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1. INTRODUCTION

The way how customers use today’s communication networks has changed dramatically in recent
decades. In the past, users ran elastic and less interactive applications, such as file transmissions
or emails. Today, they run a huge set of high-quality applications, which are dominating today’s
network traffic, for example, video streaming, online games and social networking. In particular,
for high-quality applications, users do not require high data rates; they require a good applica-
tion quality of experience (QoE). Among other subjective and objective factors that influence QoE
(user expectations, hardware device capabilities, etc.), the applications have different and varying
demands on the network in terms of QoE. This includes, for example, low latency for interaction,
high data rate for data retrieval or low packet loss for live content streaming. Consequently, just
optimizing network parameters does not necessarily lead to QoE improvement without considering
applications needs.
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One solution in order to meet the application requirements is to employ over-provisioning in the
network. As pure over-provisioning of network resources typically results in high costs and thus is
not efficient from the economical point of view, new concepts have to be considered in order to
improve networks’ resource efficiency and application QoE simultaneously. As network operators do
not have control over the server or customer premises, they have to introduce new concepts inside
their networks. Application-aware resource management is such a concept that has emerged as a first
step towards improving network resource efficiency in terms of QoE [1–9]. The idea of application-
aware resource management is to orchestrate networks according to user demands that are based on
application quality indicators with high impact on users’ QoE. Network resource management and
orchestration actions are, for example, changing the routing of application flows among the network or
configuring the resource allocation of particular network links, for example, by using different resource
scheduling such as priority queuing or weighted fair queuing. In this way, the utility per allocated
network resources in terms of QoE can directly be influenced. The quality indicators can be fetched
from the network based on in-network measurements [10,11]. A typical implementation of the con-
cept consists of three entities: (i) the network and application monitoring deriving the key performance
indicators and network characteristics [9,12]; (ii) a decision unit [9]; and (iii) a resource management
action that changes the traffic handling within the network (e.g. traffic scheduling with queuing disci-
plines, routing and dynamic path selection) or the traffic produced by the applications (e.g. lowering
video resolution/quality and server selection) [5,9,13]. Although network resources may be shared
unequally, such a traffic handling even leads to an improved overall performance for all users in terms
of QoE [2].

In existing work [2,14,15], the benefit of application-aware resource management mechanisms in
terms of network resource efficiency and user satisfaction was shown for certain applications. How-
ever, the trade-offs between different application-aware resource management mechanisms for network
links in a multi-application scenario in terms of complexity and implementation level have not been
investigated. In detail, most research has been use-case driven and evaluated solutions for only tiny sce-
narios. The existing concepts have not provided a holistic evaluation approach that tries to understand
underlying concepts of how to technically realize resource allocation algorithms for a multi-application
scenario under varying traffic conditions. An algorithm designed for a particular setup may not be
efficient under all circumstances. Consequently, a systematic analysis of application-aware resource
management is important to quantify the real gain of the concept, in particular, when comparing with
alternative solutions, such as network over-provisioning.

This paper provides methods that allow network operators quantifying the benefit of application-
aware resource allocation algorithms for network links in three dimensions: for web browsing and
progressive video streaming applications for constant bit rate and variable bit rate streams; for varying
traffic situations and mixes; and for four algorithms covering the space of application-aware resource
allocation. This can be carried out by the proposed analysis algorithms and the simulation, by inserting
the own network settings and traffic situations. Although an application-aware resource management
should consider different network operations, such as changing the routing or server selection, we
focus on resource allocation for network links, as there is already a high potential for improvement. In
addition, improvements can be simply implemented by the operator, because only one link is touched,
which is under the responsibility of the operator. The implementation complexity varies in terms of
actions during run time and the needed information about the applications. As we are interested in
improving the performance for one network link, we abstract the link by a queuing model. By using
the model, application parameters can be derived, which allow to draw conclusions about the resulting
application QoE. The prerequisite is that this link represents a bottleneck in the network. In particular,
only problems on the bottleneck link are addressed in this paper. Other influences outside the bottle-
neck link cannot be solved and are not in focus of the algorithms considered in this paper. To conduct
the evaluations, analytic models are used that are based on approaches using a Markov M/M/1 queue
with processor sharing policies (M/M/1-PS) [16,17]. In case of algorithms designed for managing
dynamic applications like progressive video streaming with variable bit rate, a discrete-event simulator
implemented in Java is used. Using both analytic and simulative approaches, a study of all algorithms
for different traffic scenarios is performed in order to give selection and configuration guidelines for
the algorithms.
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In particular, the paper highlights the following contributions:

1. modelling the application-aware resource management problem;
2. modelling four application-aware resource allocation algorithms with different complexity;
3. analytical and simulative analysis of the algorithms;
4. guidelines for the selection and configuration of the algorithms.

The structure of the paper is as follows. First, we outline related work and discuss resource manage-
ment options for operators in access networks in Section 2. We introduce the model for the considered
scenario and formulate the resource allocation problem in Section 3. In Section 4, we introduce four
resource allocation algorithms based on the application-aware concept. In Section 5, we explain the
analytic and simulative methodologies for the evaluation of the algorithms. In Section 6, we show
the results of performance evaluation for the algorithms in terms of network load, traffic mix and the
aforementioned quality indicators. Finally, we draw conclusions in Section 7.

2. BACKGROUND AND RELATED WORK

Today, the dimensioning of the capacity of access networks is a crucial task for operators. On the one
hand, the cost must be kept as low as possible (cost-efficiency). On the other hand, sufficient capac-
ity must be available for any expected application or service to satisfy the users (QoE improvement).
Although it was widely believed that network traffic may not be predictable, currently published mea-
surements in literature about access networks show a predictable network traffic behaviour [18,19].
Based on such a predictable behaviour, an operator can analyse the trade-offs before upgrading the net-
work. According to the traffic mix and patterns in the network, the best setup can be chosen in order to
improve the overall network performance in terms of user-perceived service quality. One possibility to
achieve this is the methodology presented in this work for application-aware resource management.

In this section, we summarize related work, which is subject to application-aware resource manage-
ment. The current state of the art consists of numerous approaches and concepts, which use information
from different networking layers and of different degrees of complexity in terms of their functionality,
the information flow and the number of involved entities.

Interfaces and application programming interfaces for application-aware resource management.
The currently prevalent idea in resource management for improving the quality for end-users is to
differentiate traffic flows into quality of service levels. In [20], an application network interface is pro-
posed for OpenFlow-based networks to specify different service levels in the network. The interface
allows application service providers to define application-specific requirements that are implemented
by the network. To achieve a network-wide enforcement, Application Label Switching is introduced
that adds additional protocol headers (labels) to IP flows that can be utilized by OpenFlow software-
defined networking switches in order to differentiate traffic at bottleneck links. The advantage of
this approach is the usage of the standardized OpenFlow protocol that defines existing bandwidth
provisioning algorithms such as weighted deficit round-robin or weighted fair queuing for resource
management. However, a comprehensive quantification of the benefits with respect to the different
algorithms is lacking. Similar to this approach, an application network interface via an additional pro-
tocol layer is proposed in [21]. This service access layer facilitates a split between service level control
and the application data plane, thus enabling service-aware network routing. For the realization, the
proposed protocol must be implemented on each network device. In [22], the concept for traffic prior-
itization is presented for small networks. The authors specify a prioritization of applications for active
users and a de-prioritization for applications in the background. Finally, there are specific QoS-based
or QoE-based management frameworks that define network-wide elements to coordinate the traffic
forwarding. For residential networks, Katchabaw et al. [23] propose to set up a QoS system that uses
hints from individual hosts to make decisions about traffic prioritization.

Application-aware resource management with central entity. Besides [23], the authors introduce
in [24] a central entity that has knowledge about the network and application situation. It performs
a dynamic resource allocation decision that utilizes software-defined networking in order to enforce
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application demands in the network. An implementation featuring a video on demand application
competing with a file download at a bottleneck link shows that monitoring the video on demand appli-
cation’s buffer state can help improving the end-users’ QoE. The work on participatory networking
presented in [1] proposes a communication mechanism between applications and the network, which
is initiated by the applications. Key concepts include conflict resolution between the needs of dif-
ferent applications or users and decomposition of network control, that is, limiting an application’s
authority. The authors of [2] introduce an OpenFlow-based framework that aims at achieving fairness
with respect to QoE among all users in an adaptive video streaming context. The expected QoE of a
user is estimated on the quality of information during the video streaming. This approach combines
a network-aware service with a network-based control entity. Based on monitoring results gathered
via intercepting media presentation description files used in Dynamic Adaptive Streaming over HTTP
(DASH), the framework dictates video quality levels for each user in order to maximize the result-
ing QoE for every participant. Despite the achieved fairness, open issues here are how universal this
approach is and how it can be applied to other applications.

A system design featuring functional blocks that represent functions for packet handling in the
network is presented in [9,25]. Feedback loops including a central decision unit allow for combining
network-aware applications with an application-aware network. A central idea consists of translating
user demands into application demands, which in turn can be translated into network requirements.
The system’s capabilities are demonstrated and verified for various use cases including live video and
video on demand scenarios.

Application-aware resource management for video streaming. In [3], the authors propose to con-
sider the buffered playtime of a video when assigning network resources. They propose algorithms
optimizing the delivered video quality. In [2], the authors propose to maximize the QoE of the end-
users running adaptive video streaming applications. In [8], the authors propose to adapt the video rate
based on client-side feedback of the buffered video time.

Multi-application optimization. Huang et al. [26] consider video streaming, voice over IP and data
services when optimizing radio resource management for mobile WiMAX systems. However, they
consider only the requested bandwidth per application and do not differentiate between different appli-
cation quality levels. In [27], the authors focus on cross-layer optimization between application layer
and medium access control layer. The application parameters are given by a generic mathematical
model for the Mean Opinion Score (MOS) as a metric for the perceived quality. Reis et al. [28] consider
video streaming, audio streaming and data services in a wireless mesh network. The authors’ proposed
multidimensional optimization tries to minimize the distortion across flows on wireless links under
given fairness constraints. In [29], the authors propose resource allocation for Long-Term Evolution
based on a particle swarm optimization while considering multiple applications.

Application-Layer Traffic Optimization. A protocol realizing the exchange of information between
network and application is standardized by the Internet Engineering Task Force Application-Layer
Traffic Optimization (ALTO) working group [30]. It aims at providing guidance to content delivery
applications such as peer-to-peer or content delivery networks, which have to select one or several
hosts or endpoints out of a set of possible candidates. Such appropriate candidates can be selected,
and the performance with respect to user-centric, network-centric and application-centric metrics can
be improved. Currently, several extensions of the ALTO protocol including data centres and cloud
applications are being discussed [31].

Data centre applications. More work on application-aware resource management has been con-
ducted in the context of data centre applications. Research on data centre architectures already shows
that combined solutions, for example, for traditionally separated mechanisms, such as routing and
service migration, may increase data centre efficiency. However, data centre applications are not end-
user applications as in access networks but run in isolated and manageable server farms. In general,
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the constrained environment of data centres enables the combination of these traditionally separated
mechanisms. Data centre application-aware solutions are also provided in [32–34].

In summary, there are many approaches in the literature that propose user-aware or application-
aware resource management. All related works, however, do not evaluate the impact of their algorithms
in a global fashion with different network loads or different application traffic mixes, that is, a variable
proportion of different applications on the network use. The reason for this is simple: modelling of the
problem and a theoretical abstraction are necessary, besides the practical use-case driven evaluations,
to be able to perform more extensive studies.

3. MODEL

In this section, we begin by describing the system of interest—a bottleneck link shared by multi-
ple users running either browsing or video streaming applications. Following the model, we define a
resource allocation objective for the network scenario. The symbols, which are used throughout this
work, are summarized in Table 1.

3.1. Network and applications

A bottleneck link l has a limited capacity C . While sharing the link, users are running either web
browsing applications, which we identify via w, or video streaming applications, which we identify
via v. Each application requests content of a certain size. The size of each application request is given
by sw and sv , respectively. Furthermore, a video also has a specific video length tv . All active web
flows and all active video flows build the set of active application flows A D ¹a1; :::; aN º. Each flow
may occupy a certain amount of the link’s capacity. The request times of the users for web w and for
video streaming v are modelled as Poisson processes, that is, they arrive with rates �w and �v .

To assess the performance of the applications in the given network, we evaluate specific key per-
formance indicators for each application [35,36]. In the case of web, the page load time of a web site
has the most dominant impact on perceived QoE [35]. Therefore, we consider the download time of
a web page as the key performance indicator of web browsing. For video streaming, there are several
well-known metrics and evaluation criteria: Structural SIMilarity (SSIM), Peak Signal-to-Noise-Ratio
(PSNR), number of stallings during playback and length of stalling periods. We investigate hyper-
text transfer protocol (HTTP) progressive video streaming in this paper. Objective metrics such as
SSIM and PSNR consider only the quality of each single video frame. This is valid and useful for live
streaming without buffering periods where image distortion can occur. For HTTP progressive video
streaming, the image quality itself is never impaired because of the use of the TCP. If the bandwidth

Table 1. Summary of used symbols for resource allocation problem formulation,
resource allocation algorithms and analytic performance evaluation model

Symbol Definition

A The set of active application flows
a 2 ¹v;wº An active video or web flow
S � A A subset of active flows

Sv; Sw; Sp The set of active video/web/prioritized flows

C Link capacity
q Allocated bandwidth

qa; qS ; qp Bandwidth allocated to flow/set of flows/set of prioritized flows
Nb Average video bit rate
�b Standard deviation of video bit rate

s Flow size
� Arrival rate
� Service rate
� Utilization
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is not sufficient, the video playback simply stops (stalling) and the picture freezes until the buffer is
refilled. According to [36,37], for HTTP progressive video streaming, stalling (i.e. playback interrup-
tions) is the most dominant factor of QoE, clearly exceeding the significance of video resolution as a
second impact factor. Thus, we investigate the buffering ratio, that is, the total stalling time ts divided
by the total video length tv , as a performance indicator of video flows.

3.2. Resource allocation

TCP is the dominant transport protocol for both application types. Because of TCP, all active applica-
tion flows A D ¹a1; : : : ; aN º may share the link capacity C equally. We assume that the share ratio
can additionally be influenced by a network algorithm, that is, a resource allocation policy, for each
flow ai 2 A or for each disjoint set of flows Sj � A. This means that there is the possibility of assign-
ing each flow ai a bandwidth qai with

PN
iD1 qai � C . Similarly, each set of flows Sj can be assigned

a bandwidth qSj , such that
P
Sj�A qSj � C . The bandwidth of a set of flows can be again shared

equally such that each flow aj 2 Sj has bandwidth qaj D
qSj
jSj j

.
Different application characteristics, usage behaviours and QoE factors have to be considered when

assigning bandwidths to the active flows. Thus, the problem on which we focus can be formulated as
follows: Find a mapping A ! R; ai ! qai , such that

PN
iD1 qai � C holds, and the average QoE

of all active flows ai ; i 2 ¹1; 2; : : : ; N º is maximized and fair in terms of the objective given by the
application type.

As described in Section 3.1, the key performance indicators of each application will be evaluated that
have a high correlation to the QoE. This means that a well-performing resource allocation algorithm is
supposed to achieve short download times for web flows and low buffering ratios for video streams.

4. RESOURCE ALLOCATION ALGORITHMS

This section introduces four algorithms aiming at an improved resource allocation in terms of perceived
QoE of the end-user. In the following, we take only two applications, that is, video streaming and web
browsing, into account.

4.1. Fixed bandwidth allocation for all video flows (FBV)

The FBV algorithm reserves a fixed bandwidth for video traffic as it is the more demanding application.
The reserved capacity qSv is a parameter that can be adjusted to reflect the actual traffic share of video
traffic.

Algorithm: All currently active flows are split into two sets, one set Sv containing all video flows
and one set Sw containing all web browsing flows. Sv is allocated a certain bandwidth qSv , which is
shared equally among all active video flows. This means that each video flow obtains a bandwidth of
qv D

qSv
jSv j

. Consequently, Sw is assigned qSw D C � qSv , which is also shared equally, such that each

web browsing flow receives qw D
qSw
jSw j

. In order to avoid starvation of web browsing, qSv has to be
smaller than C . If one of the two sets Sv or Sw is empty, the other set can share the whole link capacity
C among its flows. This means that qv D C

jSv j
if Sw is empty, and qw D C

jSw j
if Sv is empty.

Figure 1(a) illustrates the resource allocation of FBV for two video flows (v1 and v2) and one web
floww1. The video flows are sharing qSv equally, and the web flow receives the remaining capacityC�
qSv . In case one set Sv or Sw is empty, the applications share C equally, as illustrated in Figure 1(b).

4.2. Fixed bandwidth allocation for each video flow (FBF)

A fixed bandwidth can be reserved not only for the entire set of video flows (FBV) but also for each
individual flow. Thus, specific characteristics of each flow can be taken into account. In the perfor-
mance evaluation in Section 6, the reserved capacity qvi for a video flow ai will depend on video
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(a) FBV: Video flows share reserved data rate (b) FBV: Video flows share link capacity

Figure 1. Behaviour of FBV for two different cases in terms of number of application flows and types
of application flows

(a) FBF: Requested video rate does
not exceed overall reserved video rate 

(b) FBF: Requested video rate exceeds
overall requested video rate 

Figure 2. Behaviour of FBF for two different cases in terms of varying requested data rate by the
video flows

attributes such as its video bit rate bi . For example, for videos having CBR, the average video bit rate
(qvi D Nbi ) is allocated. In the case of videos that show a variable bit rate (VBR) behaviour, the aver-
age video bit rate plus its standard deviation (qvi D Nbi C �bi ) is assigned to additionally account for
bit rate variations of VBR content. However, different characteristics and bandwidth allocations could
also be used in this algorithm. Technically, the FBF algorithm also has to prevent starvation of web
browsing by reserving a minimum bandwidth qSw (parameter) and adjust the allocated bandwidths in
case more bandwidth than available is requested.

Algorithm: All currently active flows are split into two sets, one set Sv containing all video flows
and one set Sw containing all web browsing flows. Each active video flow ai 2 Sv can request a
certain bandwidth qvi . If the remaining available capacity qr D C � qSw �

P
aj2Sv

qvj � 0 (i.e., all
requests can be fulfilled), the remaining capacity qr is added to qSw . Each video flow ai is assigned
its requested bandwidth qvi , and all web browsing flows equally share qSw C qr . Thus, each web
browsing flow is assigned qw D

qSwCqr
jSw j

. In case qr < 0, more bandwidth is requested than available.

Therefore, all web flows equally share only their guaranteed minimum bandwidth (qw D
qSw
jSw j

), and
the capacity C � qSw is assigned to the video flows relatively to the requested bandwidths. Thus, each
video flow ai is allocated a bandwidth of q0vi D .C � qSw / �

qviP
aj2Sv

qvj
.

Figure 2(a) shows the bandwidth allocation in case that the requested video rates qv1 C qv2 � qSv .
The video flows use their requested data rate qv1 , qv2 , and the web floww1 uses the remaining capacity
qr . Figure 2(b) illustrates the case in which qv1Cqv2 > qSv . The video flows share the allocated video
capacity qSv according to their requested video rates.

4.3. Weighted bandwidth allocation for all video flows (WBV)

Another approach utilizes the service ratio between the two classes. The idea is that videos, in general,
require a multiple of the bandwidth needed for web browsing. Thus, there is a weight parameter wV >
1, such that each video flow is assigned a wV times larger bandwidth than a web browsing flow. In
contrast to FBV, there is no fixed separation between the resources of the two classes. Instead, the
resource distribution between the web class and the video class scales according to the number of
active flows.
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(a) WBV: Link share in case of two
flows (one web, one video)

(b) WBV: Link share in case of three
flows (one web, two videos)

Figure 3. Behaviour of WBV for two different cases in terms of number of video flows. Weight
wV D 2 for both figures

Algorithm: All active flows are split into two sets, one set Sv containing all video flows and one set
Sw containing all web browsing flows. Each active flow contributes to the calculation either weighted
(video) or normal (web). Thus, a video flow is assigned a bandwidth of qv D C �

wV
wV �jSv jCjSw j

, whereas

a web browsing flow will be allocated qw D C � 1
wV �jSv jCjSw j

. This in turn results in a total link share
with qSv D jSvj � qv and qSw D jSw j � qw as C D qSv C qSw .

Figure 3(a) shows the behaviour of the WBV algorithm with weight wV D 2. As there are two
flows sharing the link, the sharing ratio between v1 and w1 is 2 W 1. Figure 3(b) illustrates the case in
which an additional video flow is on the link. Here, each video flow acquires 2/5 of the link capacity
C , whereas w1 acquires 1/5 of the link capacity C .

4.4. Dynamic bandwidth allocation for each video flow (DBF)

In contrast to the aforementioned described resource allocations, which are based on flow types or flow
characteristics, also dynamic bandwidth allocation based on current application information is possi-
ble. In particular, the buffer fill of video flows is used in this work. Thereby, the short-term flexibility
introduced by the buffer can be utilized, and struggling flows can be helped to avoid stalling, which
is the worst QoE degradation for video flows. The strategy relies on an equal sharing of the capacity
among all flows. Video flows that have a low buffer level (below a threshold tl ) will be added to a spe-
cial set Sp of flows, which can utilize a reserved bandwidth fraction qp . qp is a parameter, which has
to be configured by the network operator in order to adjust the extent of prioritization. This prioritiza-
tion shall help to fill the buffer. If the buffer usage exceeds a threshold th, the video flow is removed
from Sp . Note that multiple video flows may be prioritized simultaneously.

Algorithm: All active flows are put into a set Su in the beginning. Additionally, an empty set Sp
is defined for prioritized flows, and a bandwidth qp is reserved for that set. For each video flow, the
playout buffer is monitored. If the playback buffer falls below the lower threshold tl , the flow is moved
from Su to Sp . If the playback buffer of a flow in Sp is above the high fill threshold th, it is moved
back to Su. All prioritized video flows share qp equally, that is, qvp D

qp
jSp j

. All other flows (i.e. web
browsing flows and non-prioritized video flows) equally share the remaining bandwidth. This means
that the bandwidth allocated to non-prioritized video flows is qvu D

C�qp
jSuj

, or qvu D
C
jSuj

if Sp is

empty. Web browsing flows are never prioritized and thus always receive qw D
C�qp
jSuj

, or qw D C
jSuj

if Sp is empty.
Figure 4(a) illustrates the case in which the playback buffer of all videos is greater than tl . All flows

share the available capacity C equally. Figure 4(b) shows the case in which the video flow v2 is added
to the set Sp . As in this case, only the buffer of v2 is below the threshold tl , and v2 receives all the
allocated capacity qp . All other flows, that is, w1 and v1, share the remaining capacity C �qp equally.

5. EVALUATION METHODOLOGIES AND SCENARIO

In Section 5.1, we introduce the analytic approach that can be used to evaluate the performance of
FBV, FBF and WBV. In order to analyse DBF, we provide a simulation that is described in Section 5.2.
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(a) DBF: All video flows have a
buffer level higher than tl

(b) DBF: One video flow gains
a higher priority

Figure 4. Behaviour of DBF for two different cases in terms of current state of the video applications

In Section 5.3, the investigated scenario is outlined; details about the video encoding, average bit rates
and so on are given.

5.1. Analytic approach

We model the access link as a birth–death process with a single server and model its utilization vari-
ations as a stationary process of singular and independent arrivals of traffic. This means that flows
enter the system, they are served with a certain download bandwidth and they leave the system after
the download is finished. For mathematical tractability, we consider Poisson arrivals with rate � and a
negative exponentially distributed job size (i.e. video or web page size) with mean s, which gives the
service rate � D C

s
. Thus, the model for normal TCP behaviour without any resource allocation pol-

icy, which shares the capacity equally among all flows, is described by a M/M/1 queue with processor
sharing policy (M/M/1-PS). To account for different application usage, we use different arrival rates
�v; �w and mean job sizes sv; sw for video streaming and web browsing.

This two class M/M/1-PS model is a special case of the more general discriminatory processor
sharing (DPS) model described in [17]. Following the work of [16], it is possible to find the conditional
average response times V.�/ for each class depending on the job size � . Thus, for any given web page
size or video size, the average download time can be given. As Vv.�/ consists of the video length
(depending on video size � and video bit rate) and the stalling time, the average stalling time should be
definable. However, as we are not interested in a single user request, but in the situation in the whole
network, we analyse the unconditional average response times V , for which we have

Vv D
1

�v.1 � �/

Vw D
1

�w.1 � �/

(1)

where � D �v C �w D
�v
�v
C �w

�w
. Note that Vv does not allow for a computation of average stalling

times, as video bit rate distributions have to be taken into account. Thus, here (and for all resource
allocation strategies), we follow a simulation approach as described in Section 5.2 to obtain more
detailed results.

The WBV strategy corresponds to the previously described more general DPS model, in which each
class is assigned a weight that controls the division of processor capacity. Thus, using the weight w for
allocating w times larger bandwidth to videos than to web pages, we can use the generalized results
from [16]:

Vv D
1

�v.1 � �/
.1C

�v�w.1 � w/

w�v.1 � �v/C �w.1 � �w/
/

Vw D
1

�w.1 � �/
.1C

�w�v.w � 1/

w�v.1 � �v/C �w.1 � �w/
/

(2)
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The FBV and FBF are best described by the generalized processor sharing model in which each
request or class of requests receives an arbitrary service rate. Thus, FBV can be described by a model
with two classes, one for video and one for web pages. From the work of [38], stationary joint dis-
tributions can be obtained, but no closed form for the conditional response times is given. However,
numerical results can be obtained by solving the steady-state equations of the FBV model. FBF can
be modelled by a single class for each video and one class for all web pages, which enlarges and com-
plicates the FBV model such that we did not conduct an analytical performance evaluation. DBF is
a dynamic strategy prioritizing flows depending on current playback buffers, so no analytical model
can be provided. Therefore, our analysis of FBF and DBF will be based on results of the simulation
runs only.

5.2. Simulation

To confirm the analytic findings on the average download times, to obtain more detailed results, and
to evaluate the strategies for which no analytic approach is present, we follow a simulative approach
based on the analytic model. The streaming of videos and the download of web pages over a single link
is simulated with a Java discrete-event simulation. Again, a single link has a fixed capacity C , which is
shared among all application flows of the users in the system. The streaming is implemented such that
different flow control (i.e. bandwidth allocation) strategies can be applied. Each run simulates the link
utilization slightly more than one day. The arrivals of both video and web page requests follow Poisson
processes with rates �v and �w , respectively. The size of videos sv and web pages sw is exponentially
distributed. With video streaming, the stalling of each video depends on the download bandwidth,
video bit rate and buffering strategy. The average video bit rate Nb is exponentially distributed. For the
simulation of variable bit rate videos, the video is split in chunks of 2 s playtime. The bit rate of each
chunk is different, but constant bit rate was assumed within a chunk. For the varying chunk bit rate, we
use a simple auto-regressive model, which can accurately model videos without scene changes [39].
Note that, in practice, higher variations may occur if the video content is composed of several scenes,
which can negatively affect the presented results. For each video, a playout buffer is maintained, and
a simple buffering strategy is adopted: stalling of a video begins when the playout buffer is empty,
and playback resumes after 5 s of playtime are in the buffer. Thus, not only the resulting video and
web page download times but also stalling times can be obtained. In the performance evaluation, the
buffering ratio, that is, the ratio of stalling time and playback time, will be used. An initial delay of
2 s was chosen as it provides some time to pre-buffer video data without significantly deteriorating the
perceived quality [40].

5.3. Evaluation scenario

The aim is to investigate a recently new emerging scenario with progressive video streaming. We use
the observations of [41] for our evaluations and additionally investigated the sizes of 50 randomly
downloaded videos and web pages, respectively. In detail, we focus on 360p flash videos, which is the
current default quality for YouTube videos on smartphones. According to [41], the average encoding
bit rate of 360p YouTube videos is Nb D 0:5Mbps. Furthermore, we measured a mean video clip
length of 110 s. Therefore, we define sv D Nb � video clip length D 6:87MB. To align the simulation
and the analytical approach, we model the video size as a random variable following an exponential
distribution with the reciprocal of sv as rate parameter. Each video is divided into chunks with random
sizes, which again follow an exponential distribution with the reciprocal of 2s � Nb as rate parameter.
Only the last chunk is cropped to reach the desired video size. The size of a web page is exponentially
distributed with a mean of sw D 1:3MB. For the performance evaluation, we simulate one link with
capacities of 5, 10 and 20 Mbps and a maximum of 50 flows.

6. PERFORMANCE EVALUATION AND INSIGHTS

This section presents the results of the performance evaluation of all algorithms of this paper. In partic-
ular, we start with investigating for which scenarios an active resource scheduling for a link is needed,
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that is, for which level of network use a resource scheduling may improve the quality of the appli-
cations. Based on this observation, the algorithms are evaluated analytically and with simulation for
different traffic mixes, that is, for different sharing ratios between web and video flows for a partic-
ular network use. Finally, we provide an overview of all algorithms and differentiate their trade-offs
between the quality of web and video traffic. Note that the following plots contain confidence intervals
for 95% confidence level.

6.1. Situation in current networks without resource management

To motivate why an application-aware resource management is needed, the performance of all network
flows in terms of QoS parameters is presented and then linked to the actually perceived quality of each
application. The results allow us to state that pure network parameters may not show any performance
issues, whereas looking at the application parameters reveals dramatic performance degradation.

6.1.1. Best-effort networks
As described in Section 3, it is assumed that with TCP, all flows share the available link capacity
equally. This means that every flow obtains the same bandwidth share. Figure 5 shows the normalized
download time of 1 MB for different capacities and network loads. Both the results of the analyt-
ical model and the simulation of Section 5 are presented. First, it can be seen that the analytical
model closely resembles the simulation as the analytical model results fall within the 95% confidence
intervals of the simulation. Second, for a given network load, a higher link capacity leads to lower
average download times. Third, confirming the analytical model in equation (1), when the network
load increases towards 1, the time to download data grows hyperbolically. This leads to unacceptable
download times that are commonly avoided in most networks by over-provisioning.

6.1.2. Application performance
Although the general results of Section 6.1.1 hold, different applications have different requirements
to the network. Thus, also the changing of network parameters has a different impact on the quality of
the various applications. This holds especially for the two considered applications in this work, that is,
video streaming and web browsing. Therefore, we analyse application inherent parameters that have a
high correlation with the user-perceived quality of the application as described in Section 3.1. These
key performance indicators are download time of a web page for web browsing and buffering ratio for
video streaming.

Figure 5. Normalized download time of 1 MB in best-effort networks
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(a) Network load vs. download rate video. (b) Buffering ratio.

Figure 6. Video application performance in best-effort networks

Figure 6(a) compares the download rate r at different link capacities and loads for videos with an
average encoding rate of 0.5 Mbps. It shows that the download rates decrease linearly when network
load increases. The download rate has to be at least as high as the average video rate to guarantee a
video playback without interruptions. It can be seen that a 5 Mbps link can provide such download
rates up to a load of 0.9. Higher link capacities can even guarantee smooth playback for higher loads.
However, this is only true for constant bit rate (CBR) videos where the download rate does not fluc-
tuate. Currently deployed streaming applications apply pre-buffering of video content and use video
encoding with VBR, which may result in different video performance. For example, with VBR, the
network requirements of the video can vary over time, but the use of the buffer can overcome certain
load peaks. Therefore, this behaviour was emulated in the previously presented simulation as described
in Section 5.2. Figure 6(b) shows the simulation results for the average buffering ratio of VBR videos
for different capacities and network loads. It can be seen that, in contrast to CBR, stalling of videos
with slightly varying bit rate can occur already with loads around 0.7 and above. Consequently, the
benefits of resource allocation strategies in high load scenarios will be investigated in the following.

6.2. Performance evaluation of resource management algorithms

This section evaluates the resource management algorithms, which were presented in Section 4. In this
section, if not stated otherwise, results for a link capacity of 10 Mbps and a network load of 0.9 are
shown. Note that this is the load of a best-effort system (M/M/1-PS) with given arrival rates �v; �w , job
sizes sv; sw and capacity C (cf. Section 5), which is also used for the systems that apply the different
resource allocation algorithms. Nevertheless, this general approach can also evaluate situations with
different network parameters.

This analysis investigates the key QoE influence factors of the two considered applications, web
browsing and video streaming. As the performance of a given resource management algorithm depends
not only on application characteristics but also on their popularity in the network, the traffic mix ( �v

�w
)

is introduced. For example, a traffic mix of �v
�w
D 2 means that on average, there are two times more

video downloads than web page downloads over the link.

6.2.1. FBV
The FBV strategy reserves a certain share of the capacity to video flows. The challenge, however,
is the selection of the right prioritization settings. If too much bandwidth is allocated for video, the
download time of web pages is considerably affected. If the reserved rate is too small, the video may
stall and the prioritization is useless. Therefore, several fixed allocations ranging from qSv D 0:3C up
to qSv D 0:9C are simulated. Figure 7(a) depicts the analytical and simulative results of the average
download time of a web page for a fixed network load � D 0:9 and varying traffic mixes. It can be
seen that the download times in a best-effort network are 9 s on average for each traffic mix. On the
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(a) Download time of web pages. (b) Buffering ratio of video flows.

Figure 7. FBV: Fixed bandwidth reservation qSv for all video traffic at a load � D 0:9

left side of the dashed vertical line, more web page downloads are on the link. The plot depicts that
an increased bandwidth allocation generally increases the web page download times as videos are in
the system, which leave little resources for the web page downloads. When the traffic mix increases
towards 100 D 1 and beyond, this effect is mitigated because less web pages are in the system. Thus,
they are not penalized to such a large extent as the bandwidth share becomes more aligned to the traffic
share. In the rightmost part of the figure, only few web flows are in the system. They can then use the
remaining (i.e. not reserved for videos) capacity almost exclusively, which stems from but also leads to
short download times. For the analytical M/M/1-GPS model, the mean number of users in the system is
obtained from the state probabilities. Little’s theorem is used to compute the mean delay in the system,
which is equal to the mean service time in a processor sharing system. As can be seen in the plot, the
simulation runs are approximated very well by the analytical model. Thus, also the analytical model
can be used for the performance evaluation.

Figure 7(b) shows the exactly same situation from the perspective of video flows and depicts the
average buffering ratio for different traffic mixes and different bandwidth allocations. Again the best-
effort performance (cf. Figure 6(b)) is shown as a base value. In the rightmost part of the figure, it can
be seen that the buffering ratio converges towards the best-effort performance for any prioritization.
This can be explained by the fact that web flows are seldom in the system and for short times only. This
means that there are many videos that compete most of the time only among themselves, which leads
to a best-effort behaviour. In the left part of the plot, video flows are more seldom in the system but
have no problems because of the bandwidth allocation. In general, a higher bandwidth allocation leads
to smaller buffering ratio with traffic mixes below 1. Only in the case of qSv D 0:3C is the allocation
not sufficient as the buffering ratio is higher than the best-effort base line. This again shows the need
for careful selection of the right allocation parameter. The trade-off between the optimization of the
two applications will be further discussed in Section 6.3.

6.2.2. FBF
The difference of FBF compared with FBV is that it allocates bandwidth to individual video flows. As
described in Section 4, two allocations are investigated. First, each video is assigned its average bit
rate, and second, each video is assigned its average bit rate plus standard deviation to account for bit
rate variations (VBR content). Figure 8(a) shows the average download times of web pages for both
allocations. For comparison, selected FBV performances (qSv D Œ0:3 0:6 0:9�C ) are depicted in grey.
Obviously, it can be observed that the FBF download times increase if the traffic mix increases. This
is because more and more video flows are in the system, which request bandwidth; hence, the reserved
bandwidth for video, which is unavailable for web page downloads, adds up.

Figure 8(b) shows the buffering ratio of the video flows in the same scenario. It can be seen that the
average video bit rate allocation is not sufficient as it cannot avoid stalling of VBR videos. However,
the allocation of average video rate plus standard deviation performs quite well for traffic mixes below
1 where it almost completely avoids stalling. When more video flows are in the system, the reservation
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(a) Download time of web pages. (b) Buffering ratio of video flows.

Figure 8. FBF: fixed bandwidth reservation for each flow with either average bit rate or average bit
rate plus standard deviation at link load � D 0:9

of the videos exceeds the available capacity. Thus, each video receives a share relative to its request,
which leads to increasing buffering ratios and consequently bad performances of the video streams.
With increasing traffic mix, it performs better than all FBV algorithms, which use an equal share
policy if too many videos are in the system, as the relative sharing of bandwidth is better aligned to the
demands of the video flows.

6.2.3. WBV
The WBV strategy assigns a weight wV to each video flow such that it receives a wV times larger
bandwidth than a web flow. Figure 9(a) shows the results of the analytic DPS model (cf. equation (2) in
Section 5) and of the simulation runs. It can be seen that the analytic model and the simulation results
are well aligned, especially for smaller values of wV . Moreover, a larger wV increases the download
time, as web flows receive less bandwidth compared with video flows for any traffic mix. Only for
large weights and large traffic mixes does the bandwidth given to web flows become almost arbitrarily
small, which leads to a fast increase of download times.

The buffering ratio in the same scenario can be seen in Figure 9(b). The video flows benefit from
WBV with wV > 1 in case of traffic mix below 1. If more video flows are in the system, the effect
reduces and the buffering ratio again converges towards that of best-effort networks (equal sharing).
It can be seen that WBV is suitable to align bandwidth allocation to the flow sizes by choosing an
appropriate weight wV for the given traffic mix. As the resulting resource allocation also accounts for
the number of flows, it can significantly reduce buffering ratios for video flows while only slightly
increasing the download time of web pages. Again, trade-offs between the two applications have to be
taken into account and are further investigated in Section 6.3.

6.2.4. DBF
The results presented so far showed the performance of resource allocation algorithms in which a
parameter was set statically for each flow. This means the bandwidth allocation changed only depend-
ing on the current number of flows and the respective parameters. In contrast, DBF is a dynamic
resource allocation strategy, which prioritizes a video flow if its buffer fill is below a threshold tl and
de-prioritizes it once its buffer level has passed a threshold tu. For the performance evaluation of DBF,
the prioritization bandwidth qp , which can be utilized by suffering video flows, is set to qp D 0:9 � C ,
and the thresholds are set to tl D 10 s and tu D 20 s. Figure 10(a) shows the performance of DBF
(dashed) and compares it with WBV (solid), which showed a decent performance with respect to
both traffic classes. It can be seen that the download time of web pages is highest for an equal traffic
mix. The more the traffic mix becomes imbalanced (either more videos or more web pages are in the
system), the download time improves and comes close to the best-effort situation.

The video flows, on the other hand, face a significant performance improvement, which is depicted in
Figure 10(b). If there are many video flows in the system, the buffering ratio is worst but still converges
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(a) Download time of web pages. (b) Buffering ratio of video
flows (exponential  fits).

Figure 9. WBV: weighted bandwidth reservation for all video traffic with weight wV at link load
� D 0:9

(a) Download time of web pages. (b) Buffering ratio of video flows.

Figure 10. DBF: dynamic bandwidth allocation for each video flow based on buffer fill at link load
� D 0:9

to the best-effort situation. However, if there are less videos in the system, the buffering ratio is much
smaller than without resource allocation strategy. It can be seen that DBF supports video flows even
better than WBV with a high wV > 5 but at the same time does not penalize web flows too much.

To sum up, DBF has been shown to effectively reduce stalling for traffic mixes �v
�w

< 2. But
although DBF is a video prioritization algorithm, it only slightly increases the download time of web
pages. Thus, DBF ranges among the best investigated algorithms especially taking balanced and fair
behaviour into account. However, it has to be noted that the influence of the parameters qp; tl and tu
was not investigated in this work and is thus still open. Moreover, the gain of dynamic allocation
based on application state comes with the cost for monitoring and signalling application information
to the resource management entity. The trade-offs for this additional cost will also be investigated in
future work.

6.3. Comparison of the different strategies

After presenting the performance of each individual algorithm, we conduct a Pareto analysis to
compare how the different strategies influence the QoE in our scenario. Therefore, the two QoE per-
formance indicators, that is, download time for web flows and buffering ratio for video streams, are
used as axes for the Pareto plot in Figure 11. The best-effort performance (mean download time 9.04 s,
mean buffering ratio 0.058) is depicted by a red cross and serves as a reference. Similarly, the Pareto-
optimal performances of the algorithms for a given traffic mix are marked in the plot. We distinguish
five different traffic mixes by coloured lines ranging from 0.1 (black), that is, ten times more web flows
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Figure 11. Overview of Pareto-optimal performances for different traffic mixes

than video flows, over 1 (light brown), that is, the same amount of web and video flows, to 5 (yellow),
that is, five times more video flows than web flows. Note that only the marked points are Pareto-
optimal algorithm performances; the lines connecting the points, which belong to the same traffic mix,
however, are only for visualization purposes and do not indicate the location of other Pareto optimal.
The marker shape of the Pareto-optimal points represents the type of algorithm, which achieved the
respective results.

The Pareto-optimal performances, that is, performances, in which it is impossible to improve in
one dimension without deteriorating the other dimension, are either below or left of the best-effort
performance. This means the usage of any of the resource allocation algorithms does improve the per-
formance at least in one dimension. It can be seen that especially WBV algorithms can be used to
optimize the web page download time, whereas FBF and DBF achieve minimal buffering ratios. The
most interesting part is the bottom left grey shaded box, which indicates an improvement for both web
and video flows. The marker shapes indicate that WBV and FBV algorithms can achieve such perfor-
mances when they use the right parameter for the given traffic mix. Note that the specific algorithm
parameter for a Pareto optimum is not given in this plot but can be obtained from the respective plots
in the previous sections.

7. CONCLUSION

This work presented new methods that allow analysing application-aware resource management ana-
lytically and with simulation. Application-aware resource management aims at improving not only
network’s resource efficiency but also users’ satisfaction, that is, the application QoE of users. To count
for varying traffic situations, a joint optimization of two application types, namely, web browsing and
video streaming, is considered, which has not yet been investigated by the research community. With
the proposed methods, network operators can quantify performance gain trade-offs between invest-
ing in pure capacity increase (over-provisioning) and the realization of application-aware resource
management approaches.

This work proposed a model for the application-aware resource management problem and discussed
four algorithms for resource management. The algorithms vary in complexity and implementation lev-
els in order to cover the design space of application-aware resource management. In order to evaluate
the performance of the algorithms, analytical models based on processor sharing queues (M/M/1-PS)
were presented if possible. Moreover, a discrete-event simulation was implemented in Java to assess
all algorithms.

Furthermore, a first study of application-aware resource management approaches of this paper pro-
vides configuration guidelines for the selection and configuration of the considered algorithms. The
results of the study show that it is possible to improve the quality of all applications compared with
best-effort transmission. This means that for specific traffic mixes, it is possible to obtain a significant
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gain in network resource use compared with simple best-effort transmission while still having a low
implementation complexity. In case of more complex, that is, more dynamic algorithms, the applica-
tion quality of videos was significantly improved. Based on all analysis, operators have the possibility
to set up a resource management according to their objectives and traffic situations of their networks.
Such an analysis in terms of quality of experience and varying traffic conditions has not yet been
considered in the literature.
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