By injecting
radioactive material as a contrast agent in a patient, the detectable isotopes can be used in
metabolism and its activity observed [10, 21, 64]. The three major techniques in nuclear
medicine are scintigraphy, SPECT, and PET. Scintigraphy describes the general method of
generating images by measuring radioactive substances in a body through cameras sensitive to
gamma rays [10]. The remaining two methods single-photon emission computed tomography
(short SPECT) and positron emission tomography (short PET) are based on scintigraphy [10].
Whereas SPECT measures gamma rays for visualization, the PET technique is based on
measuring positrons which are emitted for a short time from an injected radiotracer and allows
visualization of functional activity as well as processes [10, 64]. Besides the static imaging
approaches to visualize an object in momentum, functional imaging approaches allow object
visualization transitioning between different states. Commonly, PET scans are combined with
MRI or CT imaging [54].
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Ultrasound

The technique in ultrasound imaging is to utilize

Ultrasound Imaging

high-frequency broadband sound waves (in the
megahertz range) which are reflected by the tissue
[10, 19, 21]. The different tissue reflections can be
then used to generate real-time two-dimensional
visualization. Because ultrasound imaging is in real-
time, without adverse effects, inexpensive, quick as
well as simple to perform, it is widely spread and used
[21]. Commonly known for pregnancy examinations,
ultrasound can also be used for abdominal organs,
heart, breast, muscle, tendons, arteries, and vein

imaging [21]. However, images based on ultrasound o

. . . . Figure 2.3: Example visualization of
lack noticeably image resolution and penetration ultrasound imaging.
strength which is why it is not effective for detailed

visualization [10, 19, 21].

Visible Light Imaging

The utilization of cameras based on the optics of photography is defined as visible light imaging
in medicine [10, 19]. The causes of using visible light imaging are diverse ranging from
invasive insights into the body and magnification to documentation as well as archiving [10,
19, 65]. Furthermore, the visible light camera can also be represented through a large variety of
devices ranging from regular digital cameras to microscopes [10]. Due to visible light imaging
having a wide landscape of applications in medical imaging, image quality and resolution also
heavily varies depending on the procedure and device age [10, 19]. Common applications are
endoscopy for internal as well as invasive visualization of organs, microscopy for magnifying
biological samples, optical coherence tomography (OCT) for visualization of internal dermal
layers through light waves, ophthalmoscopy for detailed visualization of the retina, and
dermatology for documentation as well as detailed visualization through regular photography
[10, 19, 65].

Ophthalmoscopy Microscopy Dermatology Endoscopy

Figure 2.4: Example visualization of four modalities based on visible light imaging.
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2.1.2 Digital Imaging Data

In contrast to analogous medical imaging in the last century through visualization on film
negatives generated through chemical processes, an image is stored in a digital data array,
nowadays [19]. Roger Bourne defines a digital image in his work as follows [19]:

“... a digital image is an encoding of an image amenable to electronic storage, manipulation
and transmission. ... No matter how a digital image is stored or handled inside a computer it
is displayed as a rectangular array (or matrix) of independent pixels.”

The image is defined through a digital data array which is represented in a two-dimensional
(2D) or three-dimensional (3D) matrix [10, 19]. Therefore, a grayscale image matrix can be
defined as follows [10]:

f:00,...,N] x]0,..,Ny] - {0, ...,256 — 1} 2.1)

Here, the variables Nx and Ny represent the number of rows and columns, respectively, as well
as also determine the image spatial resolution [10, 19]. Each element of the image matrix is
assigned a value in the provided value range [10]. The elements and the value range of an image
matrix are called pixels (short form of ‘picture element’) and pixel intensity ranges, respectively
[10, 19]. The pixels hold and encode the image information through the distributed intensity
values. In medical imaging, the pixel intensities are determined by the imaging modality. For
example, the pixel intensities of an image from an MRI scan represent the measured MR signal
intensities [10]. Whereas the maximum amount of information which is stored in an image is
defined by the number of pixels as well as the size of the intensity range, the actual information
content is variable [10]. Furthermore, to identify information content it is commonly necessary
to analyze not only individual pixels but also complete regions including neighboring pixels
[10]. In medical imaging, digital images can also be represented in 3D matrices which are called
volumes [10, 19]. A volume matrix is defined equivalently to the image matrix as follows [10]:

f:10,..,Ne] x[0,.. ,Ny|%x[O0,..,N,] >Z (2.2)

Here, the matrix is extended through the additional N, axis and the intensity value range is
represented through integers [10, 19]. N is often referred to as the number of slices in medical
imaging [10]. In a volume, an element is called a voxel (short form of ‘volume element’) instead
of a pixel [10, 19]. However, the terms image and volume as well as the terms pixel and voxel
are used equivalently in this thesis. More details on medical image analysis relevant differences
between 2D and 3D matrices can be found in Chapter 3.1.2.
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Figure 2.5: Representation of a digital image by an image and volume matrix.

Further important features of digital imaging are the resolution, dots per inch (DPI), and bit
depth [10, 19]. The image resolution is defined by the number of pixels and determines the
spatial distinctiveness of an object in an image [19]. Whereas a high enough image resolution
allows a clear separation between objects as well as a fine visualization of object features, a low
image resolution can lead to not distinctively detectable objects with blurry features [19]. The
associated metavariable for recommended visualization of the image matrix is defined by the
optional DPI which advocates the number of pixels per inch for printing or visualization on a
monitor [19]. Next to the image resolution as a measurement for spatial image quality, the bit
depth, which defines the size of the intensity value range, is also a measurement for image
quality [19]. A high enough bit depth is required to measure the difference between objects with
close intensity values which is why a small bit depth can lead to indistinctive and blurred
regions in which objects as well as the background have similar intensity values [19].

More about image representation as well as file formats in medical imaging is described in
Chapter 3.1.
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2.2 Artificial Neural Networks

Neural networks are the most popular artificial intelligence or machine learning algorithms for
solving complex problems like natural language processing or computer vision [10, 16, 30].
This chapter describes the basic functionality, structure, and concepts of a neural network
model. The aim is to gain a rough understanding of neural networks in order to better assess
their importance in medical image analysis.

2.2.1 Theory

Artificial neural networks were originally inspired by biologically self-learning systems such
as the strongly networked nerve cells in the human brain [10, 13, 66]. A neuron forms the basic
unit of the network, which produces a single output signal, also called activation, from several
incoming signals. An artificial neuron is defined by four properties [10, 13, 16, 30, 67, 68]:

» The weighting W of the individual inputs of the neuron describes the extent of the influence
of the respective inputs.

> The transfer function w'x (also expressed as X) bundles and weights the input x of the neuron
in layer L and transfers it to the activation function as a network input.

» The activation function o calculates the activation using the network input and a threshold
value.

» The threshold value b (also called bias value) controls the sensitivity of the neuron and thus
its action potential.

s " I
. Transfer Activation
Inputs Weights Function Function Output
X4 > Wq
o > —— ¥ o —y |
[ b ) Threshold
x. ———> Wj N
n
\_ /

Figure 2.6: Structure of an artificial neuron.

Figure 2.6 shows how the previously discussed internal components of a neuron are arranged.
The neuron can accept any number of inputs for which each is multiplied by a weight. The
transfer function then creates a network input from the individual results. The activation
function, which differs depending on the architecture, now calculates the activation (output).
The activation of a neuron can now be summarized as follows:
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y =o(whx + b) (2.3)

A neuron can be sensitized to certain inputs by adjusting the weights or the threshold value. If
many neurons are linked to form a network, a behavior pattern for complex problems can be
achieved [10, 16, 67, 68]. In the following subchapters, it is discussed how neural networks are
able to learn and more complex network topologies are introduced like deep neural networks
as well as convolutional neural networks.

2.2.2 Supervised Learning

The concept of learning is defined as a process of obtaining a routine for a neural network that
solves a problem [68, 69]. Patterns and features are worked out in examples and later applied
to unknown data. The aim is to use a learning algorithm to find a mapping that changes the
network in such a way that the input is followed by the correct output. These changes in the
network can theoretically affect the entire structure, such as adding, deleting or changing
connections and neurons [10, 16, 68, 69]. In practice, however, mostly only the weighting of
the neuron inputs and slight modification of the activation and output functions are changed
during learning [69, 70]. Supervised learning utilizes annotated training data with the associated
desired outputs of the network. These training data are passed into the neural network model to
be learned after which the resulting output from the model is compared with the desired output.
This is done utilization an error function, which is called the loss function and calculates the
quality of the output [10, 16, 68, 69]. An example of an error function is the quadratic error E:

E=) (ti—y)? (2.4)
k=1

In this formula, y is defined as the predicted output, # the actual output, n the number of samples
in the dataset, and £ the corresponding measure of the error [68]. Based on the error estimation,
necessary changes that have to be made to the network can be derived in order to generate the
desired output [10, 16, 68, 69]. Commonly, the method of backpropagation is used [10, 16, 68,
69]. This is done by propagating backward through the network and adjusting the neuron
weights according to the size of the influence on the error [10, 68]. The algorithm tries to
optimize the calculated error of the neuron to a global minimum [10, 68]. However, as common
in gradient based techniques, the algorithm may approximate a local minimum [10, 68, 69].
The update of a neuron weight can be represented in the following formula [68]:

)
Whnew = Woid (_77 P ) (2.5)
Wold

Here, w is the respective weight, 7 a constant learning rate that determines the impact strength
of the learning process on the network, and E corresponds to the current error [68]. Through
repeated training, the model gradually gets closer to the desired results [10, 16, 68, 69].
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2.2.3 Deep Learning

A neural network usually consists of many neurons that are connected to one another and the
success of training is determined by how the neurons are linked to each other [69]. The layer
concept, which arranges the individual neurons in layers, is typical for neural network
architecture representation, nowadays [30, 67, 69, 71, 72]. In addition to the input and output
layers, there are hidden layers in which the outputs of neurons are often not directly visible or
interpretable [10, 69]. Neural network architectures with multiple hidden layers are considered
a deep neural network, which is also called a ‘deep learning model’ [30, 67, 69, 71, 72].

4 ™
Input Layer Hidden Layer \ Output Layer |

Fully Connected Short-Cut Recurrent Connected

Figure 2.7: Overview of different neural network topologies.

A fundamental deep neural network is the multi-layer perceptron. As input, the multi-layer
perceptron receives two sets of parameters 6 = {W, B}, in which B is a set of threshold values
and W is a set of weights of the individual neurons [10, 13, 69]. Layers in between the input
and output are referred to as ‘hidden’ layers [10, 13, 30, 67, 69]. The network can be defined
as follows [13]:

f(x;0) = o(wrta(wt1...o(wx + b%) + b 1) + bb) (2.6)

In a feed-forward architecture, each output of a layer is only connected to the inputs of the next
layer [30, 69, 70]. An extension of this would be the fully connected topology, which links all
neurons of one layer with all inputs of the next layer [30, 69, 70]. Short cuts are connections
skipping at least one layer in front of them [30, 69, 70]. The feedback layers, which are also
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called recurrent connections, allow neurons to connect to previous layers as well as to
themselves [30, 69, 70]. In Figure 2.7, the individual topology types are highlighted as a simple

multi-layer perceptron in which a feed-forward concept was assumed for simplification.

2.2.4 Convolutional Neural Networks

Convolutional networks are a special type of deep neural network. The difference to the multi-

layer perceptron is the arrangement of the individual neurons in addition to the divided weights

as well as local connectivity [30, 69, 70]. These are not aligned one-dimensionally but usually

in two to three dimensions within a layer, which is thus referred to as a convolutional layer [30,

69, 70]. This structure is ideal for problems of image processing as an image is often represented

by a 3D shape consisting of pixels with one or multiple channels (height, width, and channel)
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Figure 2.8: Illustration of the convolutional transfer function.
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[30, 67, 69, 70]. In a convolutional layer, a filter, which is a stack of multiple kernels, is placed
over the input matrix in a sliding window strategy [30, 69, 70]. The filter is a two or three-
dimensional matrix (also called a convolution matrix), which dimension is smaller than the
input and contains the weights of the neuron [30, 69, 70]. The network input is generated by
commonly multiplication through the filter and the area of the input matrix that is ‘covered’ by
it [69, 70]. Through this technique, neurons that are located next to each other react to a similar
image section. Finally, the activation function is used to calculate the activation output based
on the network input as previously defined. In convolutional networks, the rectified linear unit
(ReLU) is usually utilized as activation function [30, 67, 69, 70]:

f(x) = max(0,x) (2.7)

The ReLU function passes only positive values and maps all negative values to zero [69, 73].
In contrast to the other commonly utilized activation functions like sigmoid [69, 73], the
utilization of the ReLLU function reduces the processing effort and enables more complex
architectures [69, 73]. The output of the ReL.U section also forms the activation of the neuron,
which is usually also called a feature map [69, 70]. Figure 2.8 demonstrates the operations of a
convolutional transfer function. For each movement of the filter kernel, the results of each
dimension are added up and the sum of the individual results of the dimensions is formed again.
The resulting values form the network matrix for the activation function.

5 6 7 8 f— 6 8
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Figure 2.9: Illustration of a maximum pooling operation on a two-dimensional input matrix.

Between the individual convolutional layers, pooling layers are commonly utilized [13, 30, 69,
70]. Pooling layers reduce the information to stabilize the network [13, 30, 69, 70]. Due to
convolutional layers being computationally and data-intensive, more complex tasks would not
be possible in practice without downsampling through pooling. As a pooling function, max or
average operations are commonly utilized for which the maximum pooling is illustrated in
Figure 2.9 [13, 30, 69]. Similar to convolutional layers, maximum pooling considers a partial
section of the output matrix of the previous layer and only the largest input from the processed
area is returned.
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Figure 2.10: Architecture of a convolutional neural network.

Convolutional neural networks, which are also called CNNs, are deep neural networks and their
architecture consists of one or multiple layers of convolutional as well as pooling operations
[13, 30, 69]. There are various architecture designs for convolutional neural networks which
are highly task-specific and utilize further complex strategies [13, 30, 69]. For example, in order
to solve a classification problem, mostly multi-layer perceptrons with a fully connected
topology are utilized at the end of the network in which the number of neurons for the last
perceptron layer corresponds to the number of classes [30, 67]. Nevertheless, convolutional
neural networks are the most effective and widely used architectures for computer vision [13,
27,30, 34, 67, 74, 75].

Throughout this thesis, the terms ‘convolutional neural network’, ‘deep neural network’, ‘deep
convolutional neural network’, and ‘neural network’ are referred to as equivalents describing a
model based on a modern convolutional neural network architecture.
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2.3 Computer Vision

In the last years, computer vision (CV) has seen rapid growth in popularity, application, and
research. CV is an interdisciplinary field that deals with how to automatically process, analyze
and understand images. The general aim behind computer vision is to build artificial
intelligence systems which are able to automate visual tasks with a performance similar to or
better than humans. Goodfellow et al. [69] described CV in their work as follows:

“Computer vision is a very broad field encompassing a wide variety of ways of processing
images, and an amazing diversity of applications.”

Use cases of CV tasks are widespread starting from robot navigation to clinical decision support
for medical imaging [17]. Also, the application tasks of computer vision range from
reproducing human visual abilities like object recognition to new forms of visual processing
like sound wave diagram analysis [69]. Since the breakthrough of convolutional neural network
architectures, neural networks became one of the most accurate and popular machine learning
algorithms for automated image analysis [13, 26, 27]. Prevalent subfields of CV are
classification, registration, object detection, and segmentation. In this thesis, the focus is set on
image classification and segmentation which is why these two subfields are further introduced
in the following subchapters. Figure 2.11 illustrates the two different subfields of computer
vision on dermatoscopy images by the International Skin Imaging Collaboration (ISIC) [58].

Computer Vision

Image Classification Image Segmentation

Melanoma Actinic keratosis Segmentation: Skin Lesion

Figure 2.11: Illustration of image classification and segmentation in computer vision.

2.3.1 Image Classification

In the subfield of image classification, complete images are classified into predefined categories
or classes according to their visual content. The key characteristic of image classification is that
the assertions are made on entire images instead of only parts or pixels within an image. This
is why the field focuses on general image understanding and interpretation tasks [17].
Therefore, image classification methods present a solution for tasks about detecting the content
of an image. Image classification is a major and one of the most groundbreaking subfields in
deep learning based CV with a large number of applications and an active research community
[17, 76, 77]. Modern image classification models consist of an architecture combined with a
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‘classification head’ at the end of the used architecture [78—80]. Whereas the architecture is
often referred to as ‘backbone’ of the model and is responsible for the feature extraction from
an image, the classification head is responsible for the classification task based on the identified
features provided by the backbone [78]. More information on the classification head can be
found in the last subchapter. Popular image classification architectures can also be utilized as
backbone for other CV tasks like segmentation. The classification task can be categorized into
three types. In a typical scenario, an image is annotated with a single class resulting in a binary
or multi-class classification task depending on the number of predefined classes. A special task
is multi-label classification in which a single image is annotated with multiple classes.

Scope of Architectures

Since the publication of AlexNet in 2012 [81], which revealed surprisingly accurate results with
a convolutional neural network, the research community has been focused on developing novel
deep learning architectures based on CNNs [82]. The subfield of image classification in
computer vision yielded a large variety of deep convolutional neural networks without a clear
single best architecture. Instead, multiple strategies represented through architectures were
simultaneously developed and further improved. Even today, the community is not centralized
on a single architecture but rather each researcher selects individually their favorite from the
current list of top-performing architectures based on the ImageNet dataset [76, 83]. The
following paragraph gives a brief overview of architectures that were developed in the last 10
years.

Simonyan et al. [84] further advanced the AlexNet architecture by increasing its depth as well
as improving filter configurations [82, 85]. The resulting architecture was proposed by the
authors in 2014 as visual geometry group (VGG) [84]. The GooglLeNet or also called
InceptionV1 was developed by Szegedy et al. [86] in 2014 and introduced the inception module
(‘network in network’). The inception module allowed an improved acquisition of the image
content as well as also continued increasing the depth of the model [82]. Since then, the
inception-based architecture has been continuously updated and further versions released like
InceptionV3 [87]. In the process of continuously increasing the depth of architectures,
researchers observed significant vanishing of gradients by normalized initializations resulting
in decreasing performance. To solve this issue of degradation, He et al. [80] proposed deep
residual learning in 2016 in which residual learning blocks consisting of shortcut connections
for identity mapping allow model depths of more than 1,000 layers [82]. The authors named
their novel architecture utilizing residual learning blocks ResNet [80]. For the ResNet
architecture, multiple updated versions were proposed like the ResNetV2 also by He et al. [82]
or the ResNeXt by Xie et al. [88] which introduces cardinality into the ResNet (the size of the
set of transformations). After the success of ResNet, the Inception architecture by Szegedy et
al. also included residual blocks resulting in the InceptionResNet [89] in 2016. Even so, strong
improvements to avoid degradation had been made, large as well as depth architectures still
suffered performance due to it. Regarding that, Huang et al. [90] proposed the DenseNet in
2017 which introduced dense blocks allowing the reusing of features of previous layers and
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Parameter Comparison of Image Classification Architectures
Based on AUCMEDI (Tensorflow)
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Figure 2.12: Image classification architecture overview (selection) and comparison by number of parameters.

improving feature propagation resulting in a significant reduction of gradient vanishing [82,
85]. This allowed the DenseNet not only to outperform ResNet-based architectures but also
needed notably less parameters [82, 85]. In contrast to achieving the highest possible
performance with ideal computing resources, Howard et al. [91] developed an architecture for
mobile and embedded computer vision applications in 2017. The MobileNet [91] and its
successors [92, 93] utilize depth-wise separable convolutions to build the light weighted
architectures [91]. In 2019, Tan et al. [79] further studied increasing the depth, width, and
resolution of CNNss with a fixed resource budget. The authors proposed the so-called compound
coefficient which allowed scaling architectures resulting in top performance with less number
of parameters than other architectures [79]. Tan et al. [79] released their series of architectures
as EfficientNet. Until then, architectures based on CNNs were unchallenged in computer vision.
However, in late 2020, Dosovitskiy et al. [94] published the vision transformer (ViT)
architecture which uses pure transformers applied directly on image patches. This approach
revealed unsurpassed performance results and a new era of architectures for CV next to CNN-
based architectures [94]. Still, the current best architecture design is highly contested as Liu et
al. [95] demonstrated with the ConvNeXt architecture in 2022 that CNN-based architectures
are still able to surpass ViT. Further architectures which are presented in Figure 2.12 but not
introduced are NASNet by Zoph et al. [96], Xception by Chollet et al. [97], and Vanilla which
is a minimalistic architecture by the AUCMEDI framework [98] for testing.

Imaging data is commonly represented in 2D which is why the majority of architectures in CV
focus on 2D input data. However, architectures specifically designed for 3D imaging data like
in medical imaging are limited [99]. Thus, variants of popular 2D deep convolutional neural
network architectures were developed to handle the 3D input data. Especially after base
frameworks for neural network building introduced corresponding 3D layers for each type of
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2D layer (like a 3D convolutional layer with identical usage as the 2D convolutional layer),
architectures could be easily transformed to be appliable to 3D data, as well [71, 72]. These
architectures demonstrated higher performance than their 2D counterparts due to the increased
information available from the additional z-axis [36, 99—101].

Classification Head

As previously introduced, an image classification model consists of a backbone and a
classification head. The backbone outputs features encoded in a multi-dimensional matrix [78].
The task of the classification head is to predict the correct classification based on the identified
feature matrix from the backbone architecture [78]. In conclusion, the classification head is a
neural network part that takes a feature matrix and outputs class probabilities.

Input Image Backbone (Architecture) Classification Head

Fatten Layer

salligeqold sseln

ST A N
PRy 0
A’A A‘§ -

Figure 2.13: Setup of an image classification model including backbone and classification head structure.

The designs of classification heads in computer vision are diverse but commonly defined as a
simple fully connected network. The required properties of a classification head are a dimension
reduction operation to reduce the multi-dimensional feature matrix into a single dimension, and
a final fully connected hidden layer (dense layer) consisting of the same number of neurons as
classes combined with a ‘softmax’ or ‘sigmoid’ activation function [78]. As dimension
reduction operation, global average pooling or flattening layers are utilized. These two
operations represent the minimal as well as the most widely used classification head for image
classification. More advanced designs add dense and dropout layers between the dimension
reduction and final classification layer. Through the classification head, it is also possible to
integrate metadata apart from the image into the classification model. In the literature, the
classification head is often not described in detail but is still an important part of an image
classification model. An illustration of a classification model setup is shown in Figure 2.13 in
which the input CT image originates from Ma et al. [102].

2.3.2 Image Segmentation

Another popular subfield of image processing within the computer vision field is image
segmentation. Image segmentation is the process of automated partitioning of an image into
multiple segments (clusters of pixels) based on shared features and characteristics [10].
Thereby, each pixel in an image is classified to a label by which the same classified pixels
assemble into a segment. In total, the aim of image segmentation is to simplify an image into a
more expressive or convenient representation. There are two types of image segmentation:
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Instance segmentation and semantic segmentation [17, 103]. Instance segmentation is defined
similarly to object detection. Whereas object detection only outputs an approximated bounding
box around an object, instance segmentation identifies the exact borders and edges of an object
instance [17]. This is possible by performing a decision for each pixel to assign it as part of the
object instance or not. Identical to object detection, an image can contain multiple objects of
the same class for example the segmentation of eyes in a face image. By comparison, semantic
segmentation only assigns each pixel to a class without the need for objectification [17]. Thus,
semantic segmentation does not need to differentiate between instances of a class. In contrast
to image classification, image segmentation focuses on understanding the entities within an
image by training models to differentiate between objects or class types with pixel-precise
accuracy.

Scope of Architectures

The range of deep convolutional neural network architectures for image segmentation heavily
focuses on fully connected networks [13]. In the beginning, deep learning approaches for
segmentation utilized popular classification architectures like AlexNet [81], VGG [84], or
ResNet [80] as a base [17]. The idea was to utilize these architectures as a backbone and change
only the classification head, which consists of at least two fully connected layers at the end of
classification architectures. Instead of the classification head, up-sampling layers were
introduced to map the convolutional feature maps back to the original input shape of the image
[17, 103—-105]. This front-end CNN architecture, also called an encoder, combined with a back-
end up-sampling approach to the original input shape, also called a decoder, results in the
encoder-decoder architecture [17, 103—105]. The general idea of this structure is to identify and
extract image features by encoding these into smaller low-resolution feature maps [17, 103,
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Figure 2.14: Image segmentation architecture overview (selection) and comparison by number of parameters.
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104]. Afterward, these low-resolution discriminative feature maps from the encoder are mapped
back to high-resolution to perform a classification for each pixel [17, 103, 104]. The encoder-
decoder structure is the basis of any state-of-the-art architecture for semantic image
segmentation, today [17, 103, 104]. The starting fully connected network architectures were
purely based on the common classification architectures combined with deconvolutional layers
for up-sampling [17, 103, 104]. However, novel architectures based on the encoder-decoder
structure like SegNet (2015) by Badrinarayanan et al. [106] and DeepLab (2016) by Chen et al.
[107] were quickly developed. Whereas SegNet introduced a symmetric structure for end-to-
end pixel segmentation utilizing improved pooling operations for up-sampling [106], DeepLab
focused on not only improving the fuzzy and insensitive up-sampling operation in the decoder,
but also on the pixel relationship and spatial consistency [107]. At the same time, Ronneberger
et al. [108] published the U-Net architecture (2015), which is still the most widely used
architecture in biomedical image segmentation and present in the majority of deep
convolutional neural network pipelines [13, 103, 109].

U-Net Architecture

With more than 50,000 citations so far, Ronneberger et al. [108] presented the original U-Net
architecture at the 2015 MICCAI conference. The architecture demonstrated excellent
performance on various image segmentation datasets and challenges [13, 108, 109].
Furthermore, it showed that it is capable of image segmentation tasks in which only a low
number of training images is available and strong class imbalance is common [110]. An
illustration of the U-Net structure is shown in Figure 2.15 in which the CT images originate
from Ma et al. [102].
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Figure 2.15: Illustration of the U-Net architecture.

The U-Net is built as a symmetric ‘U’ structure with multiple down-sampling and up-sampling
levels, representing the encoder-decoder structure. In the original implementation [108], the U-
Net is based on four levels, as illustrated in Figure 2.15. Each encoder block contains two
convolutional layers with 3x3 ReLu activations and a max pooling layer with a 2x2 kernel size
for downsampling. The decoder blocks contain a single up-convolutional layer with a 2x2
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kernel size for up-sampling and also two convolutional layers with 3x3 ReLu activations.
Additionally, skip-connections link together the down-sampling and up-sampling blocks on the
same level. This allows transferring feature information from encoder-levels to decoder-levels
with the same resolution [103, 104]. Through its structure, the U-Net extracts low-resolution
and high-resolution information for which the low-resolution information is utilized for
improving accuracy, whereas the high-resolution information is utilized for improving the
extraction of complex features [104]. Through this functionality, U-Net architecture allows
individual predictions for each pixel with high performance. In recent years, a large number of
novel architectures were developed which are heavily based on the U-Net [13, 17, 103, 104,
111]. The new designs try improving the U-Net with layer changes, slight modifications, or
additional modules, but still rely on the proven ‘U’ shape. Zhang et al. [112] and Kolafik et al.
[113] introduced further connections inside the convolutional blocks for allowing more
complex pattern findings resulting in the Res-UNet [112] and Dense-UNet [113]. Ibtehaz et al.
[114] replaced the two convolutional layer blocks with a ‘MultiRes’ block, consisting of four
convolutional layers in which one layer is a residual path, and changed the skip-connections to
so-called ‘res path’ connections, consisting of further convolutional layers [114]. Another
variant is the integration of attention mechanisms into the U-Net by Oktay et al. [115]. The
authors introduced attention gates that enhance skip-connections by weighting activation
functions for irrelevant regions reducing the number of redundant features [115]. Similar to
image classification, 3D variants of segmentation architectures were developed by simply
transforming the corresponding layers. Thus, 3D variants of the U-Net were quickly published
like the V-Net by Milletari et al. [116] or the 3D U-Net by Cicek et al. [117]. Further variants
which are presented in Figure 2.14 but not introduced are the Compact U-Net, which is a denser
version of the Dense-UNet by Kolatik et al. [117], and the plain U-Net, which is a stricter
configured variant compared to the more dynamic standard implementation [108, 109, 118].

2.3.3 Hardware Requirements

Modern CV pipelines utilizing the latest architectures for optimal performance require high
hardware specifications [14, 119, 120]. Parallelized dense computation and large memory
bandwidth are crucial for modern computation-intensive deep neural networks [14]. Central
processing units (CPUs) do not fulfill these rising hardware requirements which is why neural
network computations are relocated to graphics processing units (GPUs) [14]. GPUs provide
next to powerful graphics engines also highly parallelized computation and memory bandwidth
capabilities which are ideal for high-performance computing as required in deep neural
networks [14]. Next to the core clock speed, the available video random access memory
(VRAM) of a GPU determines its capabilities to store a deep learning architecture in its memory
[14, 119]. State-of-the-art deep learning architectures often require the usage of current high-
end GPUs and, therefore, the available GPU hardware is an essential factor to consider for
assessing the research capabilities of a lab [14, 119]. This is why larger labs or industries
maintain expensive computing infrastructures or even clusters in order to offer competitive
research capabilities. However, it is important to note that for application, drastically less
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computation resources are commonly available which is why there is a certain balance to
consider between applicability and best-possible performance.

Nevertheless, CPUs are still strongly incorporated for preprocessing in CV pipelines [14, 119].
Modern pipelines utilize real-time image processing as well as augmentation (see Chapters 3.2
and 3.3) leading to high CPU usage during training, as well. During the development of a CV
pipeline, it is often required to deal with bottlenecks originating either from the CPU, for which
the GPU is waiting to obtain the next processed images, or from the GPU, for which the CPU
is waiting to pass the already processed next images.
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2.4 Medical Image Analysis

Through the increased availability and usage of medical imaging like magnetic resonance
imaging or computed tomography, the need for automated processing of scanned imaging data
is quite strong [10, 19, 121]. Currently, the evaluation of medical images is a manual process
performed by physicians [19]. Larger numbers of slices require the inspection of even more
image material by doctors, especially regarding the increased usage of high-resolution medical
imaging [10, 19, 121].

The field of medical image analysis (MIA) describes the computer-assisted processing,
analysis, or visualization of medical images to support medical staff in diagnostic, therapy, and
documentation [10, 19, 28]. The general idea of MIA is to assist physicians in processing the
continuously increasing quantity of medical images and to provide additional information [10,
28]. An important key concept in MIA is the automated analysis of medical images in order to
provide clinical decision support (further introduced in Chapter 2.4.2). This can be achieved by
integrating image processing algorithms, statistical models, or computer vision methods into
clinical workflows [10, 28, 122]. Common application fields of MIA tools are medical
disciplines that heavily utilize medical imaging in routine like radiology, pathology, oncology,
neurology, and surgery [10, 28, 122]. Through the usage of MIA, clinicians strive to achieve
improved healthcare quality as well as a reduction of time-consuming processes [10, 122].

The first ideas for MIA emerged in the year 1969 with workshops about information processing
in medical imaging, and peak today with the utilization of artificial intelligence models [122].
The history of MIA can be summarized in four eras according to Duncan et al. [122]:

13

» 1. pre-1980 to 1984, that one could term the era of 2D image analysis,

» 2. 1985-1991, when knowledge-based strategies came to the forefront and the advent of
Magnetic Resonance Imaging (MRI) changed the landscape,

» 3. 1992-1998, when the analysis of fully 3D images became a key goal and more
mathematical-model-driven approaches became computationally feasible, and

» 4. 1999 and beyond, where now advanced imaging and computing technology is facilitating
work in image-guided procedures and more realistic visualizations.

There are various applications in MIA as well as associated objectives depending on the
imaging modality, discipline, medical condition of the patient, and the particular task [10, 122].
Nevertheless, the applications in the field can be grouped in the following universal objectives:
Consolidation as well as centralization of information from diverse sources, information gain
by analysis, evaluation, as well as interpolation, and information reduction by summarizing as
well as relevant selection.
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2.4.1 Research Fields

Through the wide definition of MIA, multiple subfields focusing on different tasks in medicine
emerged. These subfields differ in individual tasks, objectives, and processing methods. In this
subchapter, the five major subfields in MIA are introduced to provide a brief overview of the
field.

Visualization

The subfield visualization focuses on the efficient presentation of medical information [10].
The objective in this field is to improve diagnostic, treatment planning as well as execution,
and monitoring of patients through supportive information displaying [10]. This can be
achieved by an efficient display of the medical image and optional integration of further
anatomical or pathology knowledge into the representation. The domain is fundamental in
clinical routine as well as research and is present in any aspect of medical imaging [10, 19].
Efficient and smart overview through image viewer and illustrations of relevant medical
information, specifically 3D visualization, is an important key domain in MIA [10, 19, 28]. The
spatial display of an object like a tumor can provide crucial insights and help surgery and
radiotherapy treatment procedures [10]. Another more recent domain is virtual reality in which
clinicians can visualize objects in 3D near-eye display for immersive insights which can be
helpful for surgery as well as education [10, 28, 120].

Medical Image Registration

The subfield medical image registration (MIR) focuses on the translation of different imaging
matrices into a single and uniform coordinate system [10]. The objective of this domain is to
combine multiple images into a single one in order to obtain a comprehensive visualization that
allows displaying information from both images [10, 123]. A processed image consisting of
multiple aligned images is called a multi-modal image while the process of registration is also
often called image fusion [10, 123]. This procedure allows the direct comparison of images
from either single or even multiple patients. Furthermore, the combination of different imaging
modalities is also possible and commonly applied for CT or MRI with PET scans [10, 123].
Another important application domain is the registration of a segmentation atlas in which
annotated regions are overlayed on a patient image to incorporate knowledge like the different
human brain regions [10, 123]. The general idea behind a registration operation is to transform
one image to be optimally aligned with another image. This process can be summarized in four
core steps [10]. In the first step, distinctive spots in both images are identified. In the second
step, these points are matched between the images. In the third step, the transformation for
optimal consensus based on the distance between matching points is computed, and, finally, the
computed transformation is applied in which the images are aligned.

Frameworks in Medical Image Analysis with Deep Neural Networks - Dominik Miiller



INM CHAPTER 2 - BACKGROUND Page 38

Medical Image Segmentation and Object Detection

The subfield medical image segmentation (MIS) and object detection (OD) focus on the
identification and partition of objects within a medical image [10, 124, 125]. The objective of
this domain is to detect and highlight anatomical or pathological structures in an image [10,
124, 125]. Such a structure or object is also called a region of interest (ROI) [10]. The benefits
of MIS and OD range from decision support in diagnosis or treatment, integration of
knowledge, and automation up to documentation [10, 124, 125]. Furthermore, there is also a
wide range of applications like brain region partition, organ segmentation, tumor detection, and
cell counting in histopathology [10, 124, 125]. In general, MIS and OD methods are often
implemented for the automated processing of medical images and are commonly the first step
in an image interpretation pipeline to define objects within an image matrix [10, 124]. The
domain can be grouped into four types of segmentation [10, 124]: The manual annotation by
clinicians or radiologists, the atlas-based segmentation with MIR, the automated object
detection of ROIs, and the automated semantic segmentation in which each pixel is classified.

As the field of medical image segmentation is one of the core topics in this thesis, an in-detail
introduction is presented in Chapter 4.1.

Quantitative Image Analysis

The subfield quantitative image analysis (QIA) focuses on measuring objects and features
within medical images [10]. The objective of this domain is to determine quantitative
descriptions of relevant image objects in order to assess medical information [10]. Furthermore,
the field of QIA allows the quantitative assessment of object characteristics which can be
utilized as explicit norms for treatment instructions [10, 28]. Thus, QIA provides essential
information for diagnostic, treatment planning, and progression control of medical conditions
[10]. Popular applications of QIA are in oncology for tumor analysis and surgery [10]. QIA
methods often require a prior MIS for object acquisition and can provide features that are further
used in medical image classification [10, 28]. The domain can be grouped into four major types
[10, 54]: Elemental image analysis operations like the computation of the diameter, angle, or
volume of an object, texture analysis of surfaces for tissue detection, fractal image analysis for
contour detection, and morphological image analysis for assessing the form as well as structure
of an object. Overall, QIA processes are widespread in all kinds of medical imaging software
and corresponding methods can be found in any modern medical imaging viewer [10, 54].

Medical Image Classification

The subfield medical image classification (MIC) focuses on the classification and detection of
images on the basis of visual content [10, 13]. The objective of this domain is to structure and
categorize the image into predefined medical classes based on diseases or other medical features
[10, 13]. Especially for diagnostics, the field of MIC offers essential information by interpreting
medical images. MIC methods are commonly the last part of traditional MIA pipelines by
combining all prior computed features like quantitative information based on an MIS to
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prognose severity or detect diseases [10]. Typical applications of MIC are tumor type
classification, Gleason score grading of prostate carcinoma, fracture risk detection, and
melanoma detection [10]. In general, MIC can be utilized for assigning images to any
classification system which provides numerous application capabilities in the medical context
[10, 13]. The domain can be grouped into three types of classification: Binary classification in
which images are grouped into two classes like healthy or diseased, ordinal classification in
which the classes have a relative order in an arbitrary scale like the Gleason grading system,
and nominal in which classification systems consist of distinct labels like types of brain tumors
(glioblastoma, acoustic neuroma, astrocytoma, ...).

As the field of medical image classification is one of the core topics in this thesis, an in-detail
introduction is presented in Chapter 5.1.

2.4.2 Clinical Decision Support

The practical application of medical image analysis algorithms for computer-based and
automatic analysis of medical images is defined as clinical decision support (CDS) [10, 24, 25].
These systems assist clinical decision-making in diagnostic and therapy by providing analysis
reports and additional information [10, 24, 25]. Sutton et al. [24] defined CDS systems in their
work as follows:

“A clinical decision support system (CDSS) is intended to improve healthcare delivery by
enhancing medical decisions with targeted clinical knowledge, patient information, and other

«

health information. *

The range of CDS applications can be categorized into knowledge-based and non-knowledge-
based systems [24, 25]. A knowledge-based system utilizes explicit as well as predefined rules,
which can also be represented in ‘IF-THEN’ statements, according to gained knowledge from
literature or experience [24]. In contrast, a non-knowledge-based system utilizes a machine
learning algorithm or statistical model which gains knowledge on its own commonly through a
training process instead of using explicit knowledge definitions by experts [24]. Furthermore,
Sutton et al. [24] described the types of CDS throughout history as follows:

“A traditional CDSS is comprised of software designed to be a direct aid to clinical-decision
making, in which the characteristics of an individual patient are matched to a computerized
clinical knowledge base and patient-specific assessments or recommendations are then
presented to the clinician for a decision. CDSSs today are primarily used at the point-of-care,
for the clinician to combine their knowledge with information or suggestions provided by the
CDSS. Increasingly however, there are CDSS being developed with the capability to leverage
data and observations otherwise unobtainable or uninterpretable by humans.”

The integration of a CDS system can yield multiple benefits for clinicians [24, 25]. A CDS
system can increase decision reliability by providing further insights or additional information,
improve the quality of health care in terms of diagnosis as well as treatment, prevention of
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potential errors or adverse effects, and increase time and cost efficiency through structured
reporting or automated documentation [24, 25].

Establishing a medical image analysis method as CDS in a medical workflow is the ultimate
goal in the field [10]. However, the integration of a tool in such a sensitive environment reveals
the following crucial challenges: Through the medical context, the applied software must be
validated for being functional, fail-safe, and reliable in any possible scenario [24, 25].
Moreover, clinicians need to trust the computed results of the tool for worthwhile incorporation
in their decision-making [24, 25]. To achieve this, model transparency and concept
understanding are important aspects to factor in next to providing specific training lessons for
users in order to enhance user experience [24, 25, 126]. Finally, it is essential to ensure the
maintenance of the software for multiple years which requires a standardized and robust
implementation [24, 25]. Standardized solutions, which are easier to maintain and are utilized
in multiple locations, provide a natural advantage compared to custom implementations based
on the larger community and the available knowledge in user experience.
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Workflow in Medical Image
Analysis

The field of medical image analysis is a broad spectrum including subfields like visualization,
classification, segmentation, registration, and reconstruction. Still, many aspects and principles
of medical image analysis methods can be summarized as extracting information from medical
images to support or automate medical processes. Furthermore, the subfields of deep learning
based medical image classification and segmentation share fundamental parts and methods in
workflows.

A deep learning based medical image analysis workflow can be defined to contain five core
steps: Data loading or management which handles the input as well as output processes of the
pipeline, data (image) augmentation which is an essential technique in any medical-related deep
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Figure 3.1: Illustration of a typical workflow in deep learning based medical image analysis.
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learning approach due to the often limited dataset sizes, preprocessing which describes the
applied methods between image loading and passing to the model, the neural network model
consisting of a state-of-the-art convolutional neural network architecture for computer vision,
and the evaluation process for performance assessment.

As the core topic of this thesis is deep learning based medical image analysis with a focus on
image classification and segmentation, the following chapter presents a broad review of the
field of medical image analysis based on the Author’s gained experience from 15 studies as
well as the Author’s acquired knowledge from an extensive meta-analysis of the research field
including more than 250 publications over the last four years.

Dominik Miiller - Frameworks in Medical Image Analysis with Deep Neural Networks



Page 43 CHAPTER 3 - WORKFLOW IN MEDICAL IMAGE ANALYSIS [N.k

3.1 Data Management

The data and information in medical imaging are represented in a wide landscape of different
formats and structures. Even though the core of every medical image is a projection of some
object or state, the representation of this projection, the storage, the creation technique, the
circumstances during creation, the technical artifacts or bias, and naturally the information itself
can widely differ. The first step in a medical image analysis pipeline is data loading and parsing
out all relevant information. Thus, this chapter summarizes the common and popular data types
for medical image analysis. More information about medical imaging modalities can be found
in Chapter 2.1.1.

3.1.1 Imaging Formats in Medicine

There are various methods and formats to encode imaging information which are highly
dependent on the specific use case: For medical information exchange between physicians and
telemedical approaches, as additional information for the patient, or for publication within
teaching or research scope [54]. Also, the source of a medical image varies from high-quality
imaging originating from clinical devices to low-quality imaging made with smartphones for e-
health. In general, image formats differ in the following criteria: Patient information or
anonymization, medical imaging metadata, and image quality.

DICOM

The most used format for medical imaging is the DICOM format which is short for Digital
Imaging and Communications in Medicine [10, 54, 127]. It is a worldwide standard for the
communication and management of medical imaging information and related data [54]. The
format allows interoperability between all kinds of devices from medical scanners,
workstations, and printers to communication servers and PACS (Picture Archiving and
Communication System) [10, 54]. The international uniform format supports fast and effective
information exchange for healthcare between hospitals and across borders [127]. Distinctively,
the DICOM format contains much more than just the image. It also includes all kinds of medical
metadata: Patient information (like id, name, sex, diagnosis) provenance information (like
treating physician, time, clinic), modality information (like CT, MRI, endoscopy), and
equipment information (like scanner model, scanning configuration, capturing parameters,
image meta information) [10, 127]. DICOM images are the typical format to work with in a
clinical environment, but are rarely used for public datasets due to the high content of patient
identifying information.

NIfTI

The Neuroimaging Informatics Technology Initiative (NIfTI) file format was initially created
to speed up the development and enhancement of informatics tools in neuroimaging [128]. The
format allows the storage of anonymous 3D imaging data like MRI and CT scans including
important metadata like slice thickness, but without the patient identifying data like the DICOM
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format. Thus, it is now commonly used for sharing public as well as anonymous MRI and CT
scans, instead of only for brain imaging, but also for all kinds of human 3D imaging [129-131].

Regular Image Formats

Mainly for sharing 2D medical images with patients as well as for publication, regular image
formats aside from medicine are often utilized [51, 54]. Shortly summarized, there are three
important image formats [54]: Joint Photographic Experts Group (JPG) is one of the most
commonly used imaging formats which utilizes lossy compression to achieve small file sizes
for easier exchange. The more modern Portable Network Graphics (PNG) raster-graphics file
format supports lossless data compression and allows more color depths with qualitative better
visualization than JPG. Professional medical 2D imaging datasets often use the Tagged Image
File Format (TIFF). TIFF offers the best image quality without information loss and is
commonly used in professional photography and printing. One of the exceptions to the usage
of DICOM in medical imaging is the field of histopathology. Microscopes produce images with
a resolution of typically 80,000x60,000 pixels which are stored in the bigTIFF format (an
extended version of TIFF for images with more than 4GB) [120, 132, 133]. Nevertheless,
regular image formats do not contain any medical metadata and are highly dependent on the
use case as well as on the image source which can be an advantage in terms of anonymization
and a disadvantage in terms of appropriate preprocessing methods requiring metadata.

Other Formats

Besides commonly accepted formats especially for medical images, there is a variety of other
imaging or data storage formats in which medical images can be stored. Especially in research,
datasets can be encoded in unusual or custom formats. In the research field of medical image
processing, SimplelTK is a toolkit library for multiple programming languages like R and
Python [134, 135]. It also provides data loading and writing operations for the MHA
(Metalmage) format which can be utilized for storing metadata along graphical information
[136]. Through the popularity of the SimpleITK framework, more organizations utilize MHA
for encoding complex medical imaging data like CT scans based on the format capability to
dynamically store any annotation as well as mandatory meta information like voxel spacing
[137]. An alternative to imaging formats is any type of data storage format. Especially already
preprocessed datasets are present in popular data formats like HDF5 [136] or NPY (NumPy file
format) [138]. Working with these preprocessed images has to be done with caution due to non-
revertable already applied methods which are often not sufficiently documented.

3.1.2 Image Dimensions

The dimension of an image defines the number of axes and, therefore, the mathematical
representation of the imaging data. In contrast to regular imaging like photography, medical
imaging consists of common 2D images as well as more complex 3D images.
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2D Imaging

The majority of computer vision research is based on ordinary 2D imaging [9, 10, 75, 77]. Thus,
various frameworks for 2D image processing as well as 2D deep learning libraries and deep
convolutional pipeline APIs (application programming interface) are available, which can also
be utilized for medical imaging [13, 75, 139, 140]. The resolutions of 2D medical images are
quite diverse. Whereas ultrasound has a lower resolution like 0.2 to 1.0 megapixels (5,122,
7,682 or 10,242 pixels), visible light imaging approaches like endoscopy around 1 to 8
megapixels or X-ray imaging like mammography around 20 megapixels [10, 120]. However, it
is common to down-scale such high-resolution images to more common resolutions like 2,562,
5,122, or 10,242 pixels in medical image analysis pipelines [74, 118].

3D Imaging

In contrast to regular 2D images, medical imaging also consists of 3D images. However,
through the rare occurrence of 3D imaging in regular imaging, there are only a handful of
computer vision frameworks available for 3D image processing [134, 135, 141, 142].
Additionally, specific medical imaging frameworks and deep convolutional neural network
architectures are needed for handling 3D imaging data, which is explained in more detail in
Chapter 2.3. 3D imaging is commonly based on tomography approaches like CT, PET, or MRI.
The tomography technique creates 2D cross-sections, also called slices, of a body with the
utilized method like X-rays [10, 54]. Afterward, the multiple created 2D slices are assembled
into a single 3D image [10]. The slice resolution for such approaches ranges normally between
2,562 and 5,122 pixels with around 200 slices per 3D image (e.g. 512x512x200) [10, 120].

2.5D Imaging

Various medical image analysis studies integrated an intermediate alternative by utilizing
popular 2D frameworks as well as architectures for 3D imaging which is defined as 2.5D
imaging [11, 13]. 2.5D pipelines split the 3D images into slices and process these 2D slices
individually [11, 100, 101]. Afterward, the slices with their individual predictions are collected
and assembled back into the 3D matrix [11, 100, 101]. This approach allows not only the
application of 2D imaging methods but also avoids the required extensive hardware resources
for processing 3D data [100]. However, processing each slice of a 3D scan individually leads
to inevitable information loss. The presence of an interesting pattern in another slice and only
cross-sectional ROI visibility could be missing or be not enough information for efficient model
learning, which could have a drastically negative impact on model performance.

3.1.3 Image Information: Representation, Annotation, and Metadata

Medical imaging generates data units that consist of multiple different information types
besides the actual image. In a medical image analysis pipeline, there are three important
information categories defining each individual image:
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Representation

The actual image can be stored and represented via different techniques which are highly
dependent on the modality. In general, the pixel intensity, also called pixel information, is
encoded via one or multiple integers. The number of integers per pixel is also defined as the
number of channels for this image. For pixel intensity encoding, there are diverse formats that
are different in their number of channels and possible integer ranges. The most commonly
known encodings in regular 2D imaging are grayscale and RGB (Red-Green-Blue) [10, 54].
Whereas grayscale is a single-channel encoding describing the gray intensity with an integer
range between 0 to 255, the RGB encoding is defined by three channels describing the red,
green, and blue intensity with each channel using an integer range between 0 to 255 [10, 54].
Nevertheless, medical imaging techniques, which do not rely on visible light imaging, compute
different measurements as their intensity values. However, besides some exceptions, often these
intensity values are automatically converted to grayscale. An exception to this rule is CT
intensity values which are often represented through the Hounsfield scale. Hounsfield Units
(HU) are units on a quantitative scale for describing the radiodensity and have fixed value
ranges for specific human tissues as shown in Table 3.1 [10, 54, 143—145]. Such intensity
encodings can be exploited for MIA detection of specific tissues, which is commonly applied
in clipping based preprocessing (described in detail in Chapter 3.3.5) [10, 146].

Table 3.1: Overview of Hounsfield unit ranges for selected tissue types.

Tissue Type Hounsfield Value Interval
Air —1,000

Lung tissue -900 to —170
Fat tissue —120 to =50
Water (H20) 0

White matter 20 to 30
Kidney 20 to 45
Grey matter 37 to 45
Muscle 35t0 55
Liver 45 to 65
Bone 700 to 3,000

Furthermore, multi-modal encoding-based architectures are prevalent in many MIA pipelines
[13, 147-149]. Multi-modal image representations are the pixel-wise combination of multiple
modalities by registration of multiple modality images in the same image coordinate system.
Thus, a single pixel can have a channel for each modality. Commonly, multi-modal encodings
are often utilized in pipelines based on PET-CT imaging data or multiple MRI sequence
imaging data like T1-T2 [13, 147-149]. Instead of analyzing modality images individually by
separate models, multi-modal encodings allow utilizing and learning from multiple modality
information at the same time. This can result in significantly increased performance, especially
in the detection of false positives which appear as an abnormality in one modality but can be
differentiated in another modality [147, 150].
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Annotation

Next to the image, an MIA pipeline requires an annotation or mask for the image in order to
train a model for identifying the correct classification or annotated pixel of the ROI. For image
classification, annotations are text-based classes, also called labels, which are assigned for a
complete image. For multi-label classification, a single image can also have multiple classes
assigned. In contrast, a mask for image segmentation has an identical shape as the actual image
but the pixel values consist of a class integer instead of an intensity value. Therefore, each pixel
is labeled to commonly one specific class. Overall, there are three types of annotations: Binary,
in which each pixel or image can only belong to one of 2 classes (normal or cancer), multi-
class, in which each pixel or image can belong to one of the n classes (background or lungs or
cancer ...) and multi-label, in which each pixel or image can belong to multiple # classes (0 or
143 or 243 ...). Most of the time, the first class acts as a background or normal (control) class
in contrast to the target classes. Further information on classification theory can be found in the
excellent works of Zhou et al. [151] and Sorower [152].

Besides the different types of annotation for MIA, the quality of annotation can highly vary
depending on several factors. The first one is the expertise of the annotator, which can range
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Figure 3.2: Illustration of quality flaws in annotations for medical image analysis.
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from student research assistants to experts like radiologists for CT images [153, 154]. However,
not only the field but also the experience from years of practice can have a large impact on the
annotation quality as studies revealed [8, 155]. The second factor is annotation processing.
Common techniques are applying filters or other refinement techniques for smoothing manually
drawn ROIs with possible sloppy lines [129, 153, 156]. The last one of the three important
factors is the annotation generation process. For image segmentation, masks can be either drawn
per hand, automatically generated via thresholding from ROIs, or by just cutting out the
complete area of ROIs [153, 156]. For image classification, annotation labels can be manually
assigned by a predefined set of classes, automatically identified by using structured reports with
standardized terminologies, or predicted by natural language processing techniques on medical
notes [156]. All methods result in valid annotations but can drastically differ in quality [156].
In total, manually drawn and afterward refined annotations masks or manually assigned
annotation labels from a skilled expert in the corresponding field can be seen as a gold-standard
for MIA annotation.

Common quality flaws in the annotation of medical imaging are illustrated in Figure 3.2. The
figure demonstrates the annotation quality based on noise presence in masks for image
segmentation and labels for image classification. As datasets, MRI brain scans for tumor
segmentation from Cheng et al. [60, 157] and fundus photography for disease classification
from Pachade et al. [158] were used.

Metadata

In addition to the two core information of an MIA pipeline, the image representation, and the
annotation, medical images often include metadata. Metadata is information describing
supplementary details on the patient, the disease status, the image generation process, or
technical details. As already stated in Chapter 3.1.1, DICOM files regularly contain various
patient-related information, however also anonymized datasets can contain descriptive
information about the patient like age, sex, or disease status and severity [54, 127]. This
information can be utilized in an advanced pipeline build like cascading pipelines based on
multiple models [132, 159, 160]. Another important piece of information is the pixel spacing,
also called slice thickness, which defines the size of a pixel in 3D images and is required for
the resampling method during the preprocessing [127, 161]. For multi-modal approaches,
registration of images from different modalities is needed. This requires the origin of the image
coordinate system (final image with the patient in the center) in order to convert the image back
into a world coordinate system (coordinates showing scanner and patient position which highly
varies depending on setup and device) [123, 162]. Furthermore, technical details like device
information and configuration can be used for advanced image preprocessing and refinement.
In order to avoid unnecessary bias, it is always recommended to check for information about
image generation and already or automatically applied preprocessing methods.
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3.2 Image Augmentation

The process of data augmentation can be defined as the technique of artificially increasing the
dataset by creating modified or simulated images based on the available information. Typically,
images of the dataset are transformed or utilized to create new images [163, 164]. The medical
image analysis field often lacks adequate-sized datasets because of the labor and time-intensive
annotation process by physicians [13, 110]. Therefore, data augmentation is present in any state-
of-the-art MIA pipeline and has a huge impact on the model performance [163—166]. There are
several advantages in the utilization of data augmentation.

The training of a model has always the risk to ‘overfit’ on the training data, which means that
non-relevant information or complete memorization of training samples is used for the
prediction [163]. This scenario is called overfitting and leads to increased or even optimal
performance on the training data. However, through overfitting, the model is not able to perform
reasonable predictions on unseen or new data, which significantly reduces the model’s
usefulness [163]. Increasing the dataset size by data augmentation lowers the risk of overfitting
[163—166]. It follows the assumption that through image transformations, the data usage
efficiency can be increased by extracting more information from the dataset. Another
perspective of data augmentation is the variance enlargement in the dataset. The model
performance is determined by its detection and generalization ability [163]. Medical imaging
datasets are known to have a small sample size and similar images with a low variance which
leads to low generalizability [110, 118]. Especially in medical images in which a high number
of features is shared, data augmentation is able to introduce reasonable variance by creating
spatial transformation of abnormalities or noise addition. In addition, data augmentation is able
to tackle class-imbalanced datasets by either augmenting complete samples with an overall
underrepresented class or by cropping or zooming specifically in segmentation areas with the
underrepresented class [163, 164, 167].

Still, performing data augmentation in an MIA pipeline also reveals challenges. In contrast to
common augmentation methods for image classification, image segmentation also requires the
corresponding augmentation of the segmentation mask as well. Transformations have to be
applied equally to the representation image itself as well as the segmentation mask to be valid.
Particularly in 3D imaging, this can be a challenging task that is only supported by a niche of
data augmentation frameworks [141]. Also, not all commonly used data augmentation methods
on regular imaging are reasonable for medical images in which introduced discrepancies are
either non-logical or misleading in the medical context. Popular data augmentation frameworks
for medical image segmentation are batchgenerators by Isensee et al. [142] and torchio by
Pérez-Garcia et al. [141]. Furthermore, it is important to note that data augmentation is purely
based on increasing the information usage efficiency of images. It is not possible to create new
information through data augmentation (data processing inequality) which is why it can,
correctly applied, significantly decrease the risk of overfitting, but also significantly increase
the risk if applied thoughtlessly.
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3.2.1 Types of Image Augmentation

Artificial images from image augmentation can be generated with diverse methods. These
methods can be categorized as regular image augmentation and more complex generative
adversarial networks. A demonstration of image augmentation techniques can be seen in Figure
3.3. In the figure, the techniques are categorized into spatial augmentations, color
augmentations, noise augmentations, and generative adversarial networks. For the generative
adversarial network, a super-resolution generative adversarial network (SRGAN) architecture
by Ledig et al. [90] was utilized. The example images originate from the RFMiD dataset [158].

Regular Image Augmentation

The majority of applied image augmentation methods can be defined as functions which are
modifying a single and specific feature. These augmentation methods are based on simple
image operations or mathematical functions which are usually not computationally intensive
and do not require preprocessing. The aim of regular image augmentation is to generate valid
new images in a medical context as well as alter image-capturing perspectives or simulate
technical variance like Rician noise in MRI scans [163]. This kind of image augmentation is a
wide and established scientific field in which methods are utilized in the vast majority of state-
of-the-art MIA pipelines [163]. The augmentation functions can be grouped into three types:
Spatial augmentations, which modify position-dependent information like image translations
or rotations; color augmentations, which alter the intensity values of the image like contrast or
brightness; and noise augmentations, which introduce artifacts in an image like Gaussian Noise
or Rician Noise [142, 168, 169].

Generative Adversarial Networks

In contrast to regular image augmentation, generative adversarial networks, short GANs, have
been a popular alternative for several years [163, 167, 170, 171]. GANs aim to generate new
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Figure 3.3: Overview on common image augmentation techniques.
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images which are reasonable and not distinguishable as artificial. Instead of image creation by
modifying specific features, GANs are separate neural network models which try to learn and
then generate similar probability distributions for specific regions of interest [163, 167]. This
allows the generation of augmented images with more complex random variable modification.
However, in medical image classification and segmentation challenges, which allow direct
comparison of methods on the same dataset, pipelines based on GAN augmentation are often
inferior to the other data augmentation techniques [101, 129, 163, 171-173]. Thus, GANs in
modern competitive MIA pipelines have become rare in recent years.

3.2.2 Application Techniques

Besides the transformation types, data augmentation can be applied with two different
techniques.

On-the-fly Augmentation

The majority of high-performing MIA pipelines are utilizing on-the-fly augmentation, which is
also called online or real-time augmentation [109, 110, 118, 159, 174]. The principle of this
technique is to take the original dataset as templates and compute randomly transformed
variants of it during run-time. Simplified, instead of using the original image for the training, a
novel augmented image is created and fed into the model. The aim of on-the-fly data
augmentation is that a model never sees the same image twice in the complete training process.
In the last few years, this technique became the most favored data augmentation technique in
medical image analysis [49, 109, 118, 142, 175]. Still, applying real-time data augmentation
besides the actual training process is a computationally expensive task. If no sufficient hardware
is available, on-the-fly data augmentation can become a computational bottleneck that
drastically increases training time.

Prior Augmentation

The traditional approach for utilizing data augmentation is to apply transformations a single
time as preprocessing technique [163]. The aim is to artificially increase the small dataset size
to the individually preferred distribution and then start the training process on the new larger
dataset. Thus, the new dataset consists of the original and the augmented images. Whereas this
approach 1is still popular for up-sampling purposes in datasets with strong class imbalance,
experiments showed that the efficiency and performance gain of prior augmentation is inferior
compared to on-the-fly augmentation [118, 163, 176]. This can be explained by the larger
variance which is introduced by augmenting an image each time the image is used.
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3.3 Image Preprocessing

The preprocessing of medical images is a broad but imprecise defined procedure of data
conversion and refinement before feeding it to the computer vision algorithm. The two main
proposes of preprocessing in machine learning pipelines are making the data machine-readable
and simplifying the task. Therefore, preprocessing is an important step in a machine learning
pipeline as the quality of data and the useful information that can be derived from it, directly
affects the learning ability of the model [161, 177]. Identical to a machine learning pipeline, a
deep learning based MIA pipeline also requires comprehensive preprocessing to gain machine
readability and task simplification. Because the application of preprocessing techniques is
highly dataset and task-specific, there is no strict guideline on which to use [10]. Instead, the
wide landscape of preprocessing methods can be distinguished into two types depending on
each individual use case: Necessary methods to be fed into a deep convolutional neural network
model. Recommended methods to possibly improve performance, reduce bias, lower required
hardware resources, or training time. In the following, a short description, relevance, and use
case of the 10 most important and popular preprocessing techniques for medical image analysis
are presented. As an overview, Table 3.2 summarizes all presented preprocessing techniques.

Table 3.2: Overview of preprocessing techniques including their types, uses, and application references.

Preprocessing Technique Type Influence on Used in
One Hot Encoding Possibly Necessary Machine Readability [105, 160, 178]
Normalization Recommended Task Simplification  [49, 109, 161, 179]
Image Filtering Recommended Bias Reduction & Task Simplification [129, 177, 180, 181]
Bias Correction in Medical Imaging Recommended Bias Reduction [169, 182, 183]
Clipping Recommended Task Simplification [109, 110, 184, 185]
Padding Possibly Necessary Architecture Compatibility [146, 186—189]
Resizing Possibly Necessary Lowering Hardware Requirements ~ [49, 109, 110, 190]

Lowering Hardware Requirements &

Resampling Possibly Necessary Task Simplification [49, 109, 110, 118]
Patching Possibly Necessary Lowering Hardware Requirements ~ [49, 109, 110, 141]
Cropping Recommended Task Simplification [109, 160, 191, 192]

For demonstration purposes, the presented image preprocessing methods (except bias
correction) are visualized in Figure 3.5 and Figure 3.6. The utilized image is a thorax CT scan
with a diagnosed COVID-19 pneumonia from the STOIC project (Revel et al.) [137].

3.3.1 One Hot Encoding

The one hot encoding technique describes the process of converting a single categorical non-
machine-readable variable into multiple binary machine-readable variables [193]. This kind of
conversion is also called creating dummy variables in the field of statistics [161]. The training
of a model for semantic segmentation tasks requires a mask in which each pixel in the image is
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Figure 3.4: Visualization of the one hot encoding procedure.

annotated with one or multiple classes. In a binary segmentation task like a simplistic cancer
segmentation (normal/cancer), a neural network model requires a quite simple mask by using a
single variable with two states, zero and one. As output, a single probability score is predicted
for each pixel ranging from O (normal) to 1 (cancer). However, a multi-class segmentation
model (e.g. normal/lung/cancer) requires a binary mask for each class as well as outputs a
probability score for each class. Therefore, a pixel in a multi-class mask requires the same
amount of binary channels as the number of classes. This scenario gets even more complicated
in a multi-label segmentation task, in which a single pixel can be assigned with not only a single
class but also multiple at once. These scenarios and proceedings are analogical in image
classification. In order to solve the multi-class issue, it is necessary to apply the one hot
encoding technique to create binary dummy variables for each class.

3.3.2 Normalization

The normalization process of images describes a technique that changes the range of pixel
intensity values [168, 177]. Especially in biomedical imaging, pixel intensity value ranges are
highly inconsistent and vary due to different hardware (scanners), technical discrepancies,
biomedical variation (skin color), or image formats (compression) [10]. Inconsistent pixel
intensity ranges in an imaging dataset can have a drastic impact on the model learning ability
and, therefore, classification as well as segmentation performance [146, 161, 177].
Furthermore, machine learning algorithms like deep convolutional neural networks usually
perform better on normally distributed feature vectors [193]. In order to achieve pixel intensity
range consistency, there are two popular normalization techniques: The MinMax normalization
which scales the original value range to a predefined range usually between 0 and 1, whereas
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the Z-Score normalization standardizes the values to a normal distribution by computing their
zero-mean and variance [193].
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Besides the normalization method, medical images can have multiple feature vectors according
to their modality and representation like grayscale or RGB. Thus, it has to be noted that
normalization should be applied to each feature vector channel individually [118]. Furthermore,
image normalization can be applied to each image individually or computed on the basis of the
complete dataset. Specifically, the Z-Score normalization can drastically vary between the
individual image computation and the dataset-wide computation. Whereas individual image
normalization highlights the focus of each image by allowing intensity value variance, uniform
dataset normalization highlights value consistency between images.

3.3.3 Image Filtering

The field of image filtering, also known as image processing, is a collection of methods with
the general aim of image enhancement [10, 146, 177, 194]. Image filtering methods try to
counter or remove undesirable characteristics of images like blur, noise, poor contrast, or
variation in intensity and illumination [10]. Particularly non deep learning based biomedical
analysis approaches like thresholding, clustering, or edge detection are based on image filter
utilization [10]. Popular image filtering techniques are smoothing linear and non-linear filters
like Gaussian and Median filters, sharpening filters like Laplacian and Gradient filters, or
histogram-based filters like Histogram Equalization [10, 146, 168, 169, 177]. However, image
filtering as preprocessing method does not find use in the majority of modern deep
convolutional neural network pipelines [118]. Interestingly, image filtering approaches are
beforehand applied in many publicly available datasets for overall image quality enhancement,
variance bias reduction, and task simplification [129]. Because the majority of medical image
analysis research is built on these public datasets, this introduces a possible bias in these
pipelines, which has to be noted when applying a classification or segmentation pipeline on
clinical raw data. In general, the utilization of image filtering has to be under careful balance
between enhancement or simplification of contextual information and possible information
loss.

3.3.4 Bias Correction in Medical Imaging

Aside from image filtering techniques for standard imaging, often medical modalities require
specific filters for medical images. Theoretically, medical imaging like MRI, CT, X-ray, or
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OCT should have constant intensity values for the same tissue without big variance in the
location of the tissue in the image [146, 183]. However, in reality, technical noise and artifacts
distort the signals and result in a smooth variance in intensities [10, 146, 183]. This phenomenon
is referred to as the bias field. Even if this issue is hard to notice by the human eye, it drastically
impacts the learning ability of MIA models [146]. Thus, specific medical image filtering
methods are required. There exist various kinds of approaches to solve this issue: Histogram
based methods (Intensity Distribution based, Gradient Distribution based), Segmentation based
methods (EM-based, Fuzzy C-Means based), Surface Fitting based methods (Intensity-based,
Gradient-based), and Filtering based methods (Homomorphic Filtering, Homomorphic
Unsharp Masking) [10, 146, 183, 194]. Nevertheless, in the scientific community, the most
popular technique for MRI bias correction is the N4 Bias Field Correction via B-spline
approximation by Tustison et al. [183].

3.3.5 Clipping

As already stated, ideally, medical imaging features constant intensity values for the same
tissue. This feature can be exploited to simplify the ROI detection and segmentation task. For
example, computed tomography scans using Hounsfield units as intensity values [10, 121, 146].
These have fixed and known value ranges for organs or other regions of interest, e.g. lymph
nodes with a HU range of +10 to +20 [10, 54, 121, 146]. Clipping the intensity values outside
of a defined minimum and maximum range close to the desired ROI range results in labeling
every pixel as the background which is not close to this desired ROI range. This technique of
focusing on only a specific value range associated with the ROI drastically reduces the model
search space and increases the performance by avoiding false positives. However, cautious
usage is highly recommended because clipping images to an incorrect minimum or maximum
leads automatically to undetectable ROIs and a maladaptive model.

3.3.6 Padding

The method of padding an image describes the techniques for increasing a smaller image to a
fixed larger shape [118]. In contrast to resizing which stretches an image to the desired shape,
padding creates new artificial pixel intensity values along an axis until the image reaches the
desired size. In deep convolutional neural networks, the convolutional and pooling layers of an
architecture reduce the feature maps of an image which results in decreased image size by a
factor of commonly 2 [108, 118]. This concludes that an image shape has to be dividable one
or multiple times by a factor of 2 depending on the pooling depth of the used architecture. For
ensuring this divisibility, smaller images can be padded to the minimum size to be successfully
fed into such models. There are various techniques to pad an image like cloning the last axis
row, mirroring, or using a specific value, the mean, median, minimum, or maximum of an
image. Selecting the right padding technique has to be done carefully. The usual goal of padding
is to synthetically expand the image background. Still, the risk of the unintentional creation of
artificial features or an ROI has to be acknowledged and avoided.
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Figure 3.5: Application overview of multiple image preprocessing techniques.

3.3.7 Cropping

The removal of unwanted outer areas in an image is defined as cropping. In MIA pipelines,
cropping is a popular technique to remove background or non-interesting regions [49, 118, 159,
177]. The idea behind cropping is to remove unnecessary information for task simplification.
Excluding information from an image by cropping, is a semi-supervised preprocessing which
requires prior knowledge of the task in order to differentiate between important and unimportant
image areas. This technique automatically causes the model to focus more on the desired ROI
via search space reduction. The benefits of cropping conclude with the avoidance of possible
false positives and the model parameter number reduction which, thus, lowers the GPU memory
requirements. In practice, cropping is performed either with fixed bounding box coordinates or
with a binary mask specific to each image. For example, in lung cancer segmentation, cropping
of the lung regions, which can be based on a previous segmentation model or an atlas
registration, is commonly performed as preprocessing for the lung cancer segmentation model
[191, 192, 195, 196].

3.3.8 Resizing

Similar to padding, the resizing technique increases the size of an image to a predefined value
but instead by stretching or shrinking the image to its desired shape. This stretching and
shrinking process can be computed via various interpolation algorithms like nearest-neighbor,
bilinear, pixel area relation, bicubic and Lanczos interpolation [177, 197]. Next to
normalization, resizing is one of the most popular preprocessing methods in image analysis and
is integrated into the majority of imaging data augmentation frameworks [49, 140-142].
However, resizing an image always leads to an artificial bias and variance compared to the
original data. Therefore, this technique reveals a double-edged dagger mentality between
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resizing the image too small, which can result in information loss and blurriness, and resizing
the image too big, which results in an unnecessarily large number of model parameters and
excessive training time. Because medical images are usually in high resolution nowadays, the
most common reason for resizing is down-scaling the image until it is possible to feed the image
into the GPU [110, 197]. Overall in practice, up-scaling is quite rare, but ensuring a shape,
which is dividable by factor 2 accordingly to the used model architecture, is also often solved
via resizing. In direct comparison with padding, resizing interpolates the missing pixel whereas
padding commonly fills the missing pixel with predefined dummy data (in practice with the
background or minimum value). From the neural network model perspective, both methods are
valid and commonly utilized. The model has to either learn from a stretched image or an image
with larger background and a transformed ROI position.

3.3.9 Resampling

The resampling technique can be defined as a normalization attempt to obtain uniform pixel
(voxel) sizes via resizing the images in a dataset. Regularly, magnetic resonance or computer
tomography scans can have different pixel sizes which are called pixel spacing (for all axis) or
also slice thickness (for the z-axis) [54, 146, 177]. A 3D model of a medical scan is computed
by joining multiple 2D slices together [ 10, 54]. The z-axis size of a single 2D slice is represented
through the slice thickness. Comparing two images, one with low slice thickness and one with
high slice thickness but both with identical pixel resolution e.g. 512x512x200 pixels, the
following conclusions can be drawn: The image with higher slice thickness is computed with
fewer 2D slices and therefore has a worse spatial resolution or image quality. The image with
lower slice thickness is computed with more 2D slices and therefore has a better spatial
resolution or image quality. The pixel and slice thickness of a medical image, which value range
is commonly presented in millimeters, results from the configuration of the individual medical
scanner device [54]. However, inhomogeneous voxel spacings between images in a dataset are
a challenging task for deep neural network models [118]. Therefore, volumes in an imaging
dataset are resampled to homogeneous voxel spacing (also called target spacing) which
drastically reduces the complexity of the task. This can be achieved by resizing each image
according to the individual ratio between their current pixel spacing (a, b, c¢) and their desired
target pixel spacing (a’, b’, ¢’).

a b c

Resampling: x',y’,z' = x - (E) Y (F)'Z . (?) (3.3)

In conclusion, resampling directly affects the image sizes and the contextual information, which
the neural network model is able to capture. This highly influences the required GPU memory
of the model and has a huge impact on the final performance.

3.3.10 Patching

The resolution of a medical image can heavily determine the model's learning ability and
performance [197]. Nevertheless, it is not possible to fully fit a complete high-resolution
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Figure 3.6: Illustration of a simple patching application on a CT scan.

medical 3D volume in state-of-the-art deep convolutional neural network models with current
GPU hardware. An alternative to resizing or cropping methods in order to reduce the enormous
GPU memory requirements due to the large data size is a patching approach. Patching describes
the technique of slicing a large volume into multiple smaller commonly cuboid patches [49,
118, 146, 175, 198]. These smaller patches are able to fit and be processed in the neural network
model. This allows the processing of high-resolution images without information loss like
through resizing. Thus, patching became popular in the scientific community and widely
utilized in recent MIA pipelines [27, 118, 198]. Popular patch sizes are 64> and 128> pixel
cuboids or 160x160x80 pixel patches depending on the available GPU hardware [49, 118]. For
model training, there are two common approaches for patching: Fitting on all patches from a
volume or fitting only on a single randomly selected patch (similar to a random cropping
approach) from the volume [49, 109, 175]. This random selection of a single patch/crop
technique for each epoch introduces another layer of data augmentation and, additionally,
decreases the risk of overfitting. For inference, all sliced patches are processed by the model
and, afterwards, ensembled back to the original volume shape. Recent pipelines also introduced
an overlap between patches, because predictions for pixel close to the patch center seemed more
reliable than predictions for pixel at the edge of a patch [49, 109, 175]. By overlapping patches,
multiple predictions for a single pixel are computed and can be combined to a single prediction
by simply averaging or weighting according to their position in the patch.
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3.4 Neural Network Model

After preprocessing and formatting the data into suitable chunks, the images can be passed into
a machine learning model. Neural networks are one of the most popular artificial intelligence
or machine learning algorithm, which are used to automatically solve complex problems like
computer vision tasks [13]. This chapter assumes that a model is a deep neural network in a
medical image analysis pipeline and describes important hyperparameters, usage techniques as
well as related topics for application. The theory and further information on the principles of a
deep learning based neural network model can be found in Chapter 2.2.

3.4.1 Hyperparameters

A hyperparameter is defined as a parameter for a machine learning model which has to be
selected prior to training start [16, 199]. In practice, a model should ideally approximate a
similar predictor providing the same data and architecture. In recent years, neural network
models get more similar as well as standardized in terms of application [200]. Thus, next to the
data itself, the hyperparameters of a neural network model are one of the most significant parts
of an MIA pipeline. An overview of the hyperparameters which will be discussed in the next
sections is illustrated in Figure 3.7.

Number of
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Figure 3.7: Overview of important hyperparameters in a MIA pipeline.

Training related Hyperparameters

For the training process of a neural network model, various hyperparameters are essential. The
training process of a model is substantially framed by its learning rate, optimizer, and loss
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function [67]. Whereas the learning rate is responsible for how much the neural network
weights are adjusted in response to the loss function (see Chapter 2.2 for more information
about neural network theory) and is thereby one of the most important hyperparameters for
training success, the optimizer refines this process of weight updating. A too high learning rate
yields more drastic weight updates which can result in ‘jumping’ across the global performance
optimum, while a too low learning rate yields smaller weight updates which can result in being
stalled at a local optimum. The usage of optimizers like SGD (Stochastic gradient descent) or
Adam (adaptive moment estimation) [201] with a learning rate of 1E™ to 1E* are popular in
modern MIA pipelines [67, 118, 202]. The provided loss function of a model is utilized for
error estimation in order to decide on necessary weight adjustments. Further details on loss
functions can be found in Chapter 3.5.2.

Another important hyperparameter is the training time itself. In a traditional neural network
training process, the training time is pre-defined as the number of ‘epochs’. An epoch is defined
as the complete processing of all samples in the dataset [16, 199]. An epoch can further be
divided into ‘iterations’ which is defined as the processing of a single batch [16, 199]. Thus,
the number of iterations of an epoch is determined by the number of samples and the batch size,
which is shown in Equation (3.4).

l
_ |samp e.sl (3.4)
batch_size

Niterations
However, various modern MIA pipelines utilize a fixed iteration number per epoch instead of
the traditional epoch definition [118]. By randomly drawing only a fixed number of batches
during an epoch, it is possible to allow improved model convergence, especially for limited-
sized datasets which are common in medical imaging. A rule of thumb recommendation would
be to ensure an epoch to have at least 150 iterations for a well-converging training process.
However, this recommendation requires further research and experimentation.

Model Input

After prepreprocessing the imaging data, it is required to pack image samples together in a so-
called ‘batch’. A batch is a data unit that can be processed by the neural network model and
consists of one or multiple samples. The number of samples in a batch is defined as ‘batch size’
and determines how many samples are processed by the neural network model in a single step.
The batch size can affect multiple model capabilities. Kandel et al. [203], Radiuk [204], and
Golmant et al. [205] concluded in their experiments that the batch size has a significant impact
on model performance and effectiveness in optimization steps for convergence. Especially with
a high learning rate, large batch sizes yield strong performance results compared to models with
smaller learning rates [203]. However, Golmant et al. [205] stated that the impact on the
performance with an increasing batch size is highly dependent on the neural network
architecture and computer vision task, as well as only possible to a certain point. Due to
hardware requirements (GPU VRAM), high-resolution images or even 3D images, which are
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common in medical imaging, drastically limit the maximum batch size for state-of-the-art
neural network architectures. Thus, batch sizes of 16 to 64 2D images and of 2 to 4 3D images
are common in modern MIA pipelines [118, 203, 206].

Another hardware limited and maximum batch size determining hyperparameter is the input
shape of the images. During the preprocessing, an image has to be resized, resampled, cropped,
or padded to a uniform input shape for all samples. These fixed input shapes for an image are
often determined by the utilized neural network architecture of the MIA pipeline [74]. In the
medical context with a prevalence of high-resolution and 3D imaging, this often leads to the
need for image size reduction in order to fulfill the fixed input shapes predetermined by the
architecture or hardware limitations [118].

Model Output

The output of a neural network model is always defined by the applied activation function at
the end of the architecture. Whereas the majority of neural network nodes utilize ridge
activation functions like linear activation or ReLU [73], the output activation function is
determined by the classification task [75]. Binary as well as multi-label classification and
segmentation tasks require a ‘sigmoid’ activation function as output while multi-class
classification and segmentation tasks require a ‘softmax’ activation function. More about
activation function theory can be found in Chapter 2.2.1.

Architecture

The structure of a neural network model is defined by its architecture and is the most important
choice in MIA pipeline building. The architecture represents the network design by neurons
and their edges to each other. More about neural network architecture theory can be found in
Chapter 2.2 and Chapter 2.3. Due to the standardization and wide usage of established
architectures in image classification and segmentation [13, 74, 75], custom implementation or
designing of novel architectures tends to become a separate research field. For application, it is
common to utilize already implemented architectures like the U-Net for segmentation or ResNet
for classification [13, 74, 75]. Thereby, the architecture of a neural network model can be
defined more like a hyperparameter in modern MIA pipelines. Selecting a suited architecture is
highly task-dependent. Important decision factors are the available hardware and intended
application. Large and complex architectures like EfficientNet [79] require modern high-
performant GPUs like an NVIDIA TITAN RTX, whereas smaller architectures like MobileNet
[91] are designed to run on mobile devices like smartphones or tablets.

3.4.2 Training and Prediction Process

After the setup of a neural network model including data loading, image augmentation, and
preprocessing, it is possible to start the training process of the model. In a training process, the
neural network model is fitted by minimization of its error (loss) function resulting in an
increase in its predictive capabilities. In supervised learning, medical images as well as
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annotations are required for the training process in which the model repeatedly attempts to
predict the annotation of the images and evaluates its performance. After a predefined number
of epochs, the training process stops and yields a fitted model. Next to the internal model
evaluation for the training based on a loss function, it is also possible to provide the model with
additional validation data for which metric scores can be computed at the end of each epoch.
This validation allows not only a finer interpretation of the training process quality for
hyperparameter tuning but also the application of advanced validation monitoring techniques
which are explained in detail in Chapter 3.6.2.

A fitted neural network model can be used for predicting an annotation of unknown and new
images. These images have to be preprocessed identically as the images for training in order
for the model to make reasonable inferences. The prediction process can be categorized into
two usage cases: Either by predicting large batches from a testing set for performance
assessment in terms of an experiment, or by predicting a single sample in terms of a service
point for an application. The prediction for a testing set is a key part of any MIA pipeline to
robustly evaluate model performance and predictive capabilities. A finalized MIA pipeline can
be utilized in a production environment in which new samples can be passed to and
automatically processed by the MIA pipeline resulting in a predicted classification or
segmentation. The range of applications highly varies from deployment in a mobile App to
integration in a clinical workflow.

Transfer Learning

The repeating of the training process of a neural network model is defined as transfer learning
[11, 74, 207]. The idea of transfer learning is to utilize information from another dataset, which
can be related as well as unrelated to the actual task, in order to compensate for insufficient
training data or reduce generalization complexity [34]. In deep learning based computer vision,
there are three types of transfer learning:

» Prior model training from scratch on another dataset
» Utilizing weights from a pre-fitted model and starting a usual training process
» Utilizing weights from a pre-fitted model and starting a transfer learning training process

The most intuitive transfer learning technique is the beforehand training from scratch in which
a prior training process is applied with a separate dataset. Often the separate dataset is a similar
task on the same medical imaging modality [208]. Instead of individually training the neural
network model on a separate dataset, it is time- as well as hardware-saving (if no access is
available to large GPU clusters) to simply reuse the weights of an equivalent neural network
model with comparable preprocessing. Afterward, the training process on the target data is
applied as usual. Ker et al. [34] defined this type of transfer learning as ‘deep-tuning’. The last
type of transfer learning is to optimize the training process based on reused weights from a pre-
fitted model. This type of transfer learning can be divided into the ‘shallow-tuning’ and ‘fine-
tuning’ phases [34]. For the shallow-tuning phase, the neural network model starts an initial
training process based on weights from a pre-fitted model. For this initial training process, all
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layers except for the classifier are frozen, a high learning rate is selected (for example 1E4),
and the model is fitting for a small number of epochs (commonly 5-15 epochs) [11, 207, 209].
The concept of shallow-tuning is that the model classifier can adapt the fixed architecture
weights to the task. After this initial adaption phase, the architecture weights get unfrozen and
the second training process is started with regular hyperparameters but a smaller learning rate
than for the shallow-tuning phase (for example 1E%%) [11, 207, 209]. In this phase, the complete
neural network model fine-tunes all weights for the task to obtain optimal performance.

Compared to general computer vision, medical image analysis lacks large annotated datasets
due to the increased required expertise for the annotation process [34]. Thus, MIA pipelines
commonly apply transfer learning strategies with unrelated data to medical imaging in order to
overcome this obstacle [34]. The significant performance benefit of the usage of transfer
learning has been proved by several authors like Krizhevsky et al. [81] in one of the key
publications of computer vision, Shin et al. for interstitial lung disease classification in CT scans
[207], Ravishankar et al. [210] for kidney localization in ultrasound imaging, and Tajbakhsh et
al. [211] in a specific study about transfer learning effectiveness in multiple medical imaging
modalities.

Even though transfer learning is heavily utilized in MIA pipelines, there is a large difference in
transfer learning type preference in the MIA subfields. In medical image classification, the
shallow- and fine-tuning transfer learning strategy is heavily utilized as well as it is the accepted
gold-standard in the research field [210]. The pre-fitted weights are universally based on the
ImageNet dataset which consists of non-medical-related 15 million labeled high-resolution
images categorized in over 22,000 classes [76, 210]. However, medical image segmentation
heavily relies on prior model training from scratch on a similar dataset [208]. Even so, the field
of image segmentation is widely based on the U-Net architecture in recent years, the main
reason for the preferred transfer learning type is that there is no large annotated image
segmentation dataset in computer vision. Thus, transfer learning strategies in MIS pipelines are
often neglected in favor of other performance improvement strategies due to the time-
consuming process of prior model training from scratch. Nevertheless, the transfer learning
strategy of utilizing weights from pre-fitted models is a popular technique in general MIA for
initializing weights in novel architectures like 3D variants of popular 2D architectures [34].

Fitting Process Monitoring

Apart from the performance assessment, evaluation of the training process is crucial for robust
model building. In order to identify optimization potential and overfitting presence, the
effectiveness of the model fitting has to be validated. A powerful but simple method for fitting
effectiveness analysis is the visualization of the ‘fitting curve’. During the training process, the
loss function score is logged after each epoch for the training and a validation set. The fitting
curve is a line plot comparing the loss function (or additional metrics) progression against the
epochs and is showing the curve for the training as well as validation. In terms of training
effectiveness, the fitting curve can present multiple indicators. An overall non-decreasing or
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Figure 3.8: Fitting curve visualizing of a typical loss function trend during a training process.

wave-looking curve indicates that the model is not able to learn any features for generalization
and yields a model without any or only low predictive capabilities [212]. The interpretation of
a plateau in a fitting curve depends on its position. A plateau at the beginning of the training
process reveals no learning effect of the model and is an indicator of various possible issues in
the pipeline ranging from a too small learning rate to faulty preprocessing techniques. In
contrast, a plateau at the end of the fitting curve with a prior loss decrease is expected and shows
successful learning of feature generalization until an optimum in predictive capability is
achieved [212]. Whether the optimum is a local or global loss minimum is evaluated in the
performance assessment. For overfitting presence analysis, the distance of the fitting curves
between the training and validation set has to be evaluated. An increasing discrepancy between
the training and validation loss reveals that the model gradually overfits on the training data
whereas its predictive capabilities decrease on the unseen data from the validation set [212].
Usually, the discrepancy is small at the beginning and grows with an increase in epochs [212].
When reaching a learning plateau, an increased discrepancy between training and validation
loss can be typically observed [212].

A fitting curve example is illustrated in Figure 3.8 which shows a transfer learning enhanced
(indicated by the horizontal black line at epoch 10) training process for a skin lesion classifier
based on the International Skin Imaging Collaboration dataset [57—59] and fitted with a class
weighted focal loss function [213].

3.4.3 Frameworks

In computer science, a software framework is a construct, platform, or API which provides
generic functionality for the development or deployment of specific software applications. As
key feature, a framework allows universal and standardized development. The building process
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of an MIA pipeline involves expertise in various scientific fields: Low-level hardware
communication for complex computation, machine learning, deep learning based neural
networks, image processing, and medical imaging [13]. For building an MIA pipeline from
scratch, it would be necessary to be an expert in all mentioned fields which would result in an
excessively time-consuming developing process. For this reason, MIA pipelines are created
with different types of frameworks that allow an effective building and application process.
There are three types of frameworks that are relevant for building MIA pipelines: Base
frameworks, toolkits, and frameworks for automated machine learning (AutoML).

Table 3.3: Overview of available medical image analysis frameworks for research.

Software Name Type Features Publication Popularity Activity

Static Graph-Creation,

Tensorflow [72] Base FW Industry-focus 2015 167,474 2022
Pytorch [71] Base FW Dynaﬁlézefrrgg_hf'oifl‘;aﬁon’ 2016 58,384 2022
JAX [214] Base FW High-performance ML research 2018 20,048 2022
NiftyNet [43] Toolkit Segmentation & Classification 2017 1,314 2020
MONAI [175] Toolkit Segmentation & Classification 2020 3,303 2022
MedicalTorch [215] Toolkit Segmentation 2018 788 2019
EISEN [216] Toolkit Segmentation 2020 42 2020
DeepNeuro [215] Toolkit Segmentation 2018 111 2020
nnU-Net [109] AutoML Segmentation 2019 2,889 2022
nnDetection [217] AutoML Object Detection 2021 324 2022
Nobrainer [218] AutoML Segmentation & Classification 2020 118 2022
ivadomed [218] AutoML Segme‘gi?:;g;:‘:jﬁaﬁ°“ & 2020 139 2022
MIScnn (own) [49] Toolkit Segmentation 2019 325 2022
AUCMEDI (own) [98]  Toolkit & AutoML Classification 2022 10 2022

In order to give an overview of frameworks for deep learning based MIA, relevant software
packages are summarized and presented in Table 3.3. The frameworks are categorized
according to their framework type, features or computer vision task, publication date (official
release year if available or manuscript publication), popularity measured by GitHub [219] stars
of the official Git repository, and activity measured by the date of the last commit in the
associated Git repository (measurement date: 01.09.2022). The activity coloring also indicates
if the project is still maintained (green) or deprecated (orange).

Base Frameworks

According to Litjens et al. [13], one of the main contributions to the rise of deep learning based
solutions in MIA are the GPU computing libraries as well as the open-source software packages
for building deep learning models. Well-maintained GPU computing libraries like CUDA [220]
or OpenCL [221] allow utilizing GPUs for high-performance computing with complex neural
network models. Accordingly, base frameworks, which are based on GPU computing libraries,

Frameworks in Medical Image Analysis with Deep Neural Networks - Dominik Miiller



[N.k CHAPTER 3 - WORKFLOW IN MEDICAL IMAGE ANALYSIS Page 66

are essential for building modern neural network models and are widely popular in the fields of
general deep learning based machine learning, computer vision, and MIA. Base frameworks
(Base FM) provide efficient implementations for robust and rapid building of neural network
models. These implementations include model management in terms of weight data structure
as well as model storage, functions for training as well as prediction processes, and a library of
neural network layers for architecture building like convolutions, pooling, or normalization.
Furthermore, Base FMs include implementations for popular optimizer and activation
functions. These high-level frameworks allow researchers to focus on experimentation and
application rather than worrying about the efficient implementation of neural network
foundations [13].

Toolkits

For building MIA pipelines, various methods for processing medical images have to be
implemented. However, instead of re-implementing the same processing methods or similar
MIA pipelines each time, researchers have started to establish community projects providing
efficient implementations of popular methods and essential parts of MIA pipelines. These
community projects can be defined as ‘toolkits’ which are often high-level APIs and built on
top of Base FMs. Toolkits commonly consist of image loading functions for medical formats
like DICOM or NIfTI, libraries for preprocessing methods, and neural network architectures
for computer vision [43, 175, 222, 223]. In recent years, the usage of toolkits for building MIA
pipelines drastically increased [200, 224]. This can be explained due to the higher availability
of such toolkits as well as the growing interest in the application of deep learning based
computer vision models outside of the computer science research field. As toolkits offer the
possibility to quickly setup a functional MIA pipeline without time-consuming foundation
implementations, deployments and applications in clinical environments became easier to
manage and, thus, more popular.

Automated Machine Learning

Even though, toolkits provide powerful capabilities for efficient MIA pipeline building, the
development and application process for such pipelines still needs deep learning experts to
setup robust and high-performing pipelines. Nevertheless, the majority of modern MIA
pipelines share a high similarity with only marginal differences depending on the task and
imaging modality. For the purpose of usability and simplification, automated machine learning
frameworks provide a high degree of automation for the deployment and application of modern
MIA pipelines [98, 109, 217, 223]. An AutoML framework manages all relevant steps from
loading medical imaging data to the neural network model. Moreover, adequate preprocessing
and hyperparameters are often automatically selected or adjusted according to the input data
[109, 217]. This allows also non-experts in the field of deep learning to build, apply as well as
maintain deep learning based MIA pipelines.
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3.5 Performance Assessment

Evaluation of the model performance and predictive power is an essential step in every machine
learning pipeline. In medical image analysis with deep convolutional neural networks, there are
two types of performance scores. The evaluation metrics, which are used for external model
scoring after the inference as well as follow in general the principle ‘if higher than better’, and
the loss functions, which are used for internal model scoring during the training process and
follow the principle of ‘if smaller than better’.

3.5.1 Evaluation Metrics

Evaluation of MIA can be quite complex because it is required to measure classification
accuracy as well as additional localization correctness for segmentation tasks. Over the last 30
years, a large variety of evaluation metrics can be found in the MIA literature [225]. However,
only a handful of scores have proven to be appropriate and are used in a standardized way [225,
226].

In the following subchapters, each metric will be defined and discussed in terms of possible
issues. Nearly all presented metrics, except Hausdorff distance, are based on the computation
of'a confusion matrix for a binary classification task, which contains the number of true positive
(TP), false positive (FP), true negative (TN), and false negative (FN) predictions. Except for
Cohen’s Kappa and Hausdorff distance, the value ranges of all presented metrics span from
zero (worst) to one (best).

F-measure based Metrics

F-measure, also called F-score, based metrics are one of the most widespread scores for
performance measuring in computer vision as well as in the MIA scientific field [105, 125, 225,
227, 228]. It is calculated from the Sensitivity and Precision of a prediction, by which it focuses
on scoring the overlap between prediction and ground truth. Still, by including the precision, it
also penalizes false positives, which is a common factor in highly class-imbalanced datasets
like MIA [225, 227, 228]. Based on the F-measure, there are two popular utilized metrics in
MIA: The Intersection-over-Union (IoU), also known as the Jaccard index or Jaccard similarity
coefficient, and the Dice Similarity Coefficient (DSC), also known as F1-score or Sgrensen-
Dice index (in the MIC field mostly called F1-score and in MIS field DSC).

JoU = e (3.5)
T TPYFP+EN '
2TP
DSC = (3.6)

2TP + FP + FN
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Besides that, the DSC is defined as the harmonic mean between Sensitivity and Precision, the
difference between the two metrics is that the IoU penalizes under- and over-classification more
than the DSC. Even so, both scores are appropriate metrics, the DSC is the most used metric in
the large majority of scientific publications for MIS evaluation [125, 225, 227].

Sensitivity and Specificity

Especially in medicine, Specificity and Sensitivity are established standard metrics for
performance evaluation [225, 227]. For classification, the Sensitivity (Sens), also known as
Recall or True Positive Rate, focuses on the true positive detection capabilities, whereas the
Specificity (Spec), also known as True Negative Rate, evaluates the capabilities for correctly
identifying true negative classes. In MIA evaluation, Sensitivity is a valid and popular metric,
but still less sensitive to F-score based metrics for exact evaluation and comparison of methods
[225, 227]. However, the Specificity can result in an improper evaluation metric if not correctly
understood. In MIA tasks, the Specificity often indicates the model’s capability to detect the
non-ROI or control class in an image. In segmentation, due to the large fraction of pixels
annotated as background compared to the ROI, Specificity ranges close to 1 are standard and
expected. Thus, Specificity is a suited metric for ensuring model functionality, but less for
model performance estimation.

TP

. . . [ 3.7

Sensitivity TP T FN (3.7)
TN

. . . - 3'8

Specificity TN T FP (3.8)

Accuracy

Accuracy (Acc), also known as Rand index or pixel accuracy, is one or even the most known
evaluation metric in statistics [225, 228]. It is defined as the number of correct predictions,
consisting of correct positive and negative predictions, compared to the total number of
predictions. However, it is strongly discouraged to use Accuracy due to the strong class
imbalance in MIA. Because of the true negative inclusion, the Accuracy metric will always
result in an illegitimate high scoring. Especially in image segmentation, predicting the mask of
an entire image as background class, Accuracy scores are often higher than 90% or even close
to 100%. Therefore, the misleading Accuracy metric is not suited for MIA evaluation and using
it is highly discouraged in scientific evaluations. This issue is discussed in detail in Chapter 7.2.

| ~ TP + TN 659
CCUraCY = TP X TN+ FN + FP '
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Receiver Operating Characteristic

The ROC curve, short for Receiver Operating Characteristic, is a line plot of the diagnostic
ability of a classifier by visualizing its performance with different discrimination thresholds
[225, 229]. The performance is shown through the True Positive Rate (TPR) against the False
Positive Rate (FPR). In particular, ROC curves are widely established as a standard metric for
comparing multiple classifiers and in the medical field for evaluating diagnostic tests as well as
clinical trials [230]. As a single-value performance metric, the area under the ROC curve (AUC)
was first introduced by Hanley and McNeil in 1982 for diagnostic radiology [231]. Nowadays,
the AUC metric is a common method for the validation of machine learning classifiers. It has
to be noted that an AUC value of 0.5 can be interpreted as a random classifier. The following
AUC formula is defined as the area of the trapezoid according to David Powers [47]:

1( FP FN >

AVC=1-S\prrn Y FN T TP

: (3.10)

Cohen’s Kappa

The metric Cohen’s Kappa (Kap), introduced by Cohen in 1960 in the field of psychology, is a
change-corrected measure of agreement between annotated and predicted classifications [225,
232,233]. For interpretation, Kap measures the agreement caused by chance like the AUC score
and ranges from -1 (worst) to +1 (best), whereas a Kap of 0 indicates a random classifier.
Through its capability of application on imbalanced datasets, it has gained popularity in the
field of machine learning [233]. However, a recent study demonstrated that it still correlates
strongly to higher values on balanced datasets [233, 234]. Additionally, it does not allow
comparability on different sampled datasets or interpretation of prediction accuracy.

_ (TN +FN)(TN + FP) + (FP + TP)(FN + TP)
€ TP + TN + FN + FP

(3.11)

(TP +TN) — f.
(TP +TN + FN + FP) — f,

Kap = (3.12)

Average Hausdorff Distance

In contrast to other confusion matrix-based metrics, the Hausdorff Distance (HD) is a spatial
distance-based metric that can be utilized for MIS evaluation [225]. The HD measures the
distance between two sets of points, like ground truth and predicted segmentation, and allows
scoring localization similarity by focusing on boundary delineation (contour) [225, 235, 236].
Especially in more complex and granular segmentation tasks, exact contour prediction is highly
important which is why HD based evaluations have become popular in the field of MIS [225].
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However, because the HD is sensitive to outliers, the symmetric Average Hausdorff Distance
(AHD) is utilized in the majority of applications instead [225, 235, 237]. The symmetric AHD
is defined by the maximum between the directed average Hausdorff Distance d(4,B) and its
reverse direction d(B,A) in which A and B represent the ground truth and predicted
segmentation, respectively, and ||a-b|| represents a distance function like Euclidean distance
[225]:

1

d(A,B)=Nngleiglla—bll (3.13)
a€eA

AHD(A, B) = max (d(4, B),d(B, A)) (3.14)

Other Metrics

In the field of MIA, various other metrics exist and can be applied depending on the research
question and interpretation focus of the study. For further details on the theory of previously
presented metrics, the Author refers to the excellent studies for general classification evaluation
by Lever et al. [228] and for MIS evaluation by Taha et al. [225]. Additionally, Nai et al.
provided a high-quality demonstration of various metrics on a prostate MRI dataset [237].

3.5.2 Loss Functions

The fitting process of a neural network model is an optimization problem in which the
adjustment of model weights has to be scored for each iteration. The optimization aim of the
training process is to find the model weight combination which results in the best scoring. By
running an internal prediction on the training data with the adjusted weights, the current
performance can be evaluated and scored. In contrast to regular evaluation metrics, neural
networks require a decreasing metric in which high performance results in a low value whereas
low performance in a high value. Such kind of metric for optimization minimization is defined
as a loss function [238-240].

F-measure based Loss

An intuitive approach for choosing a loss function is to utilize a favored evaluation metric. For
this reason, F-score based loss functions like the DSC are also highly popular in MIA [240]. In
order to obtain a loss function, it is required to create the antipode of the desired metric. This
can be simply achieved by subtracting the metric from the value 1, which is how the majority
of DSC loss functions are implemented [239, 240].

2TP

D =1-
SCloss 2TP + FP + FN

(3.15)
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Another popular implementation of F-score based loss functions is the Tversky index, also
called Tversky loss [241].

P

T =1-
versky TP+a-FN+ B - FP

(3.16)

Here, a and S are defined as free parameters. The Tversky loss acts as a generalization for all
F-score based loss functions [239-241]. For example, if defining a and g as 1, the resulting
Tversky loss will be equal to the IoU. If defining o and £ as 0.5, the loss will be equal to the
DSC. Furthermore, the parameters can be used for custom weighting of the false negative and
false positive impact on the score.

Cross-Entropy

For training deep convolutional neural networks, cross-entropy (CE) is the most popular loss
function in general computer vision [238-240, 242, 243]. Thus, it is also widely used in MIA
with performance commensurate to F-score based loss functions [239, 240, 242]. In general,
the cross-entropy measures the difference between two probability distributions for a random
variable (a sample) and events (class labels). The predicted class probability is compared to the
ground truth and a score is computed based on penalizing how far it is from the actual class.

CE(py) = —log(ps) (3.17)

In this formula, p; is defined as the model’s predicted correct class probability for the
observation (sample) ¢. The loss minimization is achieved by the negativity of the entropy
estimation.

Focal Loss

Originating from the object detection field in computer vision, the focal loss has become more
and more popular in MIA [239, 240]. Lin et al. introduced the focal loss as a reshape or
enhancement of the standard cross-entropy loss function, in which well-classified examples are
down-weighted for the scoring [213]. Especially in MIS, the focal loss is particularly useful for
extreme foreground-background class imbalance or an ROI consisting of only a few pixels in
an image. This challenge is widely present in all kinds of medical imaging which is why the
focal loss showed significant effectiveness for training MIA models [213, 239, 240].

Focal(p;) = —(1 —py)¥log(py) (3.18)

In this formula, p; is defined as the model’s predicted correct class probability for the
observation (sample) 7 and y is defined as a tunable focusing parameter. The focusing parameter
determines the extent of down-weighting easy samples. Adjusting the y to 0, results in the
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standard cross-entropy loss function, whereas adjusting y to 2 showed high-performing model
training capabilities on highly imbalanced data [213].

Class Weighting

Weighting evaluation metrics and especially loss functions for model training became a
standardized method for state-of-the-art MIA pipelines [244]. Next to specifically designed loss
functions with tunable focusing parameters like the focal loss, it is often possible to multiply a
loss for a single sample with an associated weight based on its class frequency. Commonly, this
approach is applied to the cross-entropy loss function in which the associated class weights are
prior calculated through the total number of samples divided by the multiplication of the number
of classes and the occurrences of each class [239, 240].
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3.6 Sampling and Validation Strategies

In statistical application and machine learning, models are evaluated by an untouched dataset
separated from the training set which is used for model building [199, 245, 246]. This type of
dataset is also called a testing set or hold-out set. The testing set is commonly used to give an
unbiased estimate of the fitted model performance and its prediction capabilities [199, 246].
This testing evaluation is usually performed after model training. However, for measuring
model performance on unseen data for hyperparameter tuning and model selection, another
subset separated from the training data is recommended. This set is called a validation set, is
usually utilized during or at the end of the model training and supports the model-building
process [245, 246].

The usage of a validation set reveals several advantages. In general, performance evaluation of
a model on data, which was used for model fitting and is already ‘seen’ by the model, results
always in a bias towards seemingly better performance than it actually is [199, 245, 246]. Such
overfitting can lead to the model losing usability on its actual task resulting in low up to
catastrophic performance on unseen data [245, 246]. The difference between the performance
on training and unseen data or generalization capabilities of a model is called the generalization
error [16]. The process of counteracting and minimizing the generalization error resulting from
overfitting is defined as regularization in the mathematical and statistical field [16]. In general,
any data which influences the model-building process is biased toward higher performance. For
example, selecting model hyperparameters based on the best performance on the testing set still
contains the risk that the rejected models are better for new unseen data [16, 199, 245]. This is
why, it is highly recommended to hold-out an untouched testing set for evaluation, a separate
set specifically for hyperparameter tuning or model selection, and any remaining data for the
model training. In conclusion, utilizing validation and testing sets allow performing more robust
and reliable evaluations by avoiding possible overfitting and reducing variance bias.

3.6.1 Sampling Strategies

When dividing a dataset into subsets, like training, validation, and testing, it is recommended
to consider the class frequency and difficulty variance [245, 246]. For handling multi-class
classification or segmentation tasks, it is required to ensure that all classes are present at least
in the training dataset. It is a general rule of thumb that the overall class frequency across the
dataset is properly represented in the resulting subsets, as well, which is called stratified
sampling. Similar to class frequency, the task difficulty of images can be varying, which also
should be considered and equaled across subsets.

Percentage Split

The minimal approach for performance evaluation of an MIA model on a dataset is the train/test
split. By randomly selecting and excluding samples from the dataset, a testing set can be
created. Whereas the model-building process uses the training data, the resulting model is
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Figure 3.9: Illustration of sampling strategies.

4 Sampling Strategies N

evaluated on the testing set [199, 246]. Commonly, split ratios of 90-60% training and 10%-

40% testing are favored [246]. However, the suited splitting ratio is highly dependent on the

dataset and task.

The utilization of an additional validation set beside the testing set is the classical and most

popular approach in machine learning as well as medical image analysis [199, 246]. The split

ratios are often distributed in that the training dataset is the largest while the validation and

testing set is smaller as well as equally sized [246].
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K-fold Cross-Validation

In contrast to the classical percentage ratio splits like the train/val/test split, the k-fold cross-
validation technique is more complex by multiple dataset partitioning. By splitting the dataset
into k equally sized folds, it is possible to use each fold one time as a validation set and the
remaining folds as training [199, 246]. Therefore, the cross-validation results in £ models and
is able to utilize the complete dataset for training as well as validation. Commonly, the cross-
validation approach is applied to the training set after dividing the dataset via a train/test
percentage split. Cross-validation is a powerful technique to significantly reduce the risk of
overfitting and selection bias [110, 246]. A popular number of folds (k) in MIA are 3, 5, and 10
[157, 247-249]. These numbers result from finding a suitable balance between variance
reduction and training time by increasing the number of folds.

Leave-One-Out Validation

The leave-one-out technique is a special subgroup of cross-validation, in which k equals the
number of samples [199, 246]. Therefore, the validation set contains only a single sample
whereas the remaining are used for training. Mostly, this approach is utilized during the
developing process of a pipeline in order to obtain fast results at the start. Even if this approach
is practical to validate pipeline functionality, it is highly inadvisable due to the high subset
variance of a single sample and the extreme training time for computing N models.

3.6.2 Validation Monitoring

There are multiple advanced techniques for utilizing information from a validation set during
the training process. These methods automatically adjust the corresponding model training
hyperparameters based on regularly evaluating the model performance with current
configurations. Commonly, this hyperparameter adjustment is based either on the loss or
another metric computed for each epoch for the validation set.

Early Stopping

The Early Stopping technique has the goal to stop the training process at the moment when no
more loss reduction or minimization is possible [250]. Usually, the model performance on the
validation set is monitored every epoch. If a model validation loss is no longer decreasing for a
predefined number of epochs, the training process will be terminated. Early Stopping not only
helps to eliminate unnecessary training time but also reduces the risk of overfitting by stopping
the training when there is no more performance gain on the validation set (even when the
training loss would be still decreasing).

Dynamic Learning Rate

A fixed learning rate of a deep convolutional neural network often either slows down the fitting
process by being too small or is not able to achieve precise weight adjustments by being too
high [250]. The dynamic learning rate method reduces the learning rate by a factor of commonly
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2 up to 10 if no improvement is monitored on the validation set for a predefined number of
epochs. This allows utilizing a high learning rate at the begging of the fitting process to find
suited weight distributions, whereas also allows weight fine-tuning to achieve optimal
performance.

Model Checkpoints

Even if the risk of overfitting can be minimized, there could be still generalization errors due
to general variance between the training set and unseen data [16]. This concludes that a model,
which is the best-resulting model on the training set, is not necessarily the best-generalized
model from the fitting process. By saving the model after each epoch, all models can
theoretically be utilized instead of just the final model with the lowest training loss. Commonly,
the model with the lowest loss on the validation set is selected for further processing.
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Medical Image Segmentation

Image segmentation has an essential role in medical image processing [10, 124, 125]. The aim
of medical image segmentation (MIS) is the automated detection, labeling, and extraction of
regions of interest. Thus, an MIS pipeline is able to divide medical images into segments that
correspond to different tissue classes, organs, pathologies or abnormalities, and other
biologically relevant structures [10, 124, 125]. These resulting segments can be utilized by
clinicians or additional Al approaches to obtain easier or further diagnostic insights [10]. The
automatic highlighting of abnormal features and ROIs allow image segmentation to aid
radiologists in various tasks like diagnosis, treatment monitoring, and time-consuming
inspection processes [10, 124]. Popular applications today are cell counting, organ or tumor
measurements, lesion tracking, and sub-region identification like brain atlas [10, 124].
Nevertheless, more complex tasks like clinical decision support systems for abnormality
detection as well as identification are currently highly popular research topics for clinical trials
and get slowly integrated into the clinical workflow of modern hospitals [11, 62].

In this chapter, the Author proposes the framework MIScnn which is a software package for
the effective as well as standardized setup of state-of-the-art convolutional neural network and
deep learning models for MIS. Furthermore, three studies by the Author utilizing the MIScnn
framework are presented. The studies not only demonstrate the wide applicability of MIScnn
but also contribute with their outcomes to the field of MIS, pathology, radiology, as well as
COVID-19 research.
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4.1 History and Current State

Since about 1980, automatic image segmentation methods are available [251]. Throughout this
time, a wide range of algorithms was proposed for segmentation in medical imaging.
Nevertheless, because of the complexity of medical images, the application of classic
approaches are suboptimal as well as limited on specific imaging modalities and task [10]. This
subchapter provides a short overview of methods for MIS throughout the last decades and
current challenges in the field.

4.1.1 Methods

Thresholding

The binary partitioning of an image based on the image intensity values is called thresholding
and is one of the basic operations in standard image processing [10, 124]. Thresholding is
performed by classifying each pixel based on whether the pixel intensity is inside a defined
limit (minimum and maximum intensity value) or not. A thresholding approach is often simple
but effective for imaging modalities in which medically relevant structures have different pixel
intensity ranges like in CT imaging [124]. A demonstration of thresholding-based segmentation
in combination with Sobel filtering [252] on retinal imaging data acquired from Staal et al. [55]
is illustrated in Figure 4.1. In recent years, thresholding declined to be present only in
preprocessing methods for automated MIS and is commonly defined as clipping (see Chapter
3.3.5). MIS pipelines exclusively based on a thresholding method are rare and limited for
special cases [10, 124]. Nevertheless, interactive thresholding is a standardized operation in
radiology and is available in any modern PACS viewer.

Region Growing

The region growing technique is a semi-automatic method for MIS. The algorithm requires a
manually selected seed point which is used to iteratively analyze neighboring pixels [124].
Starting from the seed point, if a neighboring pixel complies with predefined criteria (also called
homogeneity criteria), it is added to the segmentation set and all its bordering pixels are also
queued for criteria analysis [10, 124]. This process is repeated until there are no more
neighboring pixels queued. Typically, homogeneity criteria are based on pixel intensity
information, but can also define more complex features [124]. Nowadays, region growing is
rarely applied exclusively in MIS pipelines but is similar to thresholding often integrated as a
preprocessing method [124]. However, the application of region growing for annotation
refinement is still a popular technique to increase annotation quality [156].

Atlas-based Segmentation

The concept of atlas-based segmentation approaches is to exploit prior knowledge by reusing
already created segmentations from similar patient cases or tasks [10, 124]. An atlas acts as a
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Figure 4.1: Thresholding approach for vessel segmentation in retinal imaging.

template for the searched object which is created manually by an expert based on its anatomy
and spatial form. The resulting atlas can be overlaid on a new image in which the template
provides the segmentation for the object. This overlay process is a medical image registration
problem and, thus, algorithms for image registration are applied (often non-linear, non-
parametric registration) [10, 253]. Because of the method requirement of similar cases, atlas-
based segmentation can only be applied to uniform ROIs with a consistent form and location
[124]. This excludes all types of MIS for abnormal feature detection like cancer or lesions. Still,
atlas-based segmentation is typically applied for organ as well as brain region segmentation and
is widely used in clinical workflows [10, 124].

Feature Classifier

The field of feature classifiers is derived from machine learning methods. Feature classifiers
are general pattern recognition techniques based on supervised learning [ 124]. This means that
annotated data is required for training a feature classifier model. The feature space of a classifier
can be a representation of any information obtained from a medical image, whereas the most
common feature space is the pixel intensity values of an image [124]. A typical implementation
is the representation of an image as pixel intensity histogram in which the classifier is trained
to identify pixel intensity patterns for specific structures to segment [124]. Due to the need for
distinct quantifiable features and the disregard for spatial information, feature classifiers often
perform inferior 