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2nd Workshop on "Machine Learning & Networking" 
 

The 2nd Workshop on "Machine Learning & Networking" was held in September 2023 at 

the Hasso-Plattner-Institut as part of the NetSys conference in Potsdam. This workshop 

also represented the 5th edition of the KuVS Fachgespräch "Machine Learning & 

Networking (MaLeNe)". 

 

The workshop was organized by co-chairs Michael Seufert (University of Augsburg, 

Germany), Andreas Blenk (Siemens AG, Germany), and Olaf Landsiedel (Kiel University, 

Germany). The workshop attracted 16 full paper submissions. As it is a tradition at a 

Fachgespräch, MaLeNe aims to foster presentation of early results and discussions of 

these. Thus, all papers at MaLeNe are reviewed briefly and papers of sufficient quality and 

fit to the call for papers are accepted for presentation. In the case of the 2023 edition, all 

submissions were a good fit and of good quality and were accepted. From these 16 

submissions and two invited keynotes, we assembled a full-day program. One paper was 

withdrawn on short notice due to illness of the presenter. 

 

On the day of the workshop, the co-chairs welcomed 57 registered participants. The 

workshop started with a keynote by Nicola Michailow (Siemens AG, Germany) on 

“Embodied Agent-to-Agent Communications”. This talk was followed by a session on 

Machine Learning for Networking. The afternoon session began with a second keynote 

by Andreas Maeder from Nokia titled “Towards an AI-Native Air Interface in 6G” and was 

followed by a session on Machine Learning for Wireless Networking and TCP. After a 

coffee break, a third session on Machine Learning for Security and TSN concluded the 

workshop.  

 

The workshop co-chairs closed the day with a short recap and thanked all speakers and 

participants, who joined in the fruitful discussions. Finally, we, the organizers, would like 

to thank Siemens AG, for supporting this instance of the MaLeNe Workshop series by 

sponsoring the Best Presentation Award. It was awarded to the following presentation: 

“In-Network Round-Trip Time Estimation for TCP Flows” by Daniel Stolpmann from 

Hamburg University of Technology.  

 

We would like to thank all the authors and attendees for their contributions to the success 

of the workshop! 

 

Michael Seufert, Andreas Blenk, and Olaf Landsiedel  

MaLeNe 2023 Workshop Co-Chairs 

  



Program 
 

Welcome and Workshop Opening 

 

Keynote 1 

Embodied Agent-to-Agent Communications, Nicola Michailow (Siemens) 

    

Session 1: Machine Learning for Networking 

1. Towards Benchmarking Power-Performance Characteristics of Federated Learning 

Clients 

Pratik Agrawal, Philipp Wiesner and Odej Kao (Technische Universität Berlin) 

2. Demystifying User-based Active Learning for Network Monitoring Tasks 

Katharina Dietz, Nikolas Wehner (University of Würzburg), Pedro Casas (AIT Austrian 

Institute of Technology, Vienna), Tobias Hoßfeld and Michael Seufert (University of 

Würzburg) 

3. Data Distribution Effects on Asynchronous Parameter Server Training in High Delay 

Differences Networks 

Leonard Paeleke and Holger Karl (Hasso Plattner Institute) 

4. Replicable Machine Learning Workflow for Energy Forecasting 

Stepan Gagin (University of Passau), Adrian Carrasco-Revilla (Inetum), Hermann de 

Meer (University of Passau) and Nuria Sánchez Almodóvar (Inetum) 

 

Keynote 2 

Towards an AI-Native Air Interface in 6G, Andreas Maeder (Nokia) 

 

Session 2: Machine Learning for Wireless Networking and TCP 

5. Exploring AI-Based Adaptive Resource Management in 5G Networks 

Ole Hendrik Sellhorn and Horst Hellbrück (University of Applied Sciences, Lübeck) 

6. Parameter Prioritization for Efficient Transmission of Neural Networks in Small 

Satellite Applications 

Olga Kondrateva (Humboldt-Universität zu Berlin), Stefan Dietzel (Merantix 

Momentum GmbH), Ansgar Lößer and Björn Scheuermann (Technical University of 

Darmstadt) 

7. Bandwidth Prediction for Volatile Networks with Informer 

Birkan Denizer and Olaf Landsiedel (Kiel University) 

8. Steps Toward a Supervised Machine Learning Scheduler for MPTCP 

Reza Poorzare, Hadi Asghari and Oliver P. Waldhorst (Karlsruhe University of Applied 

Science) 

9. In-Network Round-Trip Time Estimation for TCP Flows 

Daniel Stolpmann and Andreas Timm-Giel (Hamburg University of Technology) 



 

Session 3: Machine Learning for Security and TSN 

10. Reducing Memory Footprints in Purity Estimations of Volumetric DDoS Traffic 

Aggregates 

Hauke Heseding (Karlsruhe Institute of Technology), Timon Krack (KASTEL Security 

Research Labs) and Martina Zitterbart (Karlsruhe Institute of Technology) 

11. Impact of Adaptive Packet Sampling on ML-based DDoS Detection 

Samuel Kopmann (KASTEL Security Research Labs) and Martina Zitterbart (Karlsruhe 

Institute of Technology) 

12. Dynamic Network Intrusion Detection System in Software-Defined Networking 

Pegah Golchin, Jannis Weil, Ralf Kundel and Ralf Steinmetz (Technical University of 

Darmstadt) 

13. PicNIC: Image-based Diagnosis for Industrial Blackbox Networks 

Marco Reisacher, Andreas Blenk and Hans-Peter Huth (Siemens AG) 

14. Towards Synthesizing Datasets for IEEE 802.1 Time-sensitive Networking 

Doğanalp Ergenç, Nurefşan Sertbaş Bülbül (University of Hamburg),Lisa Maile, Anna 

Arestova (University of Erlangen-Nürnberg) and Mathias Fischer (University of 

Hamburg) 

15. Adapting to the Flow: Reinforcement Learning for Dynamic Priority Assignment in TSN 

Nurefşan Sertbaş Bülbül and Mathias Fischer (University of Hamburg, Germany) 

    

Closing Remarks and Best Presentation Award (sponsored by Siemens AG) 

   



Towards Benchmarking Power-Performance
Characteristics of Federated Learning Clients

Pratik Agrawal, Philipp Wiesner, and Odej Kao
Technische Universität Berlin

{pratikkumar.vijaykumar.agrawal, wiesner, odej.kao}@tu-berlin.de

Abstract—Federated Learning (FL) is a decentralized machine
learning approach where local models are trained on distributed
clients, allowing privacy-preserving collaboration by sharing
model updates instead of raw data. However, the added communi-
cation overhead and increased training time caused by heteroge-
nous data distributions results in higher energy consumption and
carbon emissions for achieving similar model performance than
traditional machine learning. At the same time, efficient usage
of available energy is an important requirement for battery-
constrained devices. Because of this, many different approaches
on energy-efficient and carbon-efficient FL scheduling and client
selection have been published in recent years.

However, most of this research oversimplifies power-
performance characteristics of clients by assuming that they
always require the same amount of energy per processed sample
throughout training. This overlooks real-world effects arising
from operating devices under different power modes or the side
effects of running other workloads in parallel. In this work, we
take a first look on the impact of such factors and discuss how
better power-performance estimates can improve energy-efficient
and carbon-efficient FL scheduling.

Index Terms—Federated Learning, Energy Efficiency, Carbon
Awareness, Battery-Powered Devices, Edge AI, IoT

I. INTRODUCTION

While FL [1] mitigates privacy and data transfer overhead
issues associated with centralized ML training, it has different
set of challenges. Studies [2] have shown that FL consumes
more energy and emits significantly more carbon to reach the
same model performance as centrally trained ML models.

The usage of Internet of Things (IoT) and edge devices
to train machine learning models in distributed and federated
learning settings regularly have further worsened the energy
and environment implications of AI/ML training. Moreover,
regulators responsible for AI policy also explicitly put em-
phasis on sustainability and environmental aspects of AI1.
Additionally, edge devices are battery powered and operate
under strict energy budgets. To manage efficient usage of
this limited battery power for both the non-FL baseloads and
the FL training, it is necessary to profile power-performance
characteristics of FL training under realistic scenarios.

To improve efficiency, researchers have proposed energy-
efficient [3]–[5] and carbon-efficient [6], [7] approaches for FL
scheduling and client selection. FL has also seen vast amount
of work in benchmarking [8] in recent years. However, these
benchmarks are often missing the critical energy consumption

1https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-
trustworthy-ai

metrics of FL and are predominantly explored in server
based simulated environments. Moreover, the benchmarks that
include energy consumption metrics are missing granular level
energy consumption data under the real-world impact factors
such as non-FL baseloads and power modes of the devices.
These approaches [6] rely on analytical energy models that
are based on metrics such as CPU compute cycles or Floating
Point Operations Per Second (FLOPS) to calculate energy
required per batch. These models do not accurately take into
account factors such as power modes and baseloads of the
underlying FL device.

II. PROBLEM STATEMENT

Current FL studies over simplify the power consumption
characteristics of FL clients. In comparison to simulation
settings employed in FL studies, realistic on-device FL train-
ings exhibit complicated operational behavior patterns when
it comes to energy consumption. For example, edge devices
with and without hardware accelerators (GPUs or TPUs)
have different energy requirements for per sample throughout.
Furthermore, edge devices are usually executing workloads
(i.e. baseloads) as such as inference or time-series data
streaming which affects the energy per sample performance.
These complex operational behavior patterns warrant a need
for better energy management and energy-efficient FL. Client
selection and scheduling are complex problems in FL, given
the heterogeneous nature (hardware resources such as bat-
tery, compute, memory) of FL clients. Therefore, to enable
better energy-efficient FL and carbon-efficient FL scheduling,
metrics such as energy per sample, samples per second are
necessary. Current FL studies assume the energy availability
budgets and do not consider energy per sample performance
under the influence of power modes or baseloads of the FL
clients [3]–[7].

III. PRELIMINARY INSIGHTS

To gain some preliminary insights into the variation of
power-performance of FL clients, we evaluate an FL training
under different baseloads and power modes of a Raspberry Pi.

For Raspbeery Pi, we evaluated three power modes: Per-
formance, Powersave and Ondemand. To simulate a baseload
on an FL device, we utilized unix command sysbench2. It
provides flexibility to simulate baseload in-terms of number

2https://wiki.gentoo.org/wiki/Sysbench
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Fig. 1: Power-Performance Characteristics for RPI

of threads/CPU cores. For the FL training we utilized Flower
framework 3. We simulate a computer vision IoT training task
using dataset CIFAR-10 4 and the computer vision model
SqueezeNet which is light-weight and deemed to be suitable
for edge computer visions applications. We assign higher
kernel priority to baseload process to ensure the FL training
doesn’t affect the CPU time of baseload in co-running sce-
nario. For the energy consumption measurement, we utilized
WLAN power socket switch5. We report mean energy per
sample and samples per second values for different power-
modes and CPU core baseloads.

EPS =
Ptotal − PBL

N
(1)

EPS : Energy per Sample
Ptotal : Total power consumption (FL and Baseload)
PBL : Power consumption due to Baseload
N : Number of Samples

Energy per sample values were calculated using Eq. 1.
Figure 1a illustrates the mean energy per sample and 95%

confidence intervals for each powermode, based on 10 repeated
measurements. We observe significant difference in energy per
sample and samples per second values when there is no non-
FL base load (0 baseload cores) compared to a scenario when
non-FL baseload is executing and utilizing all CPU cores. We
also observe that while samples per second (Figure 1b) doesn’t
vary significantly when non-FL baseload is co-running with
FL, energy per sample values fluctuate for baseloads 3 and 4.
For our experiments, ondemand mode with baseload cores 3

3https://flower.dev
4https://www.cs.toronto.edu/ kriz/cifar.html
5https://www.delock.com/produkt/11826/merkmale.html

has an optimum energy usage when calculating same number
of samples compared to other baseload and samples per second
combinations.

IV. CONCLUSION AND FUTURE WORK

Recent research studies have focused on energy-efficient and
carbon-efficient FL scheduling and client selection. However,
most of the research assumes simplistic energy consumption
models for underlying FL clients. In this work, we showed that
how energy per sample values under real-world scenarios such
as different power modes and non-FL baseloads at CPU cores
can vary and exhibit complex operational behavior patterns.

For future work, following open research questions and
possibilities could be explored further,

• How do current FL systems communicate FL clients’
energy related information? How to collect energy per
sample, throughput per second and uncertainty related
information at runtime?

• How can we predict the power-performance character-
istics, what are the relevant metrics? With more data
about real-world impact factors affecting energy footprint
of edge devices, can we build predictive models for
forecasting?

• How often do we need to measure before we can be
certain? Can we report the uncertainty to be used in
scheduling? FL trainings are usually executed multiple
times due to data distribution drifts and hyperparameter
search. This repetitive FL training execution could be
leveraged to collect more data about power-performance
behavior patterns of FL clients.

• What’s the impact of hardware accelerated edge devices
such as jetson nano on energy related metrics? What are
the energy efficiency opportunities in FL and non-FL co-
running scenarios?

REFERENCES

[1] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS, 2016.

[2] X. Qiu, T. Parcollet, D. J. Beutel, T. Topal, A. Mathur, and N. D. Lane,
“A first look into the carbon footprint of federated learning,” CoRR,
vol. abs/2010.06537, 2020.

[3] X. Zhou, J. Zhao, H. Han, and C. Guet, “Joint optimization of energy
consumption and completion time in federated learning,” in ICDCS, IEEE,
2022.

[4] C. W. Zaw, S. R. Pandey, K. Kim, and C. S. Hong, “Energy-aware re-
source management for federated learning in multi-access edge computing
systems,” IEEE Access, vol. 9, pp. 34938–34950, 2021.

[5] Y. G. Kim and C.-J. Wu, “Autofl: Enabling heterogeneity-aware energy
efficient federated learning,” in IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 183–198, 2021.

[6] P. Wiesner, R. Khalili, D. Grinwald, P. Agrawal, L. Thamsen, and O. Kao,
“Fedzero: Leveraging renewable excess energy in federated learning,”
arXiv preprint arXiv:2305.15092, 2023.
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I. INTRODUCTION AND PROBLEM STATEMENT

In the past decade, Artificial Intelligence (AI), especially
Machine Learning (ML), has enjoyed increasing popularity
and has been widely applied in network monitoring and
management. However, when it comes to sensitive topics
such as network security, practical adoption has been poor,
e. g., for anomaly and intrusion detection. Academic research
on security-related topics lacks a holistic view [1], focusing
on either human or technical aspects, while neglecting the
interconnection of both [1]. Incorporating standard AI/ML
approaches can further widen this gap and create barriers [2],
as they take away the decision making from the experts/admins
without giving any information about the confidence or sever-
ity of their decision, and provide no means to give feedback to
the model, ultimately reducing the trust of the experts/admins.
Thus, having an admin in the loop can be beneficial not only
for the overall performance of the model by incorporating
expert knowledge, but also increase its trustworthiness.

Originally, Active Learning (AL) aims to increase the
performance of an ML model by manually labeling as few
samples as possible via queries to an oracle [3], e. g., a
(human) expert or a more powerful model, and add these
few select samples to the (re)training data. A complementary
technique to AL is self-training [4], which consists of a base
classifier, which classifies the unlabeled data, but only adds
the data to the (re)training on which it was the most confident
on. While AL aims for the most informative data, self-training
targets the most confident data to add to the model. Combining
both techniques can yield great benefits [4], i. e., utilizing
a base classifier to make automated decisions for obvious
choices, while relaying inconfident decisions to the oracle, thus
incorporating a human in the AI/ML loop.

In the context of communication networks, these approaches
help enabling the real-world deployment of AI/ML solutions
by giving the users decisive power of critical administrative
decisions, while enriching the monitored data with expertise.
For example, when unseen devices, applications, or even zero-
day attacks start appearing in the network (i. e., equating to
potential labels the model was not trained on), the model may
not be very confident in its decision and thus relay it to the
expert admin for further inspection and relabeling. Ultimately,
this also helps keeping the model up-to-date and adapt to
network changes over time. In the following, we propose our
general methodology, discuss specific use cases and related
research fields, which can be incorporated in the future.

II. BACKGROUND AND METHODOLOGY

Active Learning. According to [3], AL can be divided into
three different approaches, namely pool-based AL, stream-
based selective sampling, and membership query synthesis.
The pool-based approach ranks all datapoints regarding pre-
defined criteria and relays the top ranked points to the oracle,
while the latter two make an independent judgement for each
sample [3]. Additionally, a membership query generates new
samples on its own. The former two approaches make the
most sense in context of our use case. Here, it is more of a
question if we want to set a specific threshold (e. g., confidence
of a decision) for every element to be relayed, which can
potentially result in many requests/false alarms to the admin,
or if we want to set a fixed number of queries beforehand and
potentially miss out on important events. Thus, all approaches
require a careful configuration of their parameters.

Querying Strategies. Regardless of the chosen AL ap-
proach, there is also a multitude of querying strategies, i. e.,
how to actually choose which elements to relay. In [3], the
main querying strategies have been identified as diversity-
based approaches, approaches based on the expected model
change, and uncertainty-based approaches. The latter is a
natural fit due to the self-training aspect of our use case, while
the other two focus more on picking the most informative data-
points, which do not necessarily need any admin supervision.

ML Confidence/Uncertainty. To actually evaluate the con-
fidence or uncertainty of a decision, we need predicted prob-
abilities for all possible classes instead of just the predicted
label. Luckily, many traditional ML but also Deep Learning
(DL) algorithms are capable of doing so, including Random
Forests (or basically any bagging/boosting algorithms due to
simple majority voting), Decision Trees, Neural Networks
(via softmax layers), and many more. Given these class
probabilities, we may now formulate our own definitions of
confidence/uncertainty. For example, we may simply set a
threshold of how big the probability for the most probable
class is (e. g., relay all classified samples that have no class
probabilities higher than 0.8), calculate the entropy of the
class probabilities (e. g., maximum entropy means that all
probabilities are distributed equally and thus there is no clear
winner), or calculate the distance to a uniform distribution
(e. g., low Kolmogorov-Smirnov or Wasserstein distances in-
dicate uniformly distributed probabilities thus inconfidence).
How to configure these parameters and which strategy to
choose is a core question.
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Fig. 1: Potential use cases for AL in network monitoring.

III. POTENTIAL USE CASES

Admin as Oracle. Figure 1a illustrates the idea behind the
previously described use case. Our approach to test the impact
of AL in networking may look as follows. We may utilize
any existing dataset concerning network monitoring, e. g.,
application classification, device fingerprinting, or intrusion
detection, and train a suitable ML model with them. Then
we just simply utilize the label probabilities to decide if we
relay the decision to an admin. As access to experts is limited,
we opt for a parameterized, simulative approach, i. e., we have
virtual admins that exhibit different properties with respect to
accuracy and time consumption, e. g., make correct decisions
in short time or take a long time and have a high probability
for erroneous decisions, or any value in-between. This way
we can not only evaluate if the performance improvement is
significant, but also if the time consumption is even worth
it. In other words, we want to find a suitable threshold via
parameter studies for the uncertainty/confidence, so that the
model improves, while the admin is not overburdened. We
can also analyse the impact of unseen traffic (e. g., new
devices/apps or zero-day attacks), by excluding one class from
the training data. We expect the ML models to be inconfident
on unseen labels, thus relaying these datapoints to the admin.

In-network ML. The second use case is seen in Figure 1b.
The core idea is, that in-network ML (e. g., via P4 switches)
can extract features and classify at line rate, which is desirable
for, e. g., real-time intrusion detection/prevention. Though,
models are limited in their complexity as well as features to
extract due to limited operations (in regard to their type as
well as their amount), potentially resulting in lower accuracy.
We can leverage the previous methodology by relaying all
inconfident decisions from the switches to the oracle. In this
case, this may be a powerful ML server with more complex
models, aiming for high accuracy. In other words, for clear
decisions we can provide low/no latencies, while for harder
decisions we utilize some more time and resources, thus
proposing a hybrid approach. Even though we now induce a
small latency overhead for the sake of higher accuracy, this still
costs a lot less time than introducing a human expert into the
loop, thus combining the best of both worlds. As we now have
two models we deploy in the network, we also need to update
and retrain both of them, making this use case more complex
from a technical point of view. Especially since P4 switches
cannot be updated during runtime, this may be an interesting
aspect for future research with regards to downtimes etc.

IV. RELATED RESEARCH AND FUTURE WORK

Visualization. In [5] the authors also opt for a simulation-
based approach for user-based active learning in the context of
image classification. Instead of just simulating “good” or “bad”
experts, they develop a visual approach via dimensionality
reduction and base their metrics on these visuals. This may be
another methodology to implement for our use case as well, as
in the end, if we want to apply this in practise, the admin/user
needs some help with their decision making.

User Studies. In conjunction with visualization, we can
also conduct user studies instead of having virtual admins to
make our analyses more impactful and to obtain more realistic
values for our admin competence and time needed to complete
the tasks, shown to be fruitful in security-related topics [6].
Though, as we potentially need network experts/admins to do
so, this may be a challenging task. Alternatively, we can try
to simplify the admin tasks [7], e. g., by giving non-experts
a small handbook/guide and make the decision tasks less
complex and more well-defined. However, regardless of the
users participating in potential studies, we need to design an
interface first, i. e., develop a fitting visualization.

Outlier Detection. Lastly, complementary to ML uncer-
tainty/confidence, we can also correlate outlier detection to
our research. In other words, we expect there to be some
kind of relationship between both approaches, as both possibly
indicate that a data sample like this has not been seen before.
Thus, this may add another querying strategy for our use cases.
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Abstract—Model training with distributed Machine Learning
(ML) methods, such as the well-known asynchronous Parameter
Server (PS), is susceptible to network inhomogeneities, e.g. differ-
ences in link latency, computing resources, or data distribution.
We evaluate how the combination of data distribution and
high delay difference between workers affects asynchronous PS
training. We show that a better ground-truth representation at
the faster and more dominating worker increases model accuracy
and reduces computational efforts by about five times.

Index Terms—Distributed Machine Learning, Asynchronous
Parameter Server, Networks for ML

I. INTRODUCTION

Networked systems, such as IoT networks and future cel-
lular communication networks, are envisioned to utilize Ma-
chine Learning (ML) for complex task. Training these ML
models requires data that usually is collected on networked
machines. However, data transmission to, e.g., a data center
can heavily load the network and violate data privacy concerns.
With distributed ML methods, e.g., using a Parameter Server
(PS) [1], [2], the training can be distributed across multiple
decentralized machines (workers). These workers maintain an
instance of the model and process their local data to compute
update gradients that describe necessary changes to the model
parameters (bias, weights). Typically, the data set is distributed
across all workers in non-overlapping portions. After pro-
cessing a predefined number of data samples, the workers
exchange their update gradients with a centralized machine
(parameter server), which applies the update gradients of all
workers to the model. The updated model is then returned
to the contributing workers, which then continue generating
update gradients. The parameter server also stores the model
parameters.

Various PS implementations exist that primarily differ in
how and how many workers contribute to a model update. In
synchronous implementations, the parameter server aggregates
the update gradients from all workers simultaneously before
broadcasting, while the workers interrupt their processing until
receiving the updated model. In contrast, in asynchronous PS
implementations, the parameter server updates and returns the
updated model immediately after receiving an update gradient,
reducing the idle time of workers [3].

In practice, PS is exposed to varying link latencies or
computing capacities. Such network inhomogeneities lead
to long training times for synchronous PS and motivated
asynchronous PS [3]. For asynchronous PS, network inhomo-
geneities change the order of model updates, which impacts
the model development and makes the model development
susceptible to data distribution [4]. Several methods have been
described to mitigate these effects, e.g., back-up workers [5],
limiting worker staleness [6], or changes to the typically used
stochastic gradient descent (SGD) optimizer [7], [8]. Still, it
is unclear how data should be distributed when the delays
between worker and parameter server differ significantly.
We help understand how the combination of inhomogeneous
networks and data distribution affects model development for
asynchronous PS.

II. EXPERIMENT DESIGN

In our experiment, an asynchronous PS in an inhomoge-
neous network trains an artificial neural network on the NSL-
KDD data set [9] for different data distributions. The training
infrastructure comprises three virtual machines (Ubuntu 22.04)
on the same physical server with equal computing resources,
setting up a network with two workers, each connected
to a parameter server. We use Ray [10] to implement the
asynchronous PS. To model an inhomogeneous network that
causes changes in update order due to varying link latency or
computation capacity, we impose delays of 1 ms and 100 ms,
respectively, on the links from worker to parameter server
using the tc package. This gives us fine-grained control over
the transmission time from sending an update to receiving the
updated model.

NSL-KDD is typically used for training models detecting
intrusions in traffic data. Under supervised learning, a model
learns to classify traffic into five classes: Denial of Service
(DoS), User to Root (U2R), Remote to Local (R2L), Probing,
and Normal. Here, we train the model on three quarters of the
data set and evaluate the model’s accuracy on the remainder.
As the disproportionate impact of data distribution on model
development in inhomogeneous settings is our key hypothesis,
we distribute the data differently among the workers. For the
experiments, the fast worker (with lower added link delay)
accesses the DoS, R2L, and one-half of the Normal traffic
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data. The slow worker with a higher link delay accesses the
other half of the Normal traffic data. These distributions stay
fixed for all experiments; the distribution of U2R and Probing
data varies across experiments.

The model to train is a fully connected artificial neural
network with one hidden layer. It has 93 neurons in the input
layer, 21 neurons in the hidden layer, and five neurons, one
for every class as a one-hot-encoding, in the output layer.
The hidden layer uses ReLU activation; the output layer uses
logarithmic softmax activation.

III. DATA DISTRIBUTION EFFECTS ON MODEL QUALITY

In this section, we analyze the effects of data distribution
on model development for asynchronous PS training in an
inhomogeneous network. A uniform delay of 1 ms for the
fast link and 100 ms for the slower link is used to form
the inhomogeneous network. Throughout the experiment, we
vary the proportions of U2R and Probing data accessed by
each worker in increments of ten from zero to 100 percent.
The data portions across both workers always add up to 100
percent. For each data distribution, we train twenty times with
reshuffled data sets and with different model initializations.
Model accuracy is the key metric; we show it over both
number of training epochs as well as over data proportions.

Figure 1 shows that model accuracy increases the more
the dominant (faster) worker knows about the ground-truth
distribution. Hence, the reference independent identically dis-
tributed (IID) case achieves the highest accuracy, where data is
equally distributed among the workers, such that each worker’s
data portion represents the entire ground-truth distribution.
This is to be expected in such a vastly heterogeneous setup.
However, in real-world applications with constrained comput-
ing capacity, (quickly) reaching specific model quality levels
is of higher interest than the maximal accuracy. Given, e.g.,
the goal of 94% accuracy, even a little information about the
classes at the slower worker reduces the necessary epochs to
a third (cf. 0/100, 20/80 at 94% accuracy). The number of
epochs can be reduced up to five times if the faster worker
has more information about these classes.

IV. SUMMARY AND OUTLOOK

We have shown that for the well-known asynchronous PS
method in inhomogeneous networks, the distribution of the
training data among the workers affects the model accuracy,
in particular, its evolution over number of epochs. We found
that the better the training data at the dominating worker
represents the ground-truth data, the higher the achieved model
accuracy. Furthermore, better ground-truth representation at
the dominating worker can reduce by a factor of five the
computational effort needed to achieve a certain accuracy
level. We conclude that data transfers between workers before
training can improve the training; however, we still need to
take resource trade-offs for such transfers into account.

We hence plan to extend this study, short-term, to a quan-
titative characterization of the efforts for training and data
load arising from different data sets and models. Further,
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Fig. 1. Accuracy over epoch for different data distributions

we want to evaluate how susceptible different distributed ML
architectures (e.g., All-Reduce or Federated Learning) are to
data distribution among workers in inhomogeneous networks.
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Abstract—Energy forecasting is an essential functionality of
energy management systems. In this paper, a machine learning
workflow for energy forecasting is proposed. Integration of such
forecasting service does not require preliminary knowledge in a
machine learning domain. Moreover, the workflow is designed to
be replicable. That means that it can be used for the forecasting
of different measurements in the energy domain in multiple
locations.

Index Terms—machine learning, energy systems, replicability.

I. INTRODUCTION

Energy forecasting is an essential functionality for the
energy sector [1]. Many energy management systems (EMSs)
use forecasting to control energy equipment and send recom-
mendations to users and other applications to manage their
energy consumption. However, a development and training of
forecasting models as well as processing data from sensors
require familiarity with machine learning (ML) concepts,
while energy managers often lack experience in that domain.

The replicability of software systems used in research [2] is
not always ensured in the ML domain. To mitigate that, in this
paper the replicable ML workflow is proposed. A replicability
of the workflow means, that it can be used without additional
changes in different locations for time series forecasting in the
energy sector. This workflow can be integrated into existing
EMSs and does not require the involvement of a ML specialist.
For an integration, only historic time series are necessary,
however, exogenous variables can be accepted to improve the
predictions.

II. RELATED WORK

The concept of automated ML is becoming popular [3].
It aims to automate the training of multiple ML models and

This paper has received funding by the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 957845:
“Community-empowered Sustainable Multi-Vector Energy Islands - RENer-
getic”.

chooses the one that is performing best. ML can be encapsu-
lated as a reusable software service [4]. However, the approach
proposed in this paper focuses on the forecasting in energy
sector, for instance on photovoltaic (PV) generation, building
energy consumption in heating and electricity domains. That
means that the models can be trained with specific types
of measurements and interconnection between them in mind,
which improves forecasting performance.

III. METHODOLOGY

The replicable workflow introduced in this paper can be
connected to the centralized data storage of an EMS as
shown in Figure 1. The other EMS services can communicate
with the storage too. There could be multiple copies of the
workflow running in parallel in the system for different types
of forecast data series, for instance, PV generation, electricity
consumption of a building or heating consumption of a flat
in a building. Moreover, the same workflow can be used for
different buildings in multiple locations.

Replicability of a workflow means that it can be reused
for forecasting of different time series without any internal
changes. An interface between data storage and forecasting
workflow consists of three elements:

• measurements - historic data from a sensor with a given
timestamp for each measurement;

• weather data - historic data connected to the weather,
such as temperature, relative humidity, wind speed and
solar radiation;

• metadata - additional data about the type of sensor,
physical quantity and units used for a measurement.

That allows for easy usage of this workflow by non-ML
specialists because it does not require any adjustments of the
parameters of underlying models.

The workflow can be implemented as a separate software
service that communicates with other services using REST
API. Inputs and outputs of the workflow can be represented



as JSON objects with predefined values for attributes to model
data and metadata.

Subsections III-A-III-E provide an overview of each step of
the proposed workflow.
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Fig. 1. Forecasting workflow

A. Data Prepossessing

Data collected from sensors and equipment can contain
missing data points, thus they should be estimated, for in-
stance, using the interpolation methods. Additionally, the data
used in forecasting models should have a constant frequency
of data points. However, data from sensors can arrive at the
data storage at different time. Thus, data should be transformed
and aggregated. Aggregation should be done considering the
type of measurements. For instance, PV panels report about
their generation power, although for energy optimization the
data about energy generated are needed.

B. Data Exploration

In this step, statistics and other information about time
series are collected. These can include a median, average and
standard deviation of time series over a defined period. Ad-
ditionally, the identification of patterns in time series is done.
The identified shapelets [5] are used in the following steps by
forecasting models. Anomaly detection is also performed at
this step to discover and handle outliers in the data set before
training. The output can be used by the forecasting models
or by other services in the system, for instance, to display
statistics in a graphical user interface.

C. Model Training

The workflow assumes that the model was already created.
This step includes training of pre-defined models or their
versions with different hyperparameters that can be used for

the forecasting. It is important to note that training of the
model on new data is performed, only if needed. It is decided
based on the performance metrics of previously predicted data
points. If performance is higher than set threshold, the re-
training is not needed. If re-training is needed, several models
are trained in parallel and the best-performing model is chosen.
Such mechanism allows saving computational resources spent
on the model training.

The models could be trained in competition (only one is
saved) or in cooperation, meaning the final process combines
all the results into a final model which is trained to take the
benefits of each model and discard the weak spots.

D. Model Inference

In this step, the model resulting from the previous step
makes predictions for the next time window, for instance, for
24 hours, 48 or an interval provided by the user.

E. Anomaly Detection and Explanation

Using the same processes introduced in Subsection III-B,
the output of forecasting models can be analysed, for instance,
allowing quick actions on results, such as notifications when
high values are forecasted. Additionally, some models support
the explainability of results - from feature importance they
provide information on which elements of input data have the
biggest influence on the output to seasonality disambiguation,
which shows which of the time components impacts the
forecast.

IV. CONCLUSION

In this paper, a ML workflow for energy forecasting is
proposed. This workflow includes several steps that enable
an integration of energy forecasting functionalities into EMSs
without expertise in the ML domain. Replicability of the
workflow means, that it can be used for energy forecasting
in different locations. In an extended version of this paper, the
models that can be used in such workflow are developed and
evaluated on real-world data.
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Abstract—Resource allocation is a key challenge for gNB
scheduler in 5G networks, for distributing limited resources to
end devices. The scheduler’s goal is to optimize transmission
quality and quality of service for applications like real-time
communication, video streaming, IoT, and autonomous driving.
Traditional scheduling algorithms struggle to cope with the
dynamic and heterogeneous demands of 5G networks, which
result from the increasing number of connected devices, net-
work traffic and application requirements. We propose Artificial
Intelligence techniques for gNB scheduler and enable intelligent
and adaptive resource allocation. By utilizing AI, the scheduler
learn from network data, adapt to changing conditions, and
optimize resource utilization and transmission quality for dif-
ferent applications. Our approach involves implementing three
AI techniques: Performance comparisons between AI-based and
classical scheduling algorithms are conducted using metrics such
as network throughput, latency, packet loss, resource usage, and
user satisfaction. The proposed AI-based scheduling algorithms
have the potential to improve network performance, reduce
congestion, conserve resources, and enhance the user experience
in 5G networks.

Index Terms—5G, gNB, Artificial Intelligence, LSTM, Deep
Reinforcement Learning, Online Learning, Machine Learning

I. INTRODUCTION

We deployed a 5G standalone (SA) network, which con-
sists of only 5G components [1], unlike the common 5G
networks that rely on 4G components. The SA network
enables us to conduct further research, such as demonstrating
High Throughput and Ultra-Reliable Low-Latency Communi-
cations [2]. However, a major challenge in 5G networks is
to optimize the complex configuration options and resource
allocation. Previous approaches without AI [3], [4] have
addressed this challenge, but they may not be flexible enough
to cope with the dynamic and heterogeneous demands of 5G
networks.

Various solutions with AI have already been developed.
Some approaches support resource allocation with Deep Rein-
forcement Learning to optimize beamforming, power control
and interference coordination [5]. Alternative solutions per-
form optimized and fast real-time resource slicing with deep-
dueling neural networks [6]. Figure 1 illustrates an overview
of AI in a 5G network.

II. AI BASED OPTIMIZATION OF THE GNB SCHEDULER

In 5G networks, a gNB scheduler is usually controlled by
rules and algorithms defined by standardization organizations

Fig. 1. AI implementation into 5g network

e.g. 3rd Generation Partnership Project (3GPP). These rules
and algorithms define how resources are distributed to end
devices based on quality of service (QoS) requirements, pri-
orities, channel status, and network utilization [7].

However, the increasing complexity of 5G and the various
applications limit the control with rule-based and classical
algorithms. In summary, there is no standard configuration of
the gNB scheduler that fits best for all environments. For this
reason, artificial intelligence algorithms gain more importance
in future. Our goal is the development of a scheduler that
adopts to changes in the environment. Additionally, it evolves
over time, i.e. enable continuous learning. The following three
aspects represent optimization approaches for AI:

Resource Optimization: Deep Reinforcement Learning is
an AI technique that combines reinforcement learning and
deep neural networks [8]. Figure 2 shows the basic operation
of a Deep Reinforcement Learning algorithm.

Fig. 2. Deep Reinforcement Learning

In the context of the gNB scheduler, Deep Reinforcement
Learning optimizes the allocation of network resources, such
as future slices. The scheduler learns by trial and error,



combined with feedback on its decisions, and adjusts its
resource allocation strategy accordingly.

Real-time Adaptation: Online Learning is a machine learn-
ing approach where the model learns and adapts in real-time
as new data becomes available [9]. In the case of the gNB
scheduler, online learning enables the scheduler to adapt and
adjust its decisions based on changing network conditions. The
scheduler continuously receives and processes real-time data
on network parameters such as traffic load, signal quality, and
interference levels. It optimizes resource allocation, user or
service prioritization and network performance by updating its
decision-making process to network conditions. For example,
it dynamically allocates bandwidth based on traffic demands,
prioritizes critical services during congestion, and adjusts
transmission policies for improved network efficiency.

Network Faults: The second and third layer leverages Long
Short-Term Memory models, a type of time series models, to
detect or predict network faults, supporting the gNB Scheduler.
Time series data represent a sequence of observations collected
over time, such as network performance metrics. LSTM mod-
els are a type of recurrent neural network (RNN) that can
capture dependencies and patterns in time series data [10]. By
training an LSTM model on historical network data, the gNB
Scheduler can detect anomalies or predict potential network
failures. This allows proactive actions, such as traffic rerouting,
resource reallocation or maintenance triggering, to prevent
disruptions and maintain network stability and reliability.

III. EVALUATION CONCEPT

To evaluate the AI algorithms in 5G networks, a compre-
hensive experimental evaluation is conducted. The following
methodology is used to evaluate the performance and effec-
tiveness of the implemented AI algorithms:

• Data collection: Real data is collected from the 5G SA
network, including network performance metrics, conges-
tion levels, resource utilization, and user experience. This
data forms the basis for evaluating the AI algorithms.

• Test Scenarios: Different scenarios are designed to eval-
uate the performance of the AI algorithms. The scenarios
include different network conditions, traffic loads, and
QoS requirements to simulate real-world operation.

• Performance metrics: Several metrics are compared for
effectiveness of the AI algorithms. These metrics in-
clude network performance indicators such as throughput,
latency, and packet loss, as well as congestion levels,
resource utilization, and user satisfaction.

• Comparative analysis: The results of the AI-enabled
gNB scheduler are compared to the performance of the
classical algorithms. This comparative analysis provides
insights into the improvements achieved by the AI al-
gorithms in terms of network performance, congestion
reduction, resource efficiency, and user experience.

• Statistical analysis: Statistical methods are applied to
analyze the collected data and draw meaningful con-
clusions. The significance of the differences between

the AI algorithms and the traditional algorithms will be
evaluated using appropriate statistical tests.

Through rigorous experimental evaluation, this study aims to
provide quantitative evaluation of the AI algorithms on the
performance of the gNB scheduler in 5G networks. Analysis of
the results based on various metrics provides valuable insights
into the effectiveness and benefits of using AI techniques in
resource management and transmission optimization.

IV. CONCLUSION AND FUTURE WORK

We demonstrated how AI algorithms support a gNB sched-
uler and why this is increasingly important. We also presented
the steps for implementing and evaluating such algorithms.
Our future work involves implementing the AI algorithms
in our 5G SA network’s gNB scheduler and conducting
an extensive evaluation. Moreover, we plan to deploy other
AI algorithms for autonomous network management, such
as learning, fault detection and recovery, self-optimization,
efficiency, and scalability.
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Abstract—Low-earth-orbit (LEO) satellites can be used for
cost-effective Earth observation missions. Onboard processing
using machine learning (ML) approaches is often proposed to
reduce the amount of data transmitted back to Earth. However,
the combination of LEO satellites and ML brings unique
communication challenges, as requirements – and therefore ML
models – often change throughout the lifetime of a satellite
mission. In this paper, we propose a novel communication
protocol that deals with model updates efficiently by providing
incremental updates with low communication overhead.

I. INTRODUCTION

Small, low-Earth-orbit (LEO) satellites allow us to de-
ploy satellite missions more quickly and cost effectively.
In particular, the CubeSat standard became popular due to
the availability of off-the-shelf components [1]. Often, the
amount of data acquired by the LEO satellites is too large to
transmit everything to Earth [2] during their short, unreliable
communication windows. To intelligently filter the most
relevant information, machine learning have gained rising
attention in the satellite community. But their deployment
raises new communication issues in the upstream direction:
how can machine learning models be updated efficiently?

We propose a novel communication protocol, which allows
for efficient incremental model updates. Due to its large
number of parameters, the updated model’s transmission
likely requires use of multiple communication windows. Yet,
the new model must be used as soon as possible in order to
benefit from the updated accuracy or adapt to new classifi-
cation tasks quickly. Therefore, our communication protocol
prioritizes the most important model weights in transmission.
We use a space-efficient data structure to convey priority
classes to the satellite with low communication overhead.
Once its most important weights are received, they can be
used to construct an approximation of the updated model. The
approximation is then used immediately, and it is improved
incrementally until all updated model weights are available.

Evaluation results show that our approach considerably
outperforms the baseline and performs similar to an ideal
update protocol while incurring significantly less overhead.

Next, we introduce our approach in Section II and evaluate
it in Section III. Section IV concludes the paper.

The full version of this paper has previously been published at the IEEE
MedComNet 2023 conference: https://www.medcomnet.org.
This work has been funded by the Federal Ministry of Education and
Research of Germany in the project “Open6GHub” (16KISK014).
This work received funding from the German Research Foundation (DFG),
CRC 1404: FONDA: Foundations of Workflows for Large-Scale Scientific
Data Analysis.
This work has been co-funded by the LOEWE initiative (Hesse, Germany)
within the emergenCITY center.

II. EFFICIENT INCREMENTAL WEIGHT TRANSMISSION

Recall that a machine learning model mainly consists of
a description of its structure and a number of weights that
describe how these neurons fire. We consider the model
structure to be known in advance, as standard structures are
often used for common tasks. Therefore, each model update
can be considered as transmitting a list of new model weights.

We design our protocol such that the newly updated model
can be approximated quickly using all weights received up to
a certain point in time with the remainder of the weights all
set to zero. Two questions arise in this context: (1) What is the
right order of model weights. (2) How can we communicate
the prioritized order of model weights efficiently?

A. Weight order representation

Our approach depends on prioritizing key parameters. To
determine importance, we draw on ideas from model pruning,
where less crucial neural network components are removed.
Various criteria, like the magnitude criterion [3], L1 and L2
norms [4], and gradient magnitude [5] have been used to
measure importance. In our work, we utilize the absolute
magnitude criterion, ranking parameters by their absolute
value, and deeming those with lower values less important.

Next, we design a compact representation of the model
weights’ order, using a lossy permutation compression ap-
proach. To this end, we adopt sorting subsequences, a
straightforward yet shown to be optimal compression scheme
[6]. Rather than encoding the exact priority order for each
model weight, we subdivide the list of weights into k groups
of decreasing priority. This approximate grouping reduces the
size of additional communication overhead to n log(k) bits.

B. Transmission protocol

Figure 1 shows our approach for a simplified model with
six weights. As we assume the model structure to be known,
we can represent a model by a flattened array of weights W .

Next, we perform a number of initialization steps on the
ground station before transmission starts. We calculate a
permutation P that prioritizes each model weight by its
absolute value (Step 2). Then, we divide the array P into
k groups of length m. First, the vector Q that maps each
weight index to its priority group is transmitted to the satellite
(Step 3), followed by all weights of the priority group 0.
Within the priority group, the weight with the smallest index
i is transmitted first, followed by the second-smallest, and so
forth (Steps 4, . . . , n). Therefore, the order within the group
does not need to be communicated to the satellite but can
be inferred from the index structure Q. When all weights
of priority group 0 have been received, the process continues
with priority group 1, and so forth until all weights have been
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Fig. 1. Overview of the proposed communication scheme for an example model with six weights where k = 2 and m = 3.
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Fig. 2. Accuracy improvements depending on percentage of available model
weights for MNIST trained on LeNet5.

received. In the example, the weights are transmitted in the
order w3, w4, w5 (group 0) followed by w0, w1, w2 (group 1).

At the satellite, the updated model is used immediately
by setting all unknown model weights to 0 as indicated by
the dashed white boxes in Figure 1. Whenever more weights
have been received, the model is incrementally updated on
the satellite until the fully updated model is available.

III. EVALUATION

To evaluate our approach, we use the LeNet5 [7] model
trained on the MNIST [8] dataset. We compare our approach
against a baseline and an optimal approach. The baseline
is the naı̈ve approach that puts all parameters into a single
priority group, which achieves no prioritization. The optimal
approach assumes that the weights are transmitted in the
optimal order, i. e., according to their absolute value, highest
first. In this case, the position of each weight in the model’s
structure needs to be communicated to reconstruct the model
on the satellite. To isolate our mechanism’s influence on ac-
curacy, we evaluate it independent of communication effects,
simply assuming that weights are available in a certain order.

Figure 2 shows our evaluation results. The x-axis shows
the percentage of weights transmitted so far. All other weights
are assumed to be 0. The y-axis shows the corresponding

classification accuracy of the incrementally updated model.
We compare different numbers of priority groups to assess
how quickly they achieve good accuracies. It becomes clear
that putting all parameters into one priority group does not
allow for partial updates, since all parameters are required
to achieve a meaningful accuracy level. It also can be seen
that our approach allows to find a good tradeoff between the
achieved accuracy and the amount of additional data that has
to be transmitted. In addition, the results show that even the
optimal parameter order gets outperformed, which indicates
that the order of weights chosen (by absolute value) is not
the only influence factor for model accuracy. In summary, the
proposed approach considerably improves the accuracy when
compared to the baseline and even the optimal approach.

IV. CONCLUSION

Performing efficient, incremental updates of machine learn-
ing models on satellites is a problem that has often been
neglected. However, it is imperative to enable widespread use
of LEO satellites despite changing classification requirements
during satellite operation and short contact times with base
stations. We have proposed a simple but effective mechanism
to perform incremental model updates based on prioritizing
weights into groups. Using this group-based ordering, we
achieve significantly faster improvements in classification
accuracy while keeping communication overhead to convey
the prioritization order low.
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Abstract
5G networks provide high throughput and low latency con-
nections, crucial for remotemonitoring and control ofmission-
critical operations. Managing buffer levels and accurate band-
width estimations are essential for low-latency applications.
However, wireless networks are susceptible to fluctuations
in quality metrics due to mobility and interference, impact-
ing link utilization. Sudden quality deterioration can lead to
lower Quality-of-Experience (QoE). To address this, we pro-
pose a neural network-based bandwidth prediction system.
Our system utilizes historical data for time-series forecasting
using the Informer model. It achieves 10% lower errors on a
publicly available LTE dataset and 51% lower errors on a pub-
licly available 5G dataset. Future work includes multivariate
predictions and the creation of a new 5G dataset.

Keywords: Bandwidth prediction, LTE, 5G, Informer

1 Introduction
5G networks enable high throughput and low latency con-
nections. Remote monitoring and control of the vital infras-
tructure of mission-critical operations such as surgeries or
production lines depend on 5G to provide a good Quality-of-
Experience (QoE). To achieve low latency communication,
such operations rely on accurately filling buffers to send data
to minimize the latency of the end-to-end connection. Ap-
plications calculate estimations for the average bandwidth
of a connection and generate packets. Low-latency applica-
tions keep buffer sizes to a minimum. Minimal buffer sizes
result in higher dependence on accurate knowledge about fu-
ture buffer states. However, applications experience low QoE
when sudden quality deterioration happens. In this paper, we
introduce a neural network-based approach for bandwidth
prediction. It allows adjustment of application-specific pa-
rameters to increase QoE. Such a prediction system is not
only vital for better link utilization but also for low latency.
Inherently, wireless networks are highly susceptible to

fluctuations in quality metrics such as Signal-to-noise Ra-
tio (SNR) or Received Signal Strength Indicator (RSSI). User
mobility or sources of interference and blockage may cause
variable bandwidth on the connection. This variance results
in sub-optimal usage of the existing infrastructure as appli-
cations require time to adjust to newly attainable bandwidth.

Our performance metrics include data received from hard-
ware and software sources such as SNR, RSSI, bandwidth,
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Figure 1. Bandwidth prediction on the LTE dataset

or round-trip time. Established approaches use historical
data to generate the bandwidth predictions for a horizon.
Time-series forecasting (TSF) is the process of analyzing
and predicting future values based on historical data. Our
approach builds on TSF as the main task to predict the band-
width of a connection. In this domain, Long Short-termMem-
ory (LSTM) and Transformer models gained popularity in
extracting meaningful information [3] [5].

This paper makes the following contributions:
1. Design and development of a neural network-based ap-

proach that utilizes the Informer architecture to make
bandwidth predictions based on historical metrics

2. Analysis of datasets and implementation of the Min-
MaxScaler for data normalization to a given range

3. Evaluation of our bandwidth prediction approachwhich
shows up to 10% lower errors on the LTE dataset and
up to 51% lower errors on the 5G dataset

2 Methodology
Transformer gained popularity since its introduction to Nat-
ural Language Processing (NLP) tasks [5]. One of the key
challenges with Transformer-based approaches is their com-
plexity in terms of time and memory during training.
Informer [6] is an efficient Transformer-based model for

Long Sequence TSF tasks. It introduces the ProbSparse self-
attention mechanism to reduce time and memory complexity
during training, self-attention distilling to improve perfor-
mance in the presence of extremely long input sequences,
and a generative decoder to improve inference efficiency.

In this paper, we utilize the Informer architecture for band-
width predictions. Namely, we use multivariate channel con-
text information to predict several seconds of future band-
width. Additionally, we implement the MinMaxScaler as our
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Horizon Metric TPA-LSTM Informer Informer-M
1 RMSE 4.0038 4.0901 4.1281
1 MAE 2.9043 2.9786 3.0126
2 RMSE 4.6102 4.3954 4.4021
2 MAE 3.2362 3.1906 3.16
3 RMSE 5.0779 4.716 4.6033
3 MAE 3.5488 3.4356 3.2702
Table 1. Comparison on the LTE dataset: TPA-LSTM is
better on horizon 1, Informer-M is better on Horizon 2&3

analysis of the datasets shows features with different ranges.
The MinMaxScaler provides normalization of the data to a
given range, often between zero and one. It scales each fea-
ture separately to the given range. Separate scaling prevents
features with larger ranges from affecting the bias of scaling.

3 Datasets
We evaluate our approach on public LTE [3] and 5G [4]
datasets. The LTE dataset contains several transportation
scenarios like bus and subway lines. The LTE dataset con-
tains bandwidth, LTE-neighbors, RSSI, Reference Signal Re-
ceived Quality (RSRQ), change in ENodeB compared to the
previous second, time advance to the next ENodeB, speed,
and band. We choose "downloading" and "video streaming"
use cases while driving from the 5G dataset. The 5G dataset
includes metrics such as Reference Signal Received Power
(RSRP, RSRQ), Channel Quality Indicator (CQI), SNR, RSSI,
and download and upload bandwidths.
Traces include regularly sampled data. The 5G dataset

has missing data points. Therefore, we use the forward-fill
imputation method to remedy missing points.

4 Evaluation
In this work, we use the Mean Absolute Error (MAE) and
the Root Mean Squared Error (RMSE) to evaluate predic-
tion quality. We implement the MinMax Scaler and test its
performance with the Informer (noted as Informer-M) on
prediction horizons ranging from 1 to 24. We use bus line 15
and train line 7 of the LTE dataset, and "downloading while
driving" as the mobility scenario in the 5G dataset.

Azarid et al. [1] compare Autoregressive Integrated Mov-
ing Average (ARIMA) and LSTM models and find that LSTM
outperforms ARIMA for predictions. Mei et al. [2] show that
the Temporal Pattern Attention LSTM (TPA-LSTM) model
outperforms Recursive Least Squares (RLS), Random Forest
(RF), and LSTM.We select TPA-LSTM as one of our baselines.

As Table 1 shows, TPA-LSTM performs better for horizon
length 1 on the LTE dataset. Also in Table 1, Informer per-
forms between 1-8 % lower on MAE, and 5 to 10 % lower on
RMSE for horizon lengths 2 and 3.

On the 5G dataset, our solution with imputation (noted as
Informer-I) achieves a 45 to 48% lower RMSE and 49 to 51%
lower MAE compared to prior Informer-based solutions on
different horizons, see Table 2.

Horizon Metric Informer + Lasso Informer-I
1 RMSE 0.72 0.3801
1 MAE 0.35 0.1764
6 RMSE 1.19 0.6151
6 MAE 0.63 0.2994
24 RMSE 1.33 0.7318
24 MAE 0.73 0.3613

Table 2. Comparison on the 5G dataset: Informer-I performs
overall better compared to prior Informer-based solution

5 Conclusion
This work introduces a neural network-based design that
applies a state-of-the-art Transformer-based Informer model
to predict bandwidth. Our bandwidth prediction system aids
in helping users to have better QoE. In this work, we apply
our solution to various datasets. Our results show up to 10%
lower errors on the LTE dataset, and up to 51% lower errors
on the 5G dataset compared to state-of-the-art approaches.

For future work, we plan to make multivariate predictions
based on multivariate data. We also plan to generate a new
regularly-sampled 5G dataset for new mobility scenarios.
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Abstract— The functionality of the MPTCP scheduler is a 

hurdle in the way of the protocol in achieving high performance. 

This drawback is even more severe in heterogeneous networks, 

where the differences in the characteristics of the paths impair the 

functionality of the scheduler drastically. In this paper, we 

introduce a dataset generated by an emulation environment, 

including diverse scenarios and traffic types, as an initial step 

toward having a supervised learning scheduler. 

Keywords—Transport protocols, Machine Learning, MPTCP, 

Proxy, OpenStack 

I. INTRODUCTION  

MPTCP (Multipath TCP), which is an extension of 
conventional TCP (Transmission Control Protocol), was 
developed to allow having more than one network path in the 
very same connection. This protocol can indeed provide some 
benefits relying on its scheduling mechanisms and simultaneous 
distribution of traffic into different paths. However, it cannot 
achieve full bandwidth aggregation, due to flaws such as out-of-
order packets, frequent re-ordering processes, or HoL (Head of 
Line) blocking that waste time and energy. Most schedulers 
exploit single-criterion or multi-criteria approaches for traffic 
management. In the former, a parameter such as RTT (Round 
Trip Time) is used, while in the latter, more than one parameter 
is considered to select the path for the transmission. These 
reactive approaches lack the ability to properly distribute traffic 
to prevent the above-mentioned issues and are easily confused 
by random packet losses or other shortcomings that may occur 
in the network [1]. Therefore, to overcome these issues and 
make the best use of the available bandwidth aggregation, it is 
necessary to design schedulers based on machine learning 
techniques that can not only detect the current state of the 
subflows, i.e., paths, but also predict upcoming situations to 
enhance the functionality of MPTCP.  

By considering these facts, the main questions in this 
ongoing work are: (i) How to create an emulation environment 
that can reflect various real-time networking circumstances? (ii) 
How to have a centralized node in the topology that has insight 
into the whole traffic to generalize the data set? (iii) Based on 
the generated data set, how can appropriate features be selected 
to be used in supervised learning techniques such as deep neural 
networks? 

II. RELATED WORK 

Several approaches have been proposed to deal with the 
inefficient functionality of the MPTCP scheduler. The initial 
steps approached existing problems, such as out-of-order 

delivery, reactively, leading to schedulers like BLEST (BLock 
ESTimation) [2] and ECF (Earliest Completion First) [3]. 
BLEST estimates the blocking time for different subflow 
selections and traffic distributions in a way that alleviates out-
of-order and HoL blocking issues. With some similarities to 
BLEST, ECF attempts to find the path with the minimum 
transmission delay by exploiting parameters such as RTT and 
cwnd (congestion window).  

There have been some other proposals, but most of them 
suffer from having static and non-intelligent methods. Thus, 
they are not able to fully utilize the available resources. A 
reinforcement learning scheduler called MPTCP-RL has been 
proposed recently in [4] to find the best optimal path and 
mitigate packet loss and network heterogeneity adverse impacts. 
This scheduler tries to create a table containing scheduling rules 
for subflow selection, and by relying on the rules, it could 
enhance the network’s throughput. However, this approach can 
waste some time in the decision-making phase, since it should 
update itself frequently. Moreover, it cannot be generalized 
easily for different scenarios. As a result, there is a need for 
supervised learning techniques so that the training and decision-
making parts can be separated. In this case, a machine learning 
engine that is frequently updated offline resides in the 
scheduling component. This mechanism can dramatically 
reduce the time spent on the decision-making process. However, 
to the best of our knowledge, there is no public dataset for this, 
so the first steps should be taken toward its creation. 

III. MPTCP PROXY DEPLOYMENT FOR DATA SET CREATION 

The main problem in a supervised learning scheduler 
establishment is the lack of a stereotyped data set. A data set 
should be a reflection of diverse real-world scenarios, so it can 
generalize to most of the existing situations. As a result, we have 
divided the existing scenarios into three different categories, 
including short- medium- and long connections. For the first 
scenario, web page loading, for the second one, video streaming, 
and for the third one, test file download were the representatives. 
After identifying the problems and counterpart representatives 
for the scenarios, an approach for data gathering should be 
selected. As a result, we decided to use an intermediate node as 
a MPTCP proxy so that all traffic between clients and public 
servers goes through it and it can monitor all the traffic.  

This approach can bring some advantages, including: (i) 
Public servers do not need to support MPTCP as the connections 
between the clients and proxy will be MPTCP ones. (ii) As the 
whole traffic is passed through a centralized node, the creation 
of a data set by using it can be a reflection of the network. On 
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the proxy server, we have used microsock5, which is a 
lightweight proxy that handles traffic redirection without heavy 
use of resources.  

IV. EMULATION SETUP AND METHODOLOGY 

The laboratory experiment conducted in this study utilized 
the OpenStack platform as the virtualization infrastructure, 
including thirty Linux clients, as shown in Figure 1. Moreover, 
a Python automation script was employed for streamlined 
deployment. By using a Linux traffic shaper tool on individual 
subflows, characteristics such as packet loss probability, 
latency, or bandwidth, for 5G (Fifth Generation) and Wi-Fi 6 
networks were emulated. The experiment encompassed various 
scenarios, including data download, video streaming, and 
webpage loading, to imitate real-world requirements and have 
different traffic types.  

 

Figure 1 The emulation environment in OpenStack 

Table I  Selected parameters to create the data set 

Parameter Description 

srtt_us Round trip time for subflows 

basertt The minimum seen RTT of 
individual subflows 

snd_cwnd Sending congestion window 

max_window The maximal window ever seen 
from a subflow 

bytes_acked How many bytes were acked 

bytes_sent Total number of data bytes sent 

prior_cwnd The cwnd right before loss recovery 

lost Total data packets lost, including 
retransmissions 

Once we have the emulation environment, we should choose 
the parameters carefully. This process should follow two main 
goals: 1. The parameters should be able to help the trained 
scheduler distinguish different states in the network 2. They 
should provide the feasibility of differentiating various 
circumstances in the network, such as shadowing or fading. 
With these goals in mind, the parameters in Table I were 
extracted from the tcp.h file. However, parameters can be added 
or deleted as needed. In the feature selection phase, some 
important criteria should be considered, including 1. When the 
network state is changed, it should be reflected. 2. Important 
states and conditions such as peak data rates, low latencies, 
recovery times, traffic load portion, and reasons for the packet 

loss should be distinguishable. In the next steps, a selection of 
variables can form the inputs of a supervised learning technique, 
such as a deep neural network, to train the engine. These 
variables should be affected by changes in the network to reflect 
the state of the network, and preferably reside between zero and 
one to avoid normalization. Some selective examples are given 
in Table II. For the final step and labeling of the outputs, random 
hashing is used to weigh the subflows and find out which 
weights appropriately reflect the states based on fair use of the 
bandwidths and user experience measurements such as packet 
loss and data rate.  

Table II  Selective inputs to feed the deep neural network 

Variable Goal 

basertt/srtt_us Traffic load detection 

snd_cwnd /max_window Determine the aggressiveness 
of the sending rate adjustment 

bytes_acked /bytes_sent Estimation of the BDP 
(Bandwidth-Delay Product) 

prior_cwnd /max_window Having a faster recovery 

lost/bytes_sent Distinguishing random losses 

V. CONCLUSION AND FUTURE WORK 

The MPTCP scheduler has some drawbacks in selecting the 
best possible subflow because of its static and non-intelligent 
mechanism. As a result, in this work, we took the first steps 
toward having a supervised machine learning-based scheduler. 
We have established an emulation environment reflecting 
different network conditions, and then, by using a MPTCP proxy 
node, a stereotyped data set was created that can be used in 
supervised learning approaches. In future work, we will feed this 
data set to a deep neural network to conceive of an intelligent 
scheduler that can function properly in various circumstances. 
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Abstract—Transmission Control Protocol (TCP)’s tendency to
fill up buffers in the network results in long standing queues.
Active Queue Management (AQM) tries to solve this issue but
typically requires manual tuning as the optimal parameters
depend on the Round-Trip Time (RTT) of the flow, which is
unknown to the AQM. In this paper, we use network simulation
and supervised learning to train a neural network to infer the
RTT of a TCP flow from its queuing behavior. We transfer our
model into a real-time network emulator and show that it is able
to estimate the RTT with an error of only a few milliseconds.

Index Terms—Active Queue Management, Machine Learning,
Dataset Generation, Supervised Learning, Network Emulation

I. INTRODUCTION

Transmission Control Protocol (TCP)’s tendency to fill up
the buffer in front of the bottleneck link often results in a
long standing queue also known as bufferbloat. Active Queue
Management (AQM) tries to solve this issue by prematurely
dropping or, if combined with Explicit Congestion Notification
(ECN), marking packets to signal congestion to the Congestion
Control (CC) algorithm at the sender. However, a common
problem of AQM algorithms is the necessity to tune their
parameters to the operating conditions. In [1], it was shown
that the optimal buffer size for a TCP flow that results in full
link utilization and minimal queuing delay depends on its base
Round-Trip Time (RTT) (without queuing), which is unknown
at the bottleneck link.

In this paper, we present a Machine Learning (ML) model
that infers the base RTT of a TCP flow from its queuing
behavior. Our approach is based on an efficient way to generate
training data using a high-level network simulation, which is
used to train a neural network using supervised learning. Fi-
nally, we transfer the model into a real-time network emulator
to evaluate its performance on real traffic.

II. RELATED WORK

In [2], the RTT of a TCP flow was estimated based on the
timestamps in the TCP header using ML. In [3], the size of
the buffer at the bottleneck link was adapted for a TCP flow
depending on its RTT and the used CC scheme to achieve
high throughput and low delay based on queue statistics using
Deep Reinforcement Learning (DRL).

III. SYSTEM MODEL

Our training data is generated by a network simulation im-
plemented using Python and SimPy1. The simulation models

1https://simpy.readthedocs.io (Accessed: 03.07.2023)
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Fig. 1. Illustration of the system model

a general communication network with a packet sender and a
receiver that are connected via a full-duplex connection. The
sender performs CC with a slow-start and a congestion avoid-
ance phase as in TCP. In each direction, a configurable delay
of half the base RTT is added to the packets. In the direction
from the sender to the receiver, there is a packet queue. Packets
are dequeued at a configurable time interval to simulate a link
with a fixed capacity. Whenever the queue exceeds the buffer
size or the queuing delay exceeds a controllable threshold,
packets are marked as in ECN. The marking of a packet is
signaled back from the receiver to the sender, which sees it
as a congestion signal and reduces the Congestion Window
(CWND) accordingly. The model is depicted in Figure 1.

At the queue, the link capacity, the link utilization, the
queuing delay and the queue length are measured every 10ms.
To obtain the link capacity and the throughput, the number of
transmission opportunities and transmitted packets are counted
over the same interval. To get the queuing delay, it is calculated
as the queue length divided by the link capacity [4] instead of
timestamping each packet. As input for the estimator, a history
of the values at the last 200 time steps is used. Additionally, the
differentials ∆xt = xt − xt−1 are calculated for every value
and also included in the input. To make the trained model
robust against real-world imperfections, jitter is added to the
measuring interval as well as to the packet pacing at the sender.

The estimator neural network is created and trained using
Keras2. It has an input layer with 1600 neurons followed by
two fully connected hidden layers with 256 neurons each using
the Rectified Linear Unit (ReLU) activation function. Batch
normalization is applied at the input, while layer normalization
is performed after each hidden layer. Finally, the network
condenses to a single neuron with linear activation in the
output layer to estimate the base RTT.

2https://keras.io (Accessed: 03.07.2023)
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Fig. 2. Error in the base RTT estimation over the training epochs

IV. TRAINING

A. Dataset Generation

Multiple simulations are executed in parallel using the Ray
framework3 to create the dataset. Each training batch contains
the data from one step in each simulation, resulting in a
batch size of 128 with an equal number of simulations. The
simulations are executed in episodes of 30 s. In the beginning,
each simulation is executed for a random time of up to the
length of the first episode where no samples are collected to
desynchronize the simulations. At the start of each episode,
a random base RTT between 1 and 60ms and a queuing
delay threshold between 0 and 100ms is chosen. During
the episode, the link capacity is resampled every 1 to 10 s
to be between 100 and 2500 packets/s. Varying these three
parameters creates a diverse training dataset for different base
RTTs, link capacities and buffer sizes. The dataset contains
10 000 batches and thus a total of 1 280 000 training samples.

B. Supervised Learning

The neural network is trained supervised using randomly
sampled training batches from the dataset. The queue statistics
are used as the input and the base RTT as the label. The Mean
Squared Error (MSE) is used as the loss function. The length
of each training epoch corresponds to the size of the dataset
and the network is trained for a total of 50 epochs using the
Adam optimizer with a learning rate of 10−3.

The estimation error over the training epochs is shown in
Figure 2. It can be seen that the Mean Absolute Error (MAE)
starts at around 23ms, but goes down quickly and reaches a
value of around 2ms at the end of the training.

V. EVALUATION

To evaluate the performance of the RTT estimator with a
real TCP flow, it is implemented as a module in the FlowEmu
network emulator [5]. The module acts as a packet queue and
uses the TensorFlow C++ Application Programming Interface

3https://www.ray.io (Accessed: 03.07.2023)
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Fig. 3. Estimated RTT over the configured base RTT in the emulator

(API)4 to load the trained neural network. The output of the
neural network is filtered using an Exponentially Weighted
Moving Average (EWMA) with a weight of 0.1 for the
new sample. The emulated network corresponds to the one
described in Section III, but iPerf5 with TCP New Reno is
used as the sender and the receiver. The buffer size is limited
to 80 packets and the link capacity is set to 2000 packets/s.

The estimated RTT over the configured base RTT is shown
in Figure 3. The plot shows the mean value over an experiment
duration of 60 s, where the first 5 s are omitted as warm-up
period. The bars mark the 5% and 95% percentiles, respec-
tively. It can be seen that the estimated RTT is close to the
configured base RTT with an error of only a few milliseconds.

VI. CONCLUSION

We trained a neural network on simulation data to estimate
the base RTT of a TCP flow at the bottleneck link and showed
its accuracy in a real-time network emulator. The estimated
RTT can be used in future work to tune the parameters of
classic AQM algorithms or as input for novel DRL approaches.
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Abstract—Distinguishing between attack and legitimate traffic
in volumetric DDoS scenarios is challenging. Hierarchical Heavy
Hitter algorithms can efficiently monitor high-volume traffic
aggregates, but provide no insight into traffic composition.
Monitoring complementary traffic features enables classification
of traffic aggregates with machine learning, but increases the
memory footprint of Hierarchical Heavy Hitter algorithms. Since
the performance of these algorithms depends on the efficiency of
memory usage, we evaluate feature importance to find a compact
feature set for accurate distinction of legitimate and attack traffic.

Index Terms—Distributed denial of service, hierarchical heavy
hitters, machine learning, feature importance

I. INTRODUCTION

Hierarchical Heavy Hitter (HHH) [1] algorithms can process
high-volume traffic in volumetric DDoS attack scenarios at
line speed (e.g., [2], [3]). These algorithms monitor traffic
volume distribution, but not traffic composition. To make HHH
algorithms useful for attack traffic removal, additional infor-
mation is required to distinguish between attack and legitimate
traffic. By monitoring complementary features (besides traffic
volume), machine learning (ML) can be used to estimate the
purity of attack traffic in a traffic aggregate and to blacklist
subnets that primarily send attack traffic. However, using
complementary features increases the memory footprint of
HHH algorithms, which impedes monitoring efficiency.

To reduce the number of required features, we evaluate
the impact of individual features on attack traffic purity
estimations. For this, we utilize permutation feature impor-
tance [4] to measure the increase in the absolute estimation
error after shuffling the values of a single feature randomly.
Our results based on authentic MAWI traffic and synthesized
attack patterns indicate that only few features are required to
achieve high accuracy in attack traffic purity estimations.

II. ATTACK TRAFFIC PURITY ESTIMATION

HHH algorithms perform traffic volume aggregation to
detect high-volume IP prefixes, i.e., prefixes whose traffic
comprises a certain fraction ϕ of the total traffic (not including
the volume of longer high-volume prefixes). Estimating the
attack traffic purity of such high-volume prefixes enables
blacklisting of highly malicious IP source subnets to protect
network infrastructures from attack traffic.

∗Research performed while student at KIT.
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Fig. 1: ML-based regression to estimate attack traffic purity of aggregates.

Specifically, we denote the attack traffic purity of a prefix p
as the ratio πp = Ap/Vp of attack traffic volume Ap to
total traffic volume Vp. To obtain an estimate π̂p of πp, ML-
based regression can be applied to complementary features as
depicted in Fig. 1. To obtain these features, we modify an HHH
algorithm to count how often packets in the source address
range of a high-volume prefix exhibit certain characteristics.
For example, the counter c1 of prefix p1 can count the number
of times the TCP protocol occurred in its address range.
By continually monitoring different traffic characteristics, the
HHH algorithm provides insight into aggregate composition.

The counters can be queried at regular intervals to obtain
a feature vector F with features F1,F2, . . .. Given a set of
feature vectors and target values of πp, an artificial neural
network can be trained to estimate attack traffic purity. For this,
we use a straightforward model architecture (implemented in
TensorFlow). The model applies z-score normalization (fitted
on training data) in the first layer followed by an alternating
sequence of eight fully-connected layers (128 neurons and
ReLU activation) and eight dropout layers that reduce the risk
of over-fitting. A final layer outputs the attack traffic purity
estimation π̂p using a single neuron with a linear activation
function. The model is trained on dynamic traffic patterns
described in Sec. IV that model multiple volumetric DDoS
attack vectors overlaid on authentic, legitimate traffic.

III. FEATURE IMPORTANCE

To assess the impact of individual features on model perfor-
mance, we use permutation feature importance on the features
and vectors in Tab. I. We then shorten the vectors to reduce
memory footprints and retrain the models for comparison.



TABLE I: Features and Feature Vectors

Feature Meaning

FPKT Aggregate packet count
FVOL Aggregate traffic volume in bytes

FTCP, FUDP #occurrences of TCP and UDP protocols
FPORTS∈[X,Y ] #occurrences of source ports in the range [X,Y ]
FSIZE∈[X,Y ] #occurrences of frame sizes in the range [X,Y ]

Feature vectors Included features

FPROTO {FTCP,FUDP}
FPROTO+SIZE FPROTO ∪

{
FSIZE∈[0,199],FSIZE∈[200,1999]

}
FPROTO+PORTS FPROTO∪

{
FPORTS∈[0,210−1],FPORTS∈[210,216−1]

}
FALL FPROTO ∪{FPKT,FVOL}

∪
{
FPORTS∈[i·210,(i+1)·210−1] | i ∈ [0, 63]

}
∪
{
FSIZE∈[i·200,(i+1)·200−1] | i ∈ [0, 9]

}

Initially, the vector Fall uses all features and serves as a
baseline. To find its important features, we perform two-steps:

Feature importance assessment. First, for a given feature
vector, we calculate the cumulative distribution function (CDF)
of the absolute errors |πp − π̂p| of a trained model. We then
calculate the area under the curve (AUC) of the CDF. A
higher AUC implies better estimations. This can be used to
assess permutation feature importance. For this, we shuffle
each feature in a test dataset individually and perform attack
traffic purity estimations with a trained model. A reduction in
the AUC indicates the importance of a feature to the model.

Feature reduction. Second, we eliminate or combine fea-
tures of FALL that yield low AUC reductions (e.g., by com-
bining short port ranges). This yields the vectors FPROTO+SIZE,
FPROTO+PORTS, and FPROTO from Tab. I that focus on protocol,
frame size, and/or port information. These vectors are signifi-
cantly shorter to reduce the number of counters required by the
HHH algorithm. By measuring the AUC after re-training on
shorter vectors, we identify relevant complementary features.

IV. EVALUATION

We train the model on a synthesized dataset with authentic,
legitimate MAWI traffic [5] and synthesized attack patterns
with randomized time-dynamic behavior:

• UDP-based DNS, NTP and OpenVPN amplification at-
tacks with frame size distributions reported in [6].

• TCP-based flood attacks with random frame sizes and
ports in the range 60− 1492 and 49152− 65535 (resp.).

The DNS and NTP attacks use high-volume sources, while
OpenVPN and TCP attacks use wide-spread, low-volume
sources to generate different aggregates with varying traffic
volume. Randomizing sources and attack traffic characteristics
renders the estimation of πp challenging.

The feature importance of the most relevant features for
each feature vector is shown in Fig. 2. Protocol information
(particularly TCP) has the highest impact on model perfor-
mance. Based in the feature importance of FALL we determine
shorter feature vectors. Notably, the short frame size and port
ranges of FALL have low individual impact. Therefore, we
combine them into larger ranges to shorten vector length.
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Fig. 2: Feature importance ranked by AUC reduction for all feature vectors.

0.0 0.2 0.4 0.6 0.8 1.0
Absolute error

0.7

0.8

0.9

1.0

CD
F

ALL (AUC 0.9887)
PROTO + SIZE (AUC 0.9864)
PROTO + PORTS (AUC 0.9708)
PROTO (AUC 0.9632)

Fig. 3: Cumulative distribution function of the absolute errors in estimations
of the attack traffic purity πp when using different feature vectors.

Since there is no clear preference for port over frame size
information, we use the complementary vectors FPROTO+PORTS

and FPROTO+SIZE for comparison and additional size reduction.
Fig. 3 summarizes the CDF of absolute errors for different

feature vectors. The vector FALL achieves the highest esti-
mation performance with an AUC of 0.9887. In comparison,
protocol information alone results in a significant AUC re-
duction (0.9632 using FPROTO). Including complementary port
information in FPROTO+PORTS increases the AUC slightly to
0.9708. However, including frame size information instead
(in FPROTO+SIZE) retains an estimation performance close to
the full feature vector FALL (AUC = 0.9864). This provides a
significant feature size reduction from 76 features (FALL) down
to 4 features (FPROTO+SIZE) with low impact on estimation
performance. Through this, the memory footprint of an HHH
algorithm used for blacklisting can be reduced by 94.7%.
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Abstract—Traffic monitoring can react to changing data rates
by adapting the fraction of inspected packets (sampling rate). In
this work, we investigate the resilience of a sampling rate agnostic
machine-learning DDoS detector against a packet sampling rate
adapting to changing data rates. We show with real-world data
that an adapting packet sampling rate worsens the DDoS attack
detection accuracy. To counter performance reduction, we employ
upsampling and multi-rate training, showing that the resilience
against a changing packet sampling rate improves.

Index Terms—DDoS detection, traffic monitoring, packet sam-
pling, supervised machine learning

I. INTRODUCTION

Supervised machine learning (ML) detectors rely on traffic
monitoring in two ways. First, they are trained offline with traf-
fic obtained from past monitoring. Second, they process traffic
data obtained from current monitoring during deployment. ML
detectors perform well if the characteristics of monitored data
are similar during training and deployment.

Traffic monitoring can become a bottleneck at high data
rates, e.g., 100+Gbit/s. To prevent the monitoring from becom-
ing the bottleneck during traffic bursts, as potentially caused
by volumetric Distributed Denial of Service (DDoS) attacks, it
can be throttled by limiting the fraction of inspected packets,
i.e., packet sampling [1], [2].

However, packet sampling can reduce the stress on the
monitoring infrastructure, but it skews observed traffic char-
acteristics, as not all packets are inspected, and traffic infor-
mation is lost. This leads to dissimilarities between training
and deployment traffic data and causes a decrease in the
performance of the ML-based detection.

One primary goal for attack detection considering monitor-
ing resource efficiency is not to lose detection accuracy when
packet sampling becomes necessary.

Contribution

We evaluate the impact of adaptive packet sampling rates
on a DDoS detector, i.e., HollywooDDoS [4], trained in a
supervisory manner. We show that HollywooDDoS, which is
sampling rate agnostic, cannot preserve high-quality detection
when monitoring is performed with sampling rates that have
not been covered during the offline training process. We
evaluate two countermeasures and show with real-world data
that they enable the use of HollywooDDoS with monitoring
applying adaptive packet sampling rates.

II. BACKGROUND AND APPROACH

HollywooDDoS is a DDoS detection approach representing
arriving network traffic as two-dimensional images classified
by a Convolutional Neural Network (CNN). Monitoring is
performed in two dimensions, the source and the destination
IP address space. A grid of source-to-destination IP subnet
pairs is created and arriving packets are counted per subnet
pair. All arriving packets account for image creation during
monitoring.

When applying packet sampling, fewer packets are in-
spected and counter values per subnet pair are potentially
smaller, breaking normalization during deployment and de-
creasing the detection accuracy. We counter this detection
accuracy decrease with two methods, namely upsampling and
multi-rate training.

Upsampling

We assume that the traffic distribution in the grid of subnet
pairs is still correctly captured if enough packets arrive but at a
lower traffic volume according to the sampling rate. Therefore,
to compensate for the non-inspected traffic, every counter
value in the grid of subnet pairs is multiplied with the inverse
sampling rate. This provides an estimated reconstruction of
the real traffic distribution without packet sampling, ensuring
that the normalization does not break.

Upsampling is performed during deployment. Therefore,
deployed ML models do not have to be retrained and can
be further utilized.

Multi-rate Training

In contrast to upsampling, multi-rate training is not per-
formed during deployment but changes the training process
by creating multiple training data sets according to different
sampling rates. Therefore, for every sampling rate potentially
occurring during deployment, an individual data set is created.
The ML model is trained on all data sets, leading to one model
that generalizes well across all sampling rates.

III. EVALUATION

Training data is composed of real-world attack traffic from
CAIDA [3] and benign traffic from MAWI [5]. All data sets are
balanced, i.e., they contain the same amount of benign samples
as attack samples. Following best practices in ML, we split the
dataset into training (70%) and test (30%) set, and present the
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Fig. 1. The accuracy, with and without countermeasures, for different packet sampling rates resulting from a model with training sampling rate 1.0

results from testing. Each experiment has been conducted 20
times. Each result represents the median accuracy of all runs.

Fig. 1 provides accuracy results for an ML model trained
with only one packet sampling rate (1.0) with countermeasures
(two figures at the right) and without countermeasures (left
figure). Tested sampling rates range from 1.0 to 100.

A. Impact without Countermeasures

From the left figure of Fig. 1, it is observable that the ML
model performs well on the test data with the same sampling
rate (1.0) as the training data, resulting in an accuracy of
100 percent. However, when the sampling rate decreases, the
accuracy also decreases. For the sampling rate 1

25 the accuracy
drops to 94 percent and for sampling rates smaller than 1

25
the accuracy drops to 50 percent, constituting a detection
as good as guessing. Therefore, if HollywooDDoS would be
deployed with adaptive sampling rates, only trained with data
obtained from the sampling rate 1.0, detection results would
not be reliable. To maintain high detection accuracy across
all packet sampling rates, one model per sampling rate needs
to be deployed. This is infeasible if sampling rates are not
discrete.

B. Upsampling

The center figure of Fig.1 presents results derived from
the same model as before, but the test data sets have been
changed using upsampling by scaling the input with the
inverse sampling rate before feeding them into the ML model.
Previous results without countermeasures are carried over from
the left figure to illustrate the improvement. It is observable
that the model, only trained on data obtained from monitoring
with a sampling rate 1.0, is now able to perfectly classify
images obtained from monitoring with all tested sampling
rates.

A significant advantage of upsampling is that one trained
ML model can be used for the classification of images at
multiple sampling rates. There is no need to change or swap
the trained model during deployment because image scaling
is performed as part of the monitoring.

C. Multi-rate Traning

The right figure of Fig.1 presents results applying the multi-
rate training. Multi-rate training interferes the training process

by training the ML model with data obtained from monitoring
with all tested sampling rates. The goal is to train one model
that generalizes well across all sampling rates, without the
need for swapping models or rescaling images when using
adaptive packet sampling.

Results show that HollywooDDoS trained with multiple
sampling rates can perfectly classify images obtained from
monitoring at all tested sampling rates, achieving an accuracy
of 100 percent. Although the model training is more complex
with multi-rate training than using upsampling, no adaptations
to the monitoring are required during deployment in exchange.

IV. CONCLUSION

We outlined that adaptive packet sampling reduces the
detection quality during deployment for the supervised ML-
based DDoS detection approach HollywooDDoS. We evalu-
ated two countermeasures, namely upsampling and multi-rate
training. Upsampling rescales monitoring data according to
the inverse packet sampling rate during deployment, while
multi-rate training covers all packet sampling rates during
the ML model training. We showed the effectiveness of
both countermeasures with real-world data from CAIDA and
MAWI achieving 100 percent accuracy across all sampling
rates. V. ACKNOWLEDGEMENTS
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Abstract—Software-Defined Networking (SDN) enhances net-
work management by separating control and data plane func-
tionalities, but the centralized control plane increases the risk of
cyber attacks. Therefore, detecting network intrusions, including
unknown (zero-day) attacks, is crucial. Machine learning models
may be a promising solution, but often lack adaptability due
to their reliance on fixed datasets during training. This study
investigates corresponding challenges and outlines the potential
of employing online learning methods.

Index Terms—Network Intrusion Detection, SDN, Machine
Learning, Online Learning, Reinforcement Learning

I. INTRODUCTION

Software-Defined Networking (SDN) is a network architec-
ture that separates control and forwarding functions, enhancing
the network management flexibility. The centralized control
plane enables a comprehensive network view by establishing
forwarding rules to the switch’s flow table. However, the cen-
tralized control plane is vulnerable to network intrusions [1].
For instance, a Denial of Service (DoS) attack can exhaust
flow table memory, preventing the switch from accepting
new legitimate flows. Moreover, an attack can overload the
controller with an excessive number of new packet flows,
leading to disruptions and possible network outages.

To address these issues, increasing the number of SDN
controllers can distribute the load to enhance resilience and
scalability [2]. However, local network intrusions can still
impact the entire network, emphasizing the need for prompt
detection and mitigation. Therefore, an intrusion detection
system (IDS) is required for an effective network management.
By learning flow patterns, Machine learning (ML) has shown
promising results in the area of network flow clustering
and classification. A ML-based IDS can be implemented
using various techniques, including supervised [3] and un-
supervised models [4]. Supervised ML-based IDS relies on
labeled datasets for effective training, but its ability to detect
new attacks is limited to those with similar distribution to
the training dataset. Unsupervised models require no labeled
data and explore data to identify patterns, leading to better
detection of zero-day attacks. However, both supervised and
unsupervised approaches struggle with adaptability to dynamic
network architectures and concept drift over time.

Concept drift refers to changes in network architecture
that result in modifications to the data distribution. Network
modifications, such as adding or removing nodes, can impact
routing and alter the statistical features of flows over time [5].
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Fig. 1: A cooperative ML-based intrusion detection system
(ML-IDS) refines its model in an online fashion and commu-
nicates with other instances to classify flows on a global scale.

This shift in distribution can lead to decreased performance
in flow classification using fixed models. Network congestion
is another example that can impact the distribution of benign
flows. A static ML model may misclassify congested flows as
attack flows, highlighting the problem of generalization.

To address these challenges, mechanisms are needed
for model updates and adaptation to network architecture
changes [6], concept drifts, and dynamic variations in flow
distributions. Decentralization and cooperation among multi-
ple SDN controllers are also crucial for detecting global trends
and resolving attacks across subnetworks. The subsequent
section discusses potential solutions and explores challenges
associated with each approach.

II. CASE STUDY

Online learning, also known as incremental learning, can be
a potential solution. It enables regular updates of a ML model
as new data is obtained, allowing an IDS to continuously
refine its model to adapt to concept drifts and maintain the de-
tection performance [7]. However, online learning introduces
the problem of catastrophic forgetting, where an ML-based
IDS may unlearn how to handle previously seen attacks. To
mitigate this, the training data should be carefully shaped to
adequately represent each attack type. Consequently, the well-
crafted and split dataset can be played back as a sequence to
continuously refine the IDS model over time. The individual
datasets have to cover distribution shift, emergence of novel
attacks and reemergence of previous attacks to evaluate the
applicability of the approach. As all flows are taken from
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available datasets, the ground truth labels for the classifi-
cation problem are known. These can be compared with
the predictions of the IDS model to evaluate the efficacy
of the online learning mechanisms. Moreover, cooperation
between individual SDN controllers in a ML-based IDS can
be achieved with a distributed training paradigm like federated
learning [8] to propagate long-term knowledge, or with a
direct communication link between the models for reactive
coordination [9]. If a neural network is used to model the IDS,
hidden state information could be exchanged between IDS
models to share their view on the network and improve local
decision making. Communication approaches from the area of
multi-agent reinforcement learning [10] could be adapted for
semi-supervised online learning. The overall idea is illustrated
in Fig. 1, showing multiple benign flows from source nodes
(S) to destination nodes (D) within the same subnetwork and
an attack flow that spans from SDN A to SDN B.

Determining the ML-based IDS refining time is another cru-
cial metric which should be considered [11]. A naive solution
entails updating the ML-based IDS deployed in the control
plane whenever the data plane encounters a new unmatched
flow. However, this approach can overwhelm the control plane
during instances of DoS attacks or network congestion. To
address this challenge, a potential solution is to update the
online model using multiple trigger mechanisms.

Therefore, to detect concept drifts, two updating phases are
employed. The first phase investigates a subset of flow fea-
tures, denoted as Fc = [fi, fj , .., fK ], which exhibit common
behaviors seen in network intrusions (e.g., packet interarrival
time, packet size). Analyzing the patterns within these features
enables the determination of shifts in the underlying data
distribution. When concept drift occurs, the switch initiates
a process where flows are forwarded to the controller for a
forwarding duration of tf . During this time, the ML model
is updated to adapt to the new data patterns. Furthermore,
to address potential shifts in the data distribution caused by
network architecture changes, a second trigger mechanism for
updating is proposed. This approach involves selecting a ran-
dom updating time interval, denoted as Tu. After this interval
elapses, network flows are forwarded to the control plane
for a duration of tf to update the ML model. Selecting Tu

randomly helps to prevent attackers from predicting the precise
timing of the ML model updates. The proposed aggregated
trigger mechanism ensures that the IDS continuously adapts
and remains effective in detecting potential intrusions.

As an alternative to using existing data sets, one could
simulate the underlying network and the emergence of new
benign and attack flows. The interaction of the IDS model
with the network could then be modelled and approached
with reinforcement learning. Generative models [12] could be
viable to simulate the emergence of new flows in the environ-
ment, but constraining their output to realistic traffic data will
presumably require the involvement of domain experts and
manually created rules. Creating new flows by manipulating
existing traffic patterns would also be feasible and require
less manual intervention. While this setting would be more

realistic than the first approach, the expected effort for design
and implementation outweighs its benefits.

III. CONCLUSION

This work explores the insufficient adaptability of existing
ML-based IDS and proposes solutions for their effective use.
The main challenges for leveraging online learning include
catastrophic forgetting and determining model refinement
time. To tackle catastrophic forgetting, we emphasize the
need for well-shaped training data that represents benign and
attack flows. For refinement time determination, two trigger
mechanisms are proposed to detect different concept drifts.
If the effectiveness of this approach can be verified in a
centralized setup, a potential next step would be the extension
to a decentralized setting with cooperative SDN controllers.
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Abstract—This research paper presents two tools, SieMonX
and PicNIC, that can help monitor and diagnose faults in black
box industrial networks. SieMonX is an agent-based network
monitoring and data generation tool, while PicNIC is an image-
based end-to-end network diagnosis tool that uses a convolutional
neural network to diagnose inaccessible networks through simple
delay measurements. These tools provide valuable insight into
network infrastructure and can aid operators in making informed
decisions. A look into both tools provides insight into the
functionalities and the implementation.

Index Terms—Machine learning Network Diagnosis, Industrial
Networks, Network Monitoring

I. INTRODUCTION

The Context: In recent years, the convergence of IT and
OT networks in industrial environments has become increas-
ingly prevalent. These complex networks involve multiple
stakeholders coexisting, making them difficult to monitor and
diagnose. Railway networks are a prime example of externally
operated networks, which require operators to have insight
into foreign networks to diagnose end-to-end connections.
However, equipment in these networks is often connected
through foreign networks, and there needs to be access to
internal network equipment or monitoring data, making it
challenging to pinpoint faults.
The Problem: The challenge of monitoring and diagnosing
faults in complex industrial networks has been a research
topic for many years. Operators often struggle to determine
whether a fault is due to broken equipment or an underlying
network. This lack of insight can lead to costly downtime and
decreased productivity. Dynamic Time Warping (DTW) [1]
and deep learning techniques, such as Convolutional Neural
Networks (CNNs) [2]–[5]. Moreover, Recurrent Neural Net-
works (RNNs) [6], [7] are commonly used in time series clas-
sification for detecting anomalies, predicting network traffic,
and identifying network events. Although these techniques
are widely researched, their use case in black box network
diagnosis, especially in industrial environments, is a hardly
considered topic. This paper presents two tools to address these
challenges: SieMonX and PicNIC.
Our Contribution: The contribution of this paper is to
provide a comprehensive overview of SieMonX and PicNIC
and their potential to address the challenges of monitoring
and diagnosing faults in complex industrial networks, as seen
in Fig. 1. SieMonX is an agent-based network monitoring
and data generation tool for developing data-driven machine
learning. It provides a framework for custom monitoring tools

Cell n

Cell 5 Cell 4

Cell 3

Cell 1 Cell 2

Blackbox
Network

1

1

2

2

Picture-based
Time Series Representation

End-to-End Delay
Measurements

Convolutional Neural Network

Inference

SieMonX

Training

High Background Load

Lossy Connection

Wireless Link

Bandwidth Cap

Classification

Fig. 1. Training and Inference Pipeline using SieMonX in an Industrial
Blackbox Network.

or load generators and stores and documents data consistently,
making it easy to preprocess. This tool generates valuable
data for network analysis and provides a robust foundation
for machine learning models to detect faults in the network.
PicNIC is an image-based end-to-end network diagnosis tool
that uses simple delay-based measurements. This tool visually
represents time series data as images, allowing for more
straightforward interpretation of network behavior. It uses a
Convolutional Neural Network to classify images and detect
behavior in the black box network, such as high background
load, lossy transmits, and bandwidth restrictions.

II. SIEMONX

Motivation: To generate data for training of models or for
statistical analysis, often complex tasks or measurement cam-
paigns in testbeds have to be performed. A typical testbed will
have several nodes and a communication network in between.
Moreover, campaigns must be repeated using different setups
to cover a broad range of scenarios. In a non-trivial envi-
ronment, this can be a time-consuming and error-prone task.
Correct and complete documentation of test runs is a must and
again adds to the needed efforts. The Siemens Monitoring tool
for Experimentations (SieMonX) automizes test campaigns
quickly, allowing many test runs with different conditions and
storing data consistently. It can even add tags to the data, so
manual tagging is not needed in this case. A second problem
in those training environments is often that custom functions
are needed, which external tools cannot quickly provide. For
example, SieMonX includes a simple UDP-based end-to-end
monitoring tool that can - on demand - send a short packet
immediately followed by a long packet so the effects of a
network can be studied under the assumption that both short
and long packets receive the same effects. Thus, SieMonX
is also a framework for custom monitoring tools or load



generators. In this respect, it offers timer handling, a storage
service, and more.
State-of-the-Art: Typically, scripts are devolved and deployed
in the testbed. This, however requires some development effort
and is error prune. A better approach is to have agents on
each node and one controller. This can be achieved by several
automation tools (e.g., Ansible) or by monitoring tools (e.g.,
Nagios). However, these tools are built for other purposes, so
it is still needed to develop scripts or plugins, and limitations
may occur. Moreover, these tools do not address automatic tag-
ging or data consolidation, which requires additional scripting.
SieMonX, as a specialized tool, is easier to use and only needs
one straightforward high-level script to perform a campaign.
There is no need to change something on the nodes remotely.
Architecture: SieMonX has two components: a controller
and agents. The controller is the user interface and sends
commands to the agents, performing the needed actions.
The agents need a simple configuration, the controller’s IP
address, and a directory for storing data. Upon start, the agent
then registers at the controller. A researcher then can issue
commands using the console of the controller or can start
a simple script to initiate several commands in the testbed
at once. This script can add supplementary info to the data
from the test run, e.g., configuration data. Each measurement
campaign stores its data in an individual directory, together
with automatically produced metadata. Thus, preprocessing
can quickly identify the correct data set and the conditions
under which the data was produced.

III. PICNIC

This section introduces PicNIC, a picture-based approach
to diagnosing black box industrial networks using machine
learning. Fig. 1 shows the complete pipeline from training
using SieMonX to inference in an industrial network.
Data Sources: Fig. 1 shows the two primary data sources for
PicNIC. SieMonX mainly provides training data for the neural
network, while the data from the real factory network is used
for inferencing and diagnosis. It is also possible to use labeled
factory data to train the model further to increase classification
accuracy.
Data Preprocessing: To use a convolutional neural network
for time series classification, the data is preprocessed and
converted into a visual representation. These representations
must be able to represent information in the time domain,
not to lose information about the incoming signal. Gramian
Angular Fields (GAFs), Markov Transition Fields (MTFs) [8],
and Recurrence Plots (RPs) [9] represent this information ac-
cordingly and can keep temporal correlations of the incoming
data.

The preprocessing step splits incoming time series data into
chunks of n items, as each transformed image has a dimension
of nxn pixels. Each chunk contains 100 delay measurements
to keep images small to decrease the training and inference
time and the model size. Small chunk sizes also decrease the
delay between recording the chunk’s first measurement and the

image’s classification. The preprocessor converts each chunk
into a GAF, MTF, and RP as input for the CNN.

As the CNN needs exactly one image for classification,
the last preprocessing step stitches the three separate images
into one final image. The final image has n pixels in width
and height with three channels, similar to an RGB picture. In
contrast to an RGB image, each channel represents either the
GAF, MTF, or RP, not the color value.
Training & Inferencing: Training and inference commence
similarly, with the picture format as an intermediate between
the data and the neural network. An InfluxDB buffers the
streamed data from SieMonX or the black box network. From
here, the preprocessing pipeline takes the images, transforms
them, and feeds the neural network for training or diagnosis.

Use Case & Results: An emulated industrial network inside
SieMonX with multiple agents delivers training data for no
error and high background load scenarios between two agents
to train PicNIC. The trained PicNIC model then classifies
measurements between two different agents connected at dif-
ferent endpoints in the emulated network. PicNIC manages to
classify high background load in the black box network with
an accuracy of above 90%.

IV. CONCLUSION & FUTURE WORK

PicNIC and SieMonX show the potential of black box
network diagnosis in industrial networks. We believe that
our work opens exciting possibilities to diagnose black box
networks for future emerging network layouts. Future work
could include a reinforcement learning approach to let PicNIC
auto-adapt to changing network behaviors and layouts, without
the need for manual retraining.
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Abstract—IEEE 802.1 Time-sensitive Networking (TSN) pro-
tocols have recently been proposed to replace legacy networking
technologies across different mission-critical systems (MCSs).
Design, configuration, and maintenance of TSN within MCSs
require advanced methods to tackle the highly complex and
interconnected nature of those systems. Accordingly, artificial
intelligence (AI) and machine learning (ML) models are the
most prominent enablers to develop such methods. However,
they usually require a significant amount of data for model
training, which is not easily accessible. This short paper aims
to recapitulate the need for TSN datasets to flourish research on
AI/ML-based techniques for TSN systems. Moreover, it analyzes
the main requirements and alternative designs to build a TSN
platform to synthesize realistic datasets.

Index Terms—IEEE 802.1 TSN, machine learning, dataset

I. INTRODUCTION

Modern mission-critical systems (MCSs) such as avionics
and automobiles have evolved from static and close-loop net-
works of embedded devices to highly interconnected networks
of different services. IEEE 802.1 Time-sensitive Network-
ing (TSN) protocols have recently been proposed to satisfy the
varying quality of service (QoS) and reliability requirements of
such services over standard Ethernet equipment [1]. Replacing
multiple domain-specific networking technologies in MCSs,
TSN reduces their design and maintenance cost and offers
additional configuration flexibility.

This flexibility enables us to (re)configure data streams
for dynamically changing data traffic requirements due to
the addition or removal of new devices, mobility of existing
components, or any anomalies in case of potential failures and
security incidents [2]. It requires capturing the complex system
behavior to detect such changes and develop advanced recon-
figuration strategies that can adapt MCSs in real-time to ensure
end-to-end deterministic communication requirements [3].

Artificial intelligence (AI) and machine learning (ML) have
been recently employed to model the complex nature of
MCSs to enhance their safety, reliability, and efficiency [4]. In
TSN-enabled MCSs, they can autonomously classify different
types of TSN traffic such as video streaming, event- or time-
triggered traffic. This classification capability aids in network
management and QoS optimization to develop effective self-
configuration mechanisms [3]. Moreover, AI/ML enables pre-
diction of future traffic behavior, which is crucial for capacity
planning, resource allocation, network optimization, and pre-
dictive maintenance. This leads to better resource efficiency
and QoS in highly dynamic environments by rearranging

resources based on estimated traffic patterns [5]. Besides,
combined with an effective TSN monitoring tool [6], AI/ML
models can accurately detect anomalies in time-sensitive
data traffic, which could indicate network intrusions, security
breaches, or performance issues.

However, AI/ML models usually require training with sig-
nificant amounts of data that should accurately reflect network
topology and communication. Since IEEE 802.1 TSN proto-
cols have yet to be broadly deployed, it is challenging to find
actual data. Besides, the lack of transparency in MCSs due to
their safety and security obligations prevents even (potentially)
existing data from being publicly available. Therefore, we
need reliable sources and platforms to obtain extensive and
realistic TSN datasets. Accordingly, in this short paper, our
first goal was to recapitulate the need for TSN datasets to
flourish research on AI/ML-based TSN design, configuration,
and resilience methods. In the remainder, we explore the main
requirements of an open and reusable platform to synthesize
public TSN datasets (Section II). Then, we shortly review
alternative designs to build such a platform (Section III).

II. PLATFORM REQUIREMENTS FOR DATASET SYNTHESIS

The two primary reasons for the absence of public TSN
datasets are the lack of widely-deployed TSN systems and
the opaque nature of MCSs. Designing an accessible TSN
platform, e.g., a TSN-based prototype, simulator, etc., should
be the first step to synthesizing the required datasets, which
should represent the overall behavior of the respective system
in a reliable and verifiable manner. Accordingly, we outline
the requirements of such a platform as follows.

• Representation of a realistic MCS: A TSN-based platform
(and its respective dataset) should accurately reflect the
design and operational principles of actual MCSs such as
aircraft, automobiles, or industrial systems. This includes
modeling a realistic network topology and different service
classes with distinct QoS and reliability requirements.

• Support for various TSN protocols: This platform should
support a broad set of TSN protocols to generate exten-
sive datasets reflecting various MCS scenarios. For in-
stance, P802.1Qav CBS or P802.1Qbv TAS could be al-
ternatively used for scheduling mixed-criticality streams.
P802.1CB FRER is required for redundant communication,
and P802.1Qcc SRP could also be a prerequisite for the
network-wide configuration of these protocols.



• Verification of system behavior: The design and config-
uration of the TSN platform should be verified to ensure
a reliable dataset reflecting the desired network behavior.
For instance, verifying the TAS scheduler guarantees that
all streams in the synthesized dataset are realistically for-
warded within their latency boundaries [7]. This requires an
extensive analysis of the resulting dataset.

• Visibility of individual components: The platform should
allow extracting local traffic from selected components
alongside an extensive dataset with system-wide network
communication. This enables the analysis of the behavior
in target components more isolatedly.

• Scalability: A realistic topology size and connectivity of
MCSs should also be considered for the platform design
since they shape the interdependencies between TSN com-
ponents. This mainly affects both amount and depth of a
TSN dataset extracted from the respective platform.

III. PLATFORM DESIGN

We consider three potential designs for a TSN platform to
synthesize datasets: a) a hardware-based prototype, b) a hybrid
emulation, and c) a simulation platform. This section briefly
analyzes them regarding the requirements mentioned earlier.
Table I also summarizes this discussion.

TABLE I
COMPARISON OF DIFFERENT PLATFORM DESIGNS.

Hardware Hybrid Simulation
Representation ✓ ✓ ∼

Protocol Support ∼ ∼ ✓
Verification ✓ ✓ ✓
Visibility ∼ ✓ ✓

Scalability ✗ ∼ ✓

a) Hardware-based Prototype: A platform of actual off-
the-shelf equipment, e.g., TSN bridges or more generic TSN-
supporting Linux devices, represents an MCS the most re-
alistically [8]. While generic equipment provides extensive
visibility, TSN bridges require monitoring capabilities such
as mirror ports, which may only exist in some commercial
TSN bridges. Proportional to their visibility, the behavior
of hardware-based components can be verified by manually
accessing these components or processing the dataset derived
from the platform. Unfortunately, such a platform potentially
has a partial protocol support (marked as ”∼” in Table I) since
existing TSN equipment implements a limited set of protocols
as it takes a significant engineering effort. Besides, it can only
have a limited scalability that may not reflect the typical size
and complexity of real MCSs [9].

b) Hybrid Emulation: When hardware capabilities and
platform scalability are limited, it is possible to emulate certain
parts of a platform by integrating software-based solutions,
e.g., an emulator, into a basis hardware-based prototype.
Mininet, for instance, could represent a network of generic
Linux-based devices with TSN scheduling capabilities [10].
While this is partially scalable and provides more visibility

and easier verification, integrating hardware- and software-
based solutions is technically challenging and requires the
synchronization of different environments.

c) Simulation: Simulation platforms have already been
used in several TSN studies [3], [5], and it is the most
flexible alternative regarding configurability, scalability, and
visibility. They offer a wide range of TSN protocols with
a convenient level of abstraction [11]. Besides, integrating
(even run-time) verification mechanisms into the simulations
is more straightforward. However, they can only approximate
the actual dynamics of MCSs and potentially deviate from
real-world network behavior.

IV. CONCLUSION

AI/ML models can significantly foster the development of
advanced design, configuration, and maintenance techniques
for emerging IEEE 802.1 TSN protocols. While these models
typically require a significant amount of data for training, there
does not exist any public TSN dataset due to the lack of
broadly-deployed TSN systems. In this paper, we first recapit-
ulate the need for an extensive TSN dataset to enable AI/ML
research providing a standardized and reproducible basis for
experimentation and validation. However, this first requires
a realistic TSN platform that synthesizes and validates TSN
datasets. Therefore, we next outline five major requirements
and analyze alternative designs of such a platform. We aim
to use this preliminary study as a road map for our ongoing
effort to create extensive, realistic, and public TSN datasets.
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[3] N. Sertbaş Bülbül, D. Ergenç, and M. Fischer, “SDN-based Self-
Configuration for Time-Sensitive IoT Networks,” International Confer-
ence on Local Computer Networks (LCN), 2021.

[4] P. Laplante, D. Milojicic, S. Serebryakov, and D. Bennett, “Artificial
Intelligence and Critical Systems: From Hype to Reality,” Computer,
vol. 53, no. 11, pp. 45–52, 2020.
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Abstract—Real-time systems employ prioritization schemes to
accommodate different traffic classes with specific quality of
service (QoS) requirements. However, in some scenarios where
numerous high-priority packages are transmitted, lower-priority
packages may fail to meet their deadlines, leading to a significant
decline in scheduling performance. Sending high-priority flows
excessively early does not provide any additional benefits beyond
meeting the deadline. Instead, it is more effective to utilize
this buffer time for lower-priority traffic and ensure on-time
transmission of high-priority traffic. We propose an adaptive
dynamic priority assignment scheme that utilizes reinforcement
learning (RL) to address this issue. This enables adaptation
to changing network conditions and continual improvement in
performance over time. Additionally, we present and discuss two
potential configuration candidates that can be utilized within the
proposed scheme.

Index Terms—dynamic priority, reinforcement learning, time-
sensitive networks, deadline

I. INTRODUCTION

The Internet of Things (IoT) and time-sensitive networking
(TSN), i.e., real-time communication protocols, are enablers
for future mission-critical systems and respective applications
that require bounded latency as well as seamless and fault-
tolerant communication. In this context, the delivery of traffic
within a specific timeframe, referred to as the deadline, is
significant, with potentially severe consequences when packets
are late. In certain critical applications like robotics, any failure
to meet these deadlines can have catastrophic consequences.
The respective traffic has a hard deadline. However, numer-
ous applications operate with soft deadlines, e.g., best-effort
traffic, meaning they can tolerate occasional misses without
experiencing a significant decline in performance or output
quality. For instance, in video streaming, a few late packets
do not have a significant impact on the overall video quality,
e.g., the codec contains enough redundancy to recover. In
such cases, the system can be more flexible in meeting the
deadlines, focusing on providing the best possible output while
still striving to adhere to the specified deadline.

The IEEE task group has proposed the TSN standards for
providing such a QoS for each traffic class within the same
network by describing different handling mechanisms for vary-
ing traffic requirements. It uses eight priorities to distinguish
traffic classes, representing which traffic is more important
with hard real-time constraints. The TSN mechanisms handle
traffic on switches based on these priority values.

Although the prioritization mechanism enables the coex-
istence of different traffic classes, when a large number of

high-priority packages are sent, it can lead to lower-priority
packages failing to meet their deadlines. Despite having a
lower priority, these packages still have their deadlines. This
becomes particularly unfortunate when high-priority packages
reach their destination much earlier than they are supposed to
arrive. From the application perspective, it does not make a
huge difference to receive a packet shortly before its deadline
or well in advance of it. Thus, instead of sending high-priority
traffic early on, it might be better for all flows in the network
to send high and low-priority traffic on time. To address that,
we propose dynamic priority handling that reassigns packet
priorities so that lower-priority packets can make up time and
do not arrive late. This can increase the utilization of network
resources and decrease the number of late packets.

The authors of [1] have proposed an elastic queuing struc-
ture to avoid frame drops due to queue size limitations and
with the help of the underlying hardware. However, this is
an additional dependency and also increases the hardware
requirements. Meng et al. [2] have proposed to use the Fuzzy
Analytic Hierarchy Process (FAHP) to compute the priority of
packets considering energy consumption, running time, and
deadline. Then, a heapsort-based dynamic sorting algorithm
selects the optimal scheduling subset from the task set using
the new priorities. Even though results promise to reduce the
deadline miss rate, it is not directly applicable to TSN with
design criteria like energy consumption.

Unlike traditional approaches, RL offers several advantages
for dynamic real-time networks as it can adapt and learn
from experience in changing environments. In dynamic real-
time networks, RL can continuously update its policies and
make near-optimal decisions based on the current network
state. This autonomous optimization capability allows RL to
adapt to changing network conditions and improves network
performance over time without human intervention. Moreover,
the capabilities of RL to learn from interactions and effectively
represent complex relationships position it as a highly suitable
approach for addressing challenges encountered in dynamic
network environments. Thus, RL has also been used in TSN
with different goals, such as finding a routing path [3] or
configuring per-hop latency guarantees [4]. Several studies
leverage RL for dynamic priority assignment problems in
the context of real-time environments [5]. However, the main
objective of these studies is to determine a schedulable priority
assignment that can accommodate a greater number of flows in
the network. Instead, we aim to use resources more efficiently



while accommodating, at least, the same number of flows but
providing better QoS satisfaction regarding deadlines. This
problem becomes more obvious in the case of imbalanced
traffic classes, where certain classes may become overloaded
while there is an available capacity for other traffic classes.

Accordingly, this paper outlines our roadmap for utilizing
reinforcement learning for dynamic priority assignments in
time-sensitive networks. Our main goal is to reduce the
number of missed flow deadlines resulting from inefficient
resource utilization. To achieve this objective, we propose two
configuration schemes based on TSN standards: centralized
and distributed. We examine these schemes and discuss their
limitations in meeting near real-time requirements and provid-
ing strict QoS guarantees, considering the constraints imposed
by the time-sensitive environment.

II. DYNAMIC PRIORITY ASSIGNMENT WITH
REINFORCEMENT LEARNING

To leverage the advantages of reinforcement learning, we
present two potential configuration schemes in Figure 1 that
can be applied to time-sensitive networks:

a) Centralized Scheme: In a centralized scheme, as illus-
trated in Figure 1a, it is assumed that the centralized network
controller (CNC) has a global network view and collects
statistics such as queue waiting time and queue utilization. The
RL agent is deployed on top of the CNC so that it receives
real-time network data and can utilize RL algorithms to learn
and determine global network policies. Since it perceives the
network as a whole, this scheme enables coordinated decision-
making and optimization across multiple network elements.
Thus, CNC can generate best policies for the dynamic priority
assignment based on a centrally deployed RL agent.

(a) Centralized scheme

(b) Distibuted scheme

Fig. 1: RL-based dynamic priority assignment scheme.

Since there is no policy or apriori information about the
network initially, CNC can monitor the current assignments
and train the RL agent. In other words, CNC can get hop-
by-hop statistics and merge them to compute a final reward
value for the action, e.g., the current priority of the packet.
Here, considering the QoS requirements of the packets, the
reward can get negative values as well, e.,g., a penalty value.
During this training (exploration) time, RL can assign random
priorities to packets or leave them as they are. After the pre-
training time, CNC can benefit from the developed RL policy
to reassign a new priority to the packets dynamically on the
runtime.

b) Distributed Scheme: In a distributed scheme, as illus-
trated in Figure 1b, RL agents are directly deployed at network
nodes, e.g., at TSN switches. These agents locally monitor the
network, collect real-time data, and learn optimal decision-
making policies based on the observed conditions. Each switch
aims to compensate for a potential latency in the previous hop
by dynamically re-assigning packet priorities determined by
RL. Thus, each switch has its own RL agent to develop a
policy. It may also be possible to benefit from the transfer
reinforcement learning concept. Switches may collaboratively
help each other to develop the best assignment policy.

However, without a centralized controller, the problem gets
harder. Now, the switch has to assess, based on limited
knowledge, whether the packet will miss its deadline and
needs to get reprioritized. For that, it may need to know the
topology or path the packet will be routed. Also, the packet
must be marked as a late packet to be handled differently at
the next hop switch. Thus, there is a need for a communication
protocol and a local or distributed algorithm between switches
to address these points.

III. CONCLUSION

In conclusion, the proposed adaptive dynamic priority as-
signment scheme leveraging reinforcement learning presents
a promising solution for future networks. It can dynamically
reconfigure the priorities of existing packets and offers a
practical approach to decreasing missed flow deadlines. By
adaptively adjusting priorities based on real-time conditions, it
can effectively manage resource allocation and meet stringent
QoS requirements.
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