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Abstract—Real-time systems employ prioritization schemes to
accommodate different traffic classes with specific quality of
service (QoS) requirements. However, in some scenarios where
numerous high-priority packages are transmitted, lower-priority
packages may fail to meet their deadlines, leading to a significant
decline in scheduling performance. Sending high-priority flows
excessively early does not provide any additional benefits beyond
meeting the deadline. Instead, it is more effective to utilize
this buffer time for lower-priority traffic and ensure on-time
transmission of high-priority traffic. We propose an adaptive
dynamic priority assignment scheme that utilizes reinforcement
learning (RL) to address this issue. This enables adaptation
to changing network conditions and continual improvement in
performance over time. Additionally, we present and discuss two
potential configuration candidates that can be utilized within the
proposed scheme.

Index Terms—dynamic priority, reinforcement learning, time-
sensitive networks, deadline

I. INTRODUCTION

The Internet of Things (IoT) and time-sensitive networking
(TSN), i.e., real-time communication protocols, are enablers
for future mission-critical systems and respective applications
that require bounded latency as well as seamless and fault-
tolerant communication. In this context, the delivery of traffic
within a specific timeframe, referred to as the deadline, is
significant, with potentially severe consequences when packets
are late. In certain critical applications like robotics, any failure
to meet these deadlines can have catastrophic consequences.
The respective traffic has a hard deadline. However, numer-
ous applications operate with soft deadlines, e.g., best-effort
traffic, meaning they can tolerate occasional misses without
experiencing a significant decline in performance or output
quality. For instance, in video streaming, a few late packets
do not have a significant impact on the overall video quality,
e.g., the codec contains enough redundancy to recover. In
such cases, the system can be more flexible in meeting the
deadlines, focusing on providing the best possible output while
still striving to adhere to the specified deadline.

The IEEE task group has proposed the TSN standards for
providing such a QoS for each traffic class within the same
network by describing different handling mechanisms for vary-
ing traffic requirements. It uses eight priorities to distinguish
traffic classes, representing which traffic is more important
with hard real-time constraints. The TSN mechanisms handle
traffic on switches based on these priority values.

Although the prioritization mechanism enables the coex-
istence of different traffic classes, when a large number of

high-priority packages are sent, it can lead to lower-priority
packages failing to meet their deadlines. Despite having a
lower priority, these packages still have their deadlines. This
becomes particularly unfortunate when high-priority packages
reach their destination much earlier than they are supposed to
arrive. From the application perspective, it does not make a
huge difference to receive a packet shortly before its deadline
or well in advance of it. Thus, instead of sending high-priority
traffic early on, it might be better for all flows in the network
to send high and low-priority traffic on time. To address that,
we propose dynamic priority handling that reassigns packet
priorities so that lower-priority packets can make up time and
do not arrive late. This can increase the utilization of network
resources and decrease the number of late packets.

The authors of [1] have proposed an elastic queuing struc-
ture to avoid frame drops due to queue size limitations and
with the help of the underlying hardware. However, this is
an additional dependency and also increases the hardware
requirements. Meng et al. [2] have proposed to use the Fuzzy
Analytic Hierarchy Process (FAHP) to compute the priority of
packets considering energy consumption, running time, and
deadline. Then, a heapsort-based dynamic sorting algorithm
selects the optimal scheduling subset from the task set using
the new priorities. Even though results promise to reduce the
deadline miss rate, it is not directly applicable to TSN with
design criteria like energy consumption.

Unlike traditional approaches, RL offers several advantages
for dynamic real-time networks as it can adapt and learn
from experience in changing environments. In dynamic real-
time networks, RL can continuously update its policies and
make near-optimal decisions based on the current network
state. This autonomous optimization capability allows RL to
adapt to changing network conditions and improves network
performance over time without human intervention. Moreover,
the capabilities of RL to learn from interactions and effectively
represent complex relationships position it as a highly suitable
approach for addressing challenges encountered in dynamic
network environments. Thus, RL has also been used in TSN
with different goals, such as finding a routing path [3] or
configuring per-hop latency guarantees [4]. Several studies
leverage RL for dynamic priority assignment problems in
the context of real-time environments [5]. However, the main
objective of these studies is to determine a schedulable priority
assignment that can accommodate a greater number of flows in
the network. Instead, we aim to use resources more efficiently



while accommodating, at least, the same number of flows but
providing better QoS satisfaction regarding deadlines. This
problem becomes more obvious in the case of imbalanced
traffic classes, where certain classes may become overloaded
while there is an available capacity for other traffic classes.

Accordingly, this paper outlines our roadmap for utilizing
reinforcement learning for dynamic priority assignments in
time-sensitive networks. Our main goal is to reduce the
number of missed flow deadlines resulting from inefficient
resource utilization. To achieve this objective, we propose two
configuration schemes based on TSN standards: centralized
and distributed. We examine these schemes and discuss their
limitations in meeting near real-time requirements and provid-
ing strict QoS guarantees, considering the constraints imposed
by the time-sensitive environment.

II. DYNAMIC PRIORITY ASSIGNMENT WITH
REINFORCEMENT LEARNING

To leverage the advantages of reinforcement learning, we
present two potential configuration schemes in Figure 1 that
can be applied to time-sensitive networks:

a) Centralized Scheme: In a centralized scheme, as illus-
trated in Figure la, it is assumed that the centralized network
controller (CNC) has a global network view and collects
statistics such as queue waiting time and queue utilization. The
RL agent is deployed on top of the CNC so that it receives
real-time network data and can utilize RL algorithms to learn
and determine global network policies. Since it perceives the
network as a whole, this scheme enables coordinated decision-
making and optimization across multiple network elements.
Thus, CNC can generate best policies for the dynamic priority
assignment based on a centrally deployed RL agent.
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Fig. 1: RL-based dynamic priority assignment scheme.

Since there is no policy or apriori information about the
network initially, CNC can monitor the current assignments
and train the RL agent. In other words, CNC can get hop-
by-hop statistics and merge them to compute a final reward
value for the action, e.g., the current priority of the packet.
Here, considering the QoS requirements of the packets, the
reward can get negative values as well, e.,g., a penalty value.
During this training (exploration) time, RL can assign random
priorities to packets or leave them as they are. After the pre-
training time, CNC can benefit from the developed RL policy
to reassign a new priority to the packets dynamically on the
runtime.

b) Distributed Scheme: In a distributed scheme, as illus-
trated in Figure 1b, RL agents are directly deployed at network
nodes, e.g., at TSN switches. These agents locally monitor the
network, collect real-time data, and learn optimal decision-
making policies based on the observed conditions. Each switch
aims to compensate for a potential latency in the previous hop
by dynamically re-assigning packet priorities determined by
RL. Thus, each switch has its own RL agent to develop a
policy. It may also be possible to benefit from the transfer
reinforcement learning concept. Switches may collaboratively
help each other to develop the best assignment policy.

However, without a centralized controller, the problem gets
harder. Now, the switch has to assess, based on limited
knowledge, whether the packet will miss its deadline and
needs to get reprioritized. For that, it may need to know the
topology or path the packet will be routed. Also, the packet
must be marked as a late packet to be handled differently at
the next hop switch. Thus, there is a need for a communication
protocol and a local or distributed algorithm between switches
to address these points.

III. CONCLUSION

In conclusion, the proposed adaptive dynamic priority as-
signment scheme leveraging reinforcement learning presents
a promising solution for future networks. It can dynamically
reconfigure the priorities of existing packets and offers a
practical approach to decreasing missed flow deadlines. By
adaptively adjusting priorities based on real-time conditions, it
can effectively manage resource allocation and meet stringent
QoS requirements.
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