
2ND WORKSHOP
“MACHINE LEARNING &
NETWORKING”
PROCEEDINGS

CO-LOCATED WITH
THE 5TH INTERNATIONAL CONFERENCE ON
NETWORKED SYSTEMS (NETSYS 2023)
POTSDAM, GERMANY

SEPTEMBER 4,
2023

(MaLeNe)

Steps Toward a Supervised Machine Learning

Scheduler for MPTCP

Reza Poorzare, Hadi Asghari, and Oliver P. Waldhorst

Data-Centric Software Systems Research Group at the Institute of Applied Research,

Karlsruhe University of Applied Science, Karlsruhe, Germany

reza.poorzare@h-ka.de, asha1011@h-ka.de, and oliver.waldhorst@h-ka.de

Abstract— The functionality of the MPTCP scheduler is a

hurdle in the way of the protocol in achieving high performance.

This drawback is even more severe in heterogeneous networks,

where the differences in the characteristics of the paths impair the

functionality of the scheduler drastically. In this paper, we

introduce a dataset generated by an emulation environment,

including diverse scenarios and traffic types, as an initial step

toward having a supervised learning scheduler.

Keywords—Transport protocols, Machine Learning, MPTCP,

Proxy, OpenStack

I. INTRODUCTION

MPTCP (Multipath TCP), which is an extension of
conventional TCP (Transmission Control Protocol), was
developed to allow having more than one network path in the
very same connection. This protocol can indeed provide some
benefits relying on its scheduling mechanisms and simultaneous
distribution of traffic into different paths. However, it cannot
achieve full bandwidth aggregation, due to flaws such as out-of-
order packets, frequent re-ordering processes, or HoL (Head of
Line) blocking that waste time and energy. Most schedulers
exploit single-criterion or multi-criteria approaches for traffic
management. In the former, a parameter such as RTT (Round
Trip Time) is used, while in the latter, more than one parameter
is considered to select the path for the transmission. These
reactive approaches lack the ability to properly distribute traffic
to prevent the above-mentioned issues and are easily confused
by random packet losses or other shortcomings that may occur
in the network [1]. Therefore, to overcome these issues and
make the best use of the available bandwidth aggregation, it is
necessary to design schedulers based on machine learning
techniques that can not only detect the current state of the
subflows, i.e., paths, but also predict upcoming situations to
enhance the functionality of MPTCP.

By considering these facts, the main questions in this
ongoing work are: (i) How to create an emulation environment
that can reflect various real-time networking circumstances? (ii)
How to have a centralized node in the topology that has insight
into the whole traffic to generalize the data set? (iii) Based on
the generated data set, how can appropriate features be selected
to be used in supervised learning techniques such as deep neural
networks?

II. RELATED WORK

Several approaches have been proposed to deal with the
inefficient functionality of the MPTCP scheduler. The initial
steps approached existing problems, such as out-of-order

delivery, reactively, leading to schedulers like BLEST (BLock
ESTimation) [2] and ECF (Earliest Completion First) [3].
BLEST estimates the blocking time for different subflow
selections and traffic distributions in a way that alleviates out-
of-order and HoL blocking issues. With some similarities to
BLEST, ECF attempts to find the path with the minimum
transmission delay by exploiting parameters such as RTT and
cwnd (congestion window).

There have been some other proposals, but most of them
suffer from having static and non-intelligent methods. Thus,
they are not able to fully utilize the available resources. A
reinforcement learning scheduler called MPTCP-RL has been
proposed recently in [4] to find the best optimal path and
mitigate packet loss and network heterogeneity adverse impacts.
This scheduler tries to create a table containing scheduling rules
for subflow selection, and by relying on the rules, it could
enhance the network’s throughput. However, this approach can
waste some time in the decision-making phase, since it should
update itself frequently. Moreover, it cannot be generalized
easily for different scenarios. As a result, there is a need for
supervised learning techniques so that the training and decision-
making parts can be separated. In this case, a machine learning
engine that is frequently updated offline resides in the
scheduling component. This mechanism can dramatically
reduce the time spent on the decision-making process. However,
to the best of our knowledge, there is no public dataset for this,
so the first steps should be taken toward its creation.

III. MPTCP PROXY DEPLOYMENT FOR DATA SET CREATION

The main problem in a supervised learning scheduler
establishment is the lack of a stereotyped data set. A data set
should be a reflection of diverse real-world scenarios, so it can
generalize to most of the existing situations. As a result, we have
divided the existing scenarios into three different categories,
including short- medium- and long connections. For the first
scenario, web page loading, for the second one, video streaming,
and for the third one, test file download were the representatives.
After identifying the problems and counterpart representatives
for the scenarios, an approach for data gathering should be
selected. As a result, we decided to use an intermediate node as
a MPTCP proxy so that all traffic between clients and public
servers goes through it and it can monitor all the traffic.

This approach can bring some advantages, including: (i)
Public servers do not need to support MPTCP as the connections
between the clients and proxy will be MPTCP ones. (ii) As the
whole traffic is passed through a centralized node, the creation
of a data set by using it can be a reflection of the network. On

mailto:reza.poorzare@h-ka.de
mailto:asha1011@h-ka.de

the proxy server, we have used microsock5, which is a
lightweight proxy that handles traffic redirection without heavy
use of resources.

IV. EMULATION SETUP AND METHODOLOGY

The laboratory experiment conducted in this study utilized
the OpenStack platform as the virtualization infrastructure,
including thirty Linux clients, as shown in Figure 1. Moreover,
a Python automation script was employed for streamlined
deployment. By using a Linux traffic shaper tool on individual
subflows, characteristics such as packet loss probability,
latency, or bandwidth, for 5G (Fifth Generation) and Wi-Fi 6
networks were emulated. The experiment encompassed various
scenarios, including data download, video streaming, and
webpage loading, to imitate real-world requirements and have
different traffic types.

Figure 1 The emulation environment in OpenStack

Table I Selected parameters to create the data set

Parameter Description

srtt_us Round trip time for subflows

basertt The minimum seen RTT of
individual subflows

snd_cwnd Sending congestion window

max_window The maximal window ever seen
from a subflow

bytes_acked How many bytes were acked

bytes_sent Total number of data bytes sent

prior_cwnd The cwnd right before loss recovery

lost Total data packets lost, including
retransmissions

Once we have the emulation environment, we should choose
the parameters carefully. This process should follow two main
goals: 1. The parameters should be able to help the trained
scheduler distinguish different states in the network 2. They
should provide the feasibility of differentiating various
circumstances in the network, such as shadowing or fading.
With these goals in mind, the parameters in Table I were
extracted from the tcp.h file. However, parameters can be added
or deleted as needed. In the feature selection phase, some
important criteria should be considered, including 1. When the
network state is changed, it should be reflected. 2. Important
states and conditions such as peak data rates, low latencies,
recovery times, traffic load portion, and reasons for the packet

loss should be distinguishable. In the next steps, a selection of
variables can form the inputs of a supervised learning technique,
such as a deep neural network, to train the engine. These
variables should be affected by changes in the network to reflect
the state of the network, and preferably reside between zero and
one to avoid normalization. Some selective examples are given
in Table II. For the final step and labeling of the outputs, random
hashing is used to weigh the subflows and find out which
weights appropriately reflect the states based on fair use of the
bandwidths and user experience measurements such as packet
loss and data rate.

Table II Selective inputs to feed the deep neural network

Variable Goal

basertt/srtt_us Traffic load detection

snd_cwnd /max_window Determine the aggressiveness
of the sending rate adjustment

bytes_acked /bytes_sent Estimation of the BDP
(Bandwidth-Delay Product)

prior_cwnd /max_window Having a faster recovery

lost/bytes_sent Distinguishing random losses

V. CONCLUSION AND FUTURE WORK

The MPTCP scheduler has some drawbacks in selecting the
best possible subflow because of its static and non-intelligent
mechanism. As a result, in this work, we took the first steps
toward having a supervised machine learning-based scheduler.
We have established an emulation environment reflecting
different network conditions, and then, by using a MPTCP proxy
node, a stereotyped data set was created that can be used in
supervised learning approaches. In future work, we will feed this
data set to a deep neural network to conceive of an intelligent
scheduler that can function properly in various circumstances.

ACKNOWLEDGMENT

This work was supported by the bwNET2020+ project
which is funded by the Ministry of Science, Research and the
Arts Baden-Württemberg (MWK). The authors alone are
responsible for the content of this paper.

References

[1] R. Poorzare and O. P. Waldhorst, “Toward the Implementation of MPTCP
Over mmWave 5G and Beyond: Analysis, Challenges, and Solutions,”
IEEE Access, vol. 11, pp. 19534-19566, Feb. 2023, DOI:
10.1109/ACCESS.2023.3248953.

[2] S. Ferlin, Ö. Alay, O. Mehani, and R. Boreli, “BLEST: Blocking
estimation-based MPTCP scheduler for heterogeneous networks,” 2016
IFIP Networking Conference (IFIP Networking) and Workshops, 2016,
pp. 431-439, DOI: 10.1109/IFIPNetworking.2016.7497206.

[3] Y.-S. Lim, E. M. Nahum, D. Towley, and R. J. Gibbens, “ECF: An
MPTCP path scheduler to manage heterogeneous paths,” in Proc. 13th
Int. Conf. Emerging Networking Experiments and Technologies
(CoNEXT), Incheon, Republic of Korea, Dec. 2017, pp. 147-159. DOI:
10.1145/3143361.3143376.

[4] P. Dong et al., “Multipath TCP Meets Reinforcement Learning: A Novel
Energy-Efficient Scheduling Approach in Heterogeneous Wireless
Networks,” IEEE Wireless Communications, vol. 30, no. 2, pp. 138-146,
April 2023, doi: 10.1109/MWC.013.2100658.

