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Topological soliton-polaritons in 1D systems of
light and fermionic matter
Kieran A. Fraser1 & Francesco Piazza1

Quantum nonlinear optics is a quickly growing field with large technological promise, at the

same time involving complex and novel many-body phenomena. In the usual scenario, optical

nonlinearities originate from the interactions between polaritons, which are hybrid quasi-

particles mixing matter and light degrees of freedom. Here we introduce a type of polariton

which is intrinsically nonlinear and emerges as the natural quasi-particle in presence quantum

degenerate fermionic matter. It is a composite object made of a fermion trapped inside an

optical soliton forming a topological defect in a spontaneously formed crystalline structure.

Each of these soliton-polaritons carries a Z2 topological quantum number, as they create a

domain wall between two crystalline regions with opposite dimerization so that the fermion is

trapped in an interphase state. These composite objects are formally equivalent to those

appearing in the Su-Schrieffer-Heeger (SSH) model for electrons coupled to lattice phonons.
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Hybrid systems involving photons and neutral atomic gases
have emerged as ideal platforms for nonlinear quantum
optics1, characterized by effective interactions between

photons even at very low light intensities. This realm of optics
offers interesting possibilities for quantum technologies, as optical
nonlinearities at the single-photon level would facilitate quantum
information processing with light, the latter being at the same
time an ideal information carrier2. Moreover, an ensemble of
photons and atoms interacting at the level of single quanta is an
intriguing many-body system that has recently attracted a lot
of interest1,3.

In such systems, the low-lying excitations are polaritons, which
emerge as long-lived quasi-particles. In the usual scenario,
polaritons are a linear superposition of non-interacting photonic
and atomic excitations, while the optical nonlinearities of the
system are generated by the interactions between polaritons
inherited from the atoms.

Here we show that a different situation can arise, where a new
type of long-lived hybrid quasi-particle emerges. This type of
polariton is not a linear superposition of non-interacting atomic
and photonic degrees of freedom, but rather a result of the optical
nonlinearity of the system in the presence of an atomic Fermi
surface. It is a composite object made of a fermion trapped inside
an optical soliton forming a topological defect in an emergent
crystalline structure.

Results
System and phenomenology. Such a crystalline structure appears
when a degenerate cloud of fermions is coupled to the propa-
gating modes of an optical waveguide in the configuration of
Fig. 1 (crystallization in optical waveguides has been studied only
for classical particles so far4,5). In this (quasi-) one-dimensional
(1D) configuration, the fermionic cloud is unstable toward den-
sity modulations with wavenumber equal to twice the Fermi
momentum kF—analogous to the Peierls instability known since
the 1950s in the context of solids6—so that photon-mediated
Umklapp scattering of atoms between the Fermi points
(momenta of ±kF) induces crystallization. This scenario has been
considered for fermionic atoms coupled to a single standing-wave
mode of an optical resonator7–10. The effect of a sharp Fermi
surface is, however, much more prominent in the presence of

multiple electromagnetic modes, as is the case in a confocal
cavity11 or for the continuum of propagating modes of an optical
waveguide that we consider here. First, provided that 2kF is
included in the wavenumbers of the waveguide’s electromagnetic
modes, the instability toward crystallization will be always present
even at vanishing coupling, differently from the single-resonator-
mode case. Second, spatially ordered fermionic patterns coupled
to multimode fields are sensitive to commensurability effects, and
the resulting structures can accommodate hybrid light–matter
defects as low-lying excitations. As we show here, the latter
consist of a fermion trapped in an interphase state located at a
solitonic deformation of the electromagnetic potential. The
optical soliton separates two regions of the crystal with opposite
dimerization and therefore carries a Z2 topological quantum
number. Its size is set by the inverse Fermi momentum. As
anticipated above, these light–matter defects constitute a novel
type of polariton that exists only in the presence of optical
nonlinearities. Indeed, in order to create this type of excitation,
the fermion has to be transferred to the interphase state, which
itself can only be created via the formation of an optical soliton,
i.e., an intrinsically nonlinear process.

In a specific parameter regime that we identify, our system is
formally described by the continuum limit of lattice
electron–phonon models, more specifically the Su–Schrieffer–
Heeger (SSH) model12–15. The combination of its simplicity and
its hosting of topologically protected states has as of late inspired
much interest in the SSH model. There have been a number of
synthetic implementations in a variety of different systems, such
as cold atoms in optical lattices16–18, chains of Rydberg atoms19,
semiconductors20, granular particles21, resistor–inductor–
capacitor (RLC) circuits22, and microring resonators23. As
opposed to the above implementations, the system we consider
here features an additional ingredient that is crucial for the
emergence of topological defects as the low-lying excitations,
namely, a dynamical lattice which is self-consistently modified by
the particles, as in the original SSH model (see also a recent
proposal with atoms and two-level systems24). Beyond a standard
quantum-nonlinear-optics perspective, the set-up proposed here
thus also offers a means to further explore the interplay between
topology and interactions in a controlled hybrid set-up involving
light and matter degrees of freedom.

Model. We consider a degenerate Fermi gas (FG) of N laser-
driven neutral atoms interacting with the multimode radiation
field of an optical waveguide in the configuration of Fig. 1. The
internal atomic transition between the ground state manifold to
the excited electronic state is driven by a pump laser of Rabi
frequency Ω and frequency ωL and coupled with rate gk with the
waveguide’s electromagnetic-field modes. The latter we separate
into a series of running guided modes denoted by ηk= eikx. We
work in the regime of large atomic detuning δA= ωL− ωA, where
the population of the excited state is negligible and spontaneous
emission is suppressed, so that the excited atomic state can be
adiabatically eliminated. Using the rotating-wave and dipole
approximations, the Hamiltonian in the frame rotating at the
pump frequency reads

Ĥ ¼ �P
k
δkâ

y
kâk

þ P
σ¼f";#g
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dxψ̂y

σðxÞð� �h2
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Fig. 1 Pictorial representation of the system. A (quasi-) one-dimensional
cloud of fermionic atoms (blue spheres) is transversally driven by a
coherent laser and is coupled to a set of guided modes. The corresponding
light intensity (including the homogeneous background) is shown as a dark-
yellow surface with a transverse exponential damping indicating the guided
nature of waveguide modes (arrows indicate the propagation direction of
the guided modes). The situation shown corresponds to the presence of a
light–matter defect at the center where an optical soliton traps an excess
particle (red circle). The optical soliton connects two spatially ordered
regions with different dimerization. The inset shows the atom internal level
structure (spacings not to scale) together with the dispersion of the guided
electromagnetic modes. The laser frequency is ωL, and its Rabi frequency is
denoted by Ω
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The spin degree of freedom for the fermions indexed by σ can be
introduced using hyperfine levels within the ground-state mani-
fold. We assume an external trapping potential that restricts the
atomic motion to along the waveguide axis, x, such that the
momentum transfer via photon scattering between atoms is due
entirely to the photons propagating along this axis. Corre-
spondingly, we take the pump spatial mode function ηΩ= 1, i.e.,
constant in space over the transverse extension of the atomic
cloud. The spatially homogeneous Stark shift resulting from the
pump, as well as the homogeneous component of the light scat-
tered from the atoms, can be absorbed in the chemical potential.
We approximate the dispersion of the guided modes to be
quadratic so that ωk= ω0+ wk2. The ground-state fermionic
annihilation operator is labeled ψ̂ and satisfies the canonical
anticommutation relation fψ̂ðrÞ; ψ̂yðr′Þg ¼ δðr� r′Þ. The
detuning of the pump from the waveguide field mode of wave-
number k is denoted by δk= ωL− ωk. Since the dipole coupling g
scales like 1=

ffiffiffi
L

p
with L the length of the waveguide, it is con-

venient to define couplings that are intensive in the thermo-
dynamic limit N, L→∞, N/L= n= const.: λk ¼ Ωgk

ffiffiffiffi
N

p
=ΔA and

U ¼ g2kN=ΔA. The nonlinear coupling U can be arbitrarily sup-
pressed by choosing Ω � gk and will be neglected in what
follows.

In order to compute the phase-diagram, low-lying excitations
and optical response, we formulate the problem within a path-
integral formalism8,10,25,26, as described in the Supplementary
Material, Note 1.

Crystallization into an insulator. In Fig. 2a, we show the spectral
function Aðω; kÞ ¼ �2Im

R
dt expð�iωtÞiθðtÞh½âkðtÞ; âykð0Þ�i of

the system in the spatially homogeneous phase (see Supplemen-
tary Note 2). The spectral function features an almost constant
value within a region corresponding to the particle–hole con-
tinuum characterizing the 1D FG. In addition, two sharp bran-
ches are present, indicating the existence of two long-lived
polaritonic quasi-particles: a photon-like polariton branch with a
renormalized waveguide dispersion, and an atom-like polariton
growing out of the fermionic particle–hole continuum. Differ-
ently from the topological soliton–polaritons which will appear in
the crystalline phase that we describe next, the polaritons in the
spatially homogeneous phase are linear excitations visible in the
spectral function A(ω, k), which indeed characterizes the linear
response of the system. At zero temperature, the spectral weight
from the continuum around twice the Fermi momentum is finite
down to zero frequency, where the density response diverges, and
the ultracold gas is rendered unstable to density modulations
corresponding to Q= 2kF. In fact, the critical coupling above
which a given momentum component Q becomes unstable reads
(see Supplementary Note 2) λ2cðQÞ ¼ �nδQ=2Πð0;QÞ, where Π
(ω;Q) is the dielectric (or Lindhard) function describing the
density response of the FG. The latter diverges logarithmically at
zero temperature in 1D for Q→ 2kF= πn due to resonant
Umklapp scattering between ±kF. The critical coupling takes
indeed the form λc(Q) ~ 1/ln|1−Q/2kF|−1. The resulting phase
diagram of the system is shown in Fig. 2b.

An analogous instability was described by Peierls for electrons
coupled to lattice phonons6. Differently from the Peierls
instability in lattice models, where the lattice constant of an
already-present lattice is doubled, the instability of our homo-
geneous system (where the relevant fermionic excitations are
right(left) movers as shown in the inset of Fig. 3a) toward a 2kF
modulation spontaneously breaks the translation invariance
exhibited by the continuous U(1) symmetry of the Hamiltonian
(1): x→ x+ a with a a real constant. For U= 0, there is an

additional symmetry of our theory emerging at low energies, i.e.,
in the vicinity of the Fermi surface (see next section). It is a Z2

symmetry involving a particle–hole ψ̂ðxÞ ! ψ̂ðxÞy plus a parity
âðxÞ ! �âðxÞ transformation, with âðxÞ ¼Pk ηkðxÞâk. This
symmetry plays a crucial role in the spatially ordered phase.
Indeed, in breaking the continuous spatial translation invariance
the system additionally breaks the above Z2 symmetry by
choosing between one of two possible dimerizations, i.e., by
choosing either the odd or the even sites of the 2kF optical lattice.
The two dimerizations in this system are directly analogous to
those in the SSH model. The spatially ordered phase is an
insulator since the 2kF modulation gaps out the Fermi surface (see
the inset of Fig. 3b).

The finite energy cost for exciting fermions into the conduction
band leaves space for the appearance of lower-lying excitations,
the latter necessarily involving lattice distortions, i.e., being of
polaritonic nature. As we show below, such distortions corre-
spond to solitonic defects localized between two different Z2

dimerizations of the optical lattice that traps a fermion in the
resulting bound state (see Fig. 1). The solitons thus have to carry
either one of two topological quantum numbers related to the Z2

symmetry. The results we present in what follows are obtained
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Fig. 2 Spectral response and phase diagram of the system. a Spectral
function A(ω; Q) of the photons in the spatially homogeneous phase as a
function of rescaled frequency ω/2EF and momentum Q/kF. The
parameters are λ= 0.2, ωk−ωL= 0.1+ 0.125k2. Note the presence of the
photon-like polariton peak cutting the frequency axis at ω/2EF= 0.1 and the
atom-like polariton breaking off from the particle–hole continuum as a
separate, well-defined mode, which then rejoins the continuum and begins
to broaden. b Phase diagram of the system as a function of the rescaled
temperature T/EF and coupling strength λres ¼ λð2kFÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2νkF=nδ2kF

q
. At

T= 0, the critical pump strength vanishes and the system undergoes a
phase transition from the Fermi gas (FG) to the crystalline insulator (CI)
phase even at vanishing coupling
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within a low-energy description of our system, which we
introduce next.

Low-energy theory. The low-energy theory is obtained by con-
sidering atomic degrees of freedom only in the vicinity of the
Fermi surface, thereby linearizing the dispersion around ±kF.
Correspondingly, the electromagnetic field must be restricted to
momentum components around Q= ±2kF, i.e., those modes
responsible for Umklapp scattering. With these restrictions, the
effective low-energy action in the Matsubara imaginary-time
formalism8,25 becomes S= Sa+ Sph+ Sa/ph (see Supplementary
Note 3) where:

Sa ¼
R
dx
R
dτ
P

σ¼";#
Ψy

σð∂τ � ivF∂xσ3ÞΨσ ;

Sph ¼
R
dx
R
dτΔ�ð

ffiffi
n

p
2λ ∂τ þ ~δ2kFÞΔ;

Sa=ph ¼
R
dx
R
dτ
P

σ¼";#
Ψy

σσ1diagðΔ�;ΔÞΨσ

ð3Þ

are the atomic, photonic, and interaction elements of the action,
respectively, and we have introduced the spinor Ψ(x)= (u(x), v
(x))T with u(v) denoting a fermionic right(left) mover:
ukðvkÞ ¼ ψkþkF

ðψk�kF
Þ. These are coupled by the electromagnetic

field components, which are expanded in momentum space about
Q= 2kF so that Δq corresponds to the value of the photon field at
momentum q relative to 2kF: Δq ¼ a2kFþq. At low energy, we have
assumed λk≃ λ and rescaled ð2λ= ffiffiffi

n
p ÞΔ ! Δ such that this

dimerization field has units of energy. Correspondingly,
~δ2kF ¼ �nδ2kF=2λ

2, where δ2kF is the detuning of the laser from
the waveguide mode of wavenumber 2kF.

The spatially homogeneous phase, denoted as FG in the phase
diagram shown in Fig. 2b, corresponds to Δ= 0, so that the left
and right movers are free particles, decoupled from each other
(see inset of Fig. 3a). In the crystalline phase, we have a constant
finite value of Δ(x)= Δc, with |Δc|= Δ0. The field Δ thus plays the
role of the order parameter for the phase transition. Equation (1)
possesses a U(1) translational symmetry, which is preserved in the
low-energy theory as invariance under the transformation Δ→ Δ
exp(iχ), u→ u exp(iχ/2), v→ v exp(−iχ/2). This phase does in

fact contribute to the coherent part of the full electromagnetic
field a(x) through the spatial profile of the emergent crystalline
lattice: Δ(x)cos(2kFx+ χ), so that χ fixes the position of the
minima of the optical potential. The additional Z2 symmetry
corresponds to the invariance under the transformation Ψ ! Ψy,
Δ→−Δ. The transition breaks the U(1) symmetry by fixing the
phase χ. Here we can choose it such that Δc is real. The additional
Z2 symmetry is then broken by choosing the sign of Δc, which in
turn determines the lattice dimerization. For finite Δ0, our system
now possesses a discrete translational symmetry with spatial
period 2π/2kf= π/kF and is a band insulator where the lower of

the two bands: ϵk;σ ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvFkÞ2 þ Δ2

0

q
is filled (we set the zero of

energy at the Fermi energy, μ= 0). The inset in Fig. 3b shows the
gap equal to 2Δ0 that opens in the fermion spectrum upon
entering the crystalline phase.

The low-energy theory of Eq. (3) we obtained for our
light–matter system turns out to be the same as the continuum
limit of the SSH model12,13 for electrons coupled to lattice
vibrations. In our case, the role of the lattice phonon is played by
the waveguide photon. In particular, given a fixed lattice
configuration, the single particle spectrum of the SSH Hamilto-
nian in the tight-binding limit is determined by the ratio of the
two hopping rates defining the dimerization. In our case, the
hopping ratio is proportional to the amplitude of the field Δ0, i.e.,
to the number of photons in the waveguide with momentum
equal to ±2kF, while which one of the two hoppings is the
strongest depends on the sign of Δc. The latter can be measured
from the relative phase (0 or π) between the driving laser and the
waveguide output light at momentum ±2kF.

We will first consider the mean-field solutions given by the
saddle point of the action in Eq. (3), which satisfy a set of
Bogoliubov–deGennes (BdG) equations for the fields u, v, Δ.

ϵ‘Ψ‘ðxÞ ¼
�ivF

∂
∂x ΔðxÞ

Δ�ðxÞ ivF
∂
∂x

 !
Ψ‘ðxÞ ð4Þ

~δ2kFΔðxÞ ¼ �
X′
‘

u‘ðxÞv�‘ ðxÞ ð5Þ
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Fig. 3 Optical absorption spectrum in each of the three phases, given by the imaginary part of the dielectric function Π(ω, Q, Q′), as a function of rescaled
frequency ω/2EF and momentum (Q− 2kF)/kF. The insets show the corresponding single-particle spectrum of the fermions. a corresponds to the spatially
homogeneous phase for Δ0= 0.1, which displays an ungapped absorption spectrum. Correspondingly, the particles at the Fermi points are scattered from
one side of the Fermi sea to the other via Umklapp scattering of photons of wavenumber 2kF. For the crystalline phase, b shows a gap opening in the
absorption spectrum equal to 2Δ0= 0.2, which can be understood from the inset figure showing a band insulator spectrum. In the presence of the defect,
the gap in the spectrum is halved as seen in c, where the allowed optical transitions are now from the lower band to the bound state upper band and from
the bound state to the upper band. In c, we rescaled Π(ω, Q, Q) by the momentum grid spacing in order for it to have the same dimensions as in a, b
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where we restricted to zero temperature. The index ‘ labels the
atomic eigenstates ΨT

‘ ¼ ðu‘; v‘Þ and the primed sum runs over
the occupied states. Physically, the BdG equations correspond to
neglecting the quantum and thermal fluctuations of the
electromagnetic field, still including the fluctuations of the
fermions. Equations (4) and (5) are well studied in the context
of the SSH model. We are thus able to use the solutions obtained
there12–14, which are presented below (see Supplementary Notes 4
and 5 for more detail).

From the BdG equations, we can also obtain approximate
analytical expressions for the critical temperature Tc, as well as
the temperature dependence of λc(2kF) and the value of Δ0. The

critical temperature reads (reinstalling dimensional units) Tc ’
EF expð�2δ2Aδ2kF=g

2LΩ2νkFÞ
�
; where νkF is the fermionic density

of states at the Fermi energy, while for the order parameter we get
Δ0ðTÞ ’ ð3TcδA=gΩ

ffiffiffi
L

p Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTc � TÞ=Tc

p
: Finally, the critical cou-

pling is given by

λ2c ’ � δ2kF
2νkF

n

lnðEFT Þ
: ð6Þ

Topological soliton–polaritons. Let us now consider the spatially
ordered insulating phase with a filled lower band and study the
low-lying excitations. Naturally, there are particle–hole excita-
tions at the energy cost of 2Δ0, which leave the optical field
unchanged. However, our system additionally features polaritonic
excitations with even lower energy involving a distortion of the
optical field together with the excitation of a fermion. Those are
found as solutions of the BdG equations whose form is available
analytically. The solitonic distortion of the lattice takes the fol-
lowing form (reinstalling dimensional units)

Δðx;TÞ ¼ ± iΔ0ðTÞ tanhð
λΔ0ðTÞffiffiffi
n

p
�hvF

xÞ: ð7Þ

The soliton solution of Eq. (7) (see Fig. 1 for the corresponding
total light intensity profile) connects a region with negative
(positive) Δ at x→−∞ with a positive(negative) Δ at x→+∞,
that is, it matches two differently dimerized configurations in
either one of the two possible ways. Therefore, we can assign to
each solitonic defect a Z2 topological number. The presence of the
solitonic distortion of the lattice creates a single-particle bound
state (with spin degeneracy equal to two), which is occupied by a
single fermion. The full single-particle spectrum is shown in the
inset of Fig. 3c. We see that the bound state lies in the middle of
the gap between the valence and conduction band. Those bands
consist of delocalized states similar to the ones we have in the
absence of the defect. Using the expressions for the critical
temperature and the order parameter with Eq. (7), the size of the
optical soliton at zero temperature can be expressed as

ls0 �
2
3kF

expð2δ
2
Aδ2kF

g2Ω2νkF
Þ ¼ 2

3kF

EF
Tc

: ð8Þ

In the context of optics, it is interesting to note that the optical
soliton’s size is set by a scale belonging to the quantum degen-
erate atoms, namely, the inverse Fermi momentum. Moreover, in
contrast to their electron–phonon counterparts, the size of
the topological soliton–polaritons in our case can be easily
tuned by optical parameters, such as laser detunings or pump
strength.

At this point, a remark on the creation of the topological
soliton–polaritons is in order. Any local perturbation (adding
particles or energy) would necessary create soliton–anti-soliton

pairs, since the creation of a single (anti)soliton would require a
non-local perturbation. In the context of solid state, topological
solitons have been experimentally created by adding several
electrons to the dimerized lattice27,28. In this case, every electron
seeds the formation of an (anti)soliton, while the odd electron is
either absorbed at the boundaries or goes into the conduction
band. The scenario is slightly different if the local perturbation
adds energy and not particles. In this case, an electron–hole pair
would generically be formed and subsequently develop into a
soliton and anti-soliton pair. Differently from the case of particle
addition where the topological defects are (meta)stable, if only
energy is added the defects have a finite lifetime as the soliton will
eventually annihilate with the anti-soliton. The topological
protection of the soliton–polaritons relies on the particle–hole
symmetry of the crystalline phase. It is important to note that
strictly speaking this exists only if the crystal does not contain
Goldstone modes, i.e., phonons that allow for a spatial
modulation of the standing-wave phase χ defined in the
subsection “Low-energy theory”. These modes namely produce
modulations of the lattice period that could reabsorb the solitonic
defect by accommodating the electron in the band27,28. In the
specific configuration considered in Fig. 1, there is no externally
imposed lattice for the fermions and indeed the crystallization we
discuss above breaks a continuous translational invariance, which
introduces Goldstone modes. However, owing to the typically
very long range of the interactions induced by light (the optical
waveguide dispersion is indeed much steeper than the fermionic
dispersion), the Goldstone phonon branch will be characterized
by a very steep slope or even be gapped if the range is larger than
the system’s size29. This means that over a finite range of energies
and times the topological protection would be effectively present.
Alternatively, the latter could be exactly implemented by
externally imposing an optical lattice potential for the fermions
using two far-off detuned counterpropagating lasers. Indeed, in
this case the continuous translational U(1) symmetry discussed
above will be substituted by a discrete Z2 symmetry, and the
Peierls instability would happen at commensurate filling, thereby
creating a crystalline insulator without Goldstone phonons.

Optical response. For the set-up considered here, there is the
possibility to non-destructively probe the state of the system using
the waveguide modes. We shall see that the phase of the system
and even the presence of the topological soliton–polaritons can be
detected this way via the optical absorption, which is the ima-
ginary part of the dielectric function (see Supplementary Note 6)

Πðω; x; x′Þ ¼
X
‘‘′

v‘ðxÞv�‘ ðx′Þu‘′ðx′Þu�‘′ðxÞ
�ωþ ϵ‘′ � ϵ‘ � i0þ

: ð9Þ

This function describes how the photons are influenced by
interactions with the atomic medium, which involves all possible
photon-induced transitions between the single-particle eigenstates of
the BdG Eq. (4). By taking the imaginary part, we select only
resonant processes, which indeed are the only ones giving rise to
absorption. In Fig. 3, we show the frequency- and momentum-
resolved absorption in the spatially homogeneous phase (a), in the
crystalline phase (b), and also in the presence of a soliton-polariton
(c). In (a) and (b) the low-energy theory is translational invariant
and we define ImΠðω;QÞ ¼ Im

R
dðx � x′ÞΠðω; x � x′Þ

exp½iQðx � x′Þ�. In (c), due to the broken translational invariance,
Π(ω, x, x′) depends upon two positions and we define
ImΠðω;Q;Q′Þ ¼ Im

R
dxdx′Πðω; x; x′Þ exp½iQx � Q′x′Þ�. In order

to compare to the other two cases, we thus consider only the
diagonal part Q=Q′.
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In the homogeneous phase, the optical absorption in Fig. 3 is
reminiscent of the spectral function shown in Fig. 2a around Q=
2kF (recall that we are computing Π(ω; Q) using the low-energy
theory where the optical field is expanded about 2kF). In the
crystalline phase without defects, optical absorption takes place
only for probe frequencies ω ≥ 2Δ0, as resonant excitations into
the conduction band are gapped. This is because the minimum
difference in energy between the fermion dispersion in the two

bands ϵk;σ ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvFkÞ2 þ Δ2

0

q
is 2Δ0. On the other hand, when a

soliton–polariton is present in the crystalline phase, the threshold
for optical absorption is reduced to ω ≥ Δ0, due to the appearance
of a bound state in the middle of the gap. The fact that in the
vicinity of ω ≥ Δ0 the main contribution comes from transitions
between the bound state and the continuum is also responsible
for the flattened bottom of the spectral onset, since the bound
state has not a well-defined momentum. We therefore propose
that it is possible to detect the soliton–polaritons nondestructively
using the waveguide modes and that their existence should be
indicated by optical absorption around 2kF at frequencies half the
insulating gap.

Discussion
We predicted that the low-lying excitations of a (quasi-)1D FG
coupled to the electromagnetic modes of an optical waveguide are
topological soliton–polaritons consisting of an optical soliton
trapping an atom in an interphase state localized between two
spatially ordered patterns of different dimerization. While they are
formally equivalent to objects predicted for electron–phonon
models—the present system is indeed also an ideal candidate for the
implementation of SSH-like physics—such soliton–polaritons are
novel in the context of quantum nonlinear optics, where the
topological protection of the polariton might find applications for
instance in quantum information storage. In this spirit, future
studies should concretely investigate the way such polaritons can be
produced in these set-ups, as well as the role of mutual interactions,
quantum fluctuations, and dissipation. Experiments interfacing
waveguides with atomic gases are constantly improving the control
over the photon dispersion, atomic cooling, and light–matter
interaction. Developments are ongoing in several set-ups like
tapered optical nanofibers30,31, photonic bandgap fibers32, and
hollow-core fibers33–35, in addition to hollow-core antiresonant
reflecting optics waveguides36 and photonic crystals37. In particular,
already some years ago guided light modes have been coupled to
quantum degenerate bosons34, making the coupling to fermionic
atoms seem a near-future possibility.

Methods
Effective action approach. Using the imaginary-time path-integral approach as in
refs. 8,25, we constructed an action from the Hamiltonian in Eq. (1) in the main
text. We integrated out the atomic degrees of freedom to obtain an effective action
for the photons only. The photonic field was then separated into a coherent part
and a “fluctuations” part. Expanding to second order in the fluctuations, we
obtained the spectral function and determine the critical point for crystallization.
We then derived a low-energy theory for the system by linearizing the atomic
dispersion about the Fermi points. The corresponding action is seen in Eq. (3) in
the main text. The BdG equations for the system, found by calculating the saddle
point of the action, are analytically solvable as in refs. 12–15. As before, we separated
into coherent and fluctuation part of the optical field and expanded to second order
in fluctuations to obtain the optical response.

Data availability
All data generated or analyzed during this study are included in this published article
(and its Supplementary Information).
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