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Abstract—Network operators require real-time traf�c mon-
itoring insights to provide high performance and security to
their customers. It has been shown that arti�cial intelligence and
machine learning (ML) can improve the visibility of telemetry
systems, especially with encrypted traf�c. However, current
solutions cannot cope with high traf�c rates and volumes in large-
scale networks. To realize the ML-driven network intelligence
paradigm at terabit scale, we designMarina, a system that
spreads monitoring over a highly ef�cient data plane, which
can extract traf�c statistics at line rate, and a powerful ML
server, which can run monitoring inference using complex ML
models. We apply temporal microaggregation into sub-second
time slots and extract moment-based statistics. These allow to
�exibly obtain accurate ML-based monitoring decisions during
the next time slot. To demonstrate the scalability of our design,
we implement and evaluate aMarina data plane prototype on
a Barefoot Wedge 100BF-65X P4 switch, which can monitor
more than 520,000 concurrent �ows at full switching capacity of
6.4Tbps. We validate the analytics capabilities enabled by our
Marina implementation for four ML-driven real-time monitoring
tasks with a broad set of standard ML models, achieving
comparable or better than state-of-the-art results.

Index Terms—Network monitoring, arti�cial intelligence,
machine learning, encrypted traf�c, real-time monitoring, P4,
programmable data plane.

I. I NTRODUCTION

T HE GROWING number of users, devices, and
applications, as well as the increasing complexity of
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Fig. 1. Design principles for the deployment of ML-based network telemetry
systems.

networks, push network operators to deploy broader and
more efÞcient network monitoring solutions to improve
their visibility, to quickly detect and resolve performance
or security issues, as well as to optimize resources. While
ßow-level network telemetry approaches (e.g., NetFlow[1],
sFlow [2], IPFIX [3]) provide valuable insights on how a
network is operating, they are limited with respect to the
monitoring capacity (amount of trafÞc/ßows), expressiveness
(set of monitored statistics), and accuracy (sampling). In
addition, their coarse temporal granularity (typically, export
intervals are 1 minute or higher) does not align well with
real-time monitoring tasks. Thus, packet-level monitoring
capabilities and small temporal granularity are desired for
deriving actionable management decisions in real-time.

Traditionally, deep packet inspection (DPI) has been used
on the full packet stream to identify applications or threats in
the network, and even to obtain application-layer information
regarding the health of applications such as voice or video
streaming. However, the increasing network and application
complexity and the wide adoption of end-to-end trafÞc encryp-
tion are drastically limiting the visibility of operators on the
performance of services consumed by their customers. This
has given rise to a wider adoption of artiÞcial intelligence
and machine learning (ML) technology to improve trafÞc
monitoring at scale. These approaches have been successfully
applied to ßow-level data[4], [5], [6] and packet-level (time
series) data[7], [8], [9], even for the case of encrypted
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network trafÞc [10], [11], [12], [13]. Still, running ML-
driven monitoring applications in real-time and at line rate
is challenging. The combination of Þne-grained, per-ßow and
per-session monitoring requirements with the high volume
of data observed in modern wide area networks (WANs),
data center networks (DCNs), or enterprise networks impose
difÞcult-to-meet targets, and the performance of deployable
solutions often falls short in large-scale networks.

In general terms, a typical ML-driven network trafÞc
monitoring workßow consists of three consecutive steps, as
depicted in Figure1. It starts by analyzing the(encrypted)
network trafÞc, followed by a feature extractionof this
data into a vector representation, which serves as input to
the ML data analytics model. Different design principles
are applied in the literature to integrate this ML workßow
with traditional network telemetry approaches.Ofßine or out-
of-band processing(top part of Figure1) is typically the
starting point for model development and academic endeavors
(e.g.,[14], [15]). For this, the monitored trafÞc has to be captured
or mirrored, and forwarded on an external server. Stream
processors are software-based and provide high ßexibility in
terms of features and analytics. They can reach excellent
monitoring performance given sufÞcient compute resources and
time for computing features, as well as training and applying
complex models. However, limited trafÞc processing capacities
and absence of real-time monitoring capabilities typically
make this approach infeasible for deployment in operational
networks.

Many current network telemetry approaches leverage
novel capabilities in softwarized and virtualized networks
(SDN/NFV), using sophisticated software packet process-
ing technologies [16] and programmable data planes
(PDP) [17], [18]. They have opened the door for the con-
ception of more ßexible, real-time monitoring capabilities
using programmable switches[19], [20] or commodity hard-
ware [21]. These systems can analyze the massive trafÞc
volumes in real-time, i.e., at line rate without impacting packet
forwarding, and thus, network performance. At the same time,
they can be used to implementin-network feature extraction
to reduce the amount of data forwarded to an out-of-band
stream processor (middle part of Figure1). By deploying a
powerful server, the data analysis can be scaled to support
complex models in real-time, and can, in theory, leverage the
full analytics ßexibility of software-based stream processors.
In practice, however, this ßexibility in terms of number and
types of realizable monitoring tasks is limited or dictated by
the extracted feature set. Here, hardware and processing con-
straints of the network device and potential service disruption
during reprogramming of the device signiÞcantly reduce the
feature ßexibility. Therefore, the in-network feature extraction
system has a pivotal role.

In-network ML(bottom part of Figure1) integrates the ML
model directly into the data plane, either ofßoading feature
extraction to an external system[22], [23], or by integrating both
the feature extraction process and the ML model[24], [25], [26],
in which case the monitoring system might provide high
capacities and real-time capabilities. However, in-network ML
requires heavy tailoring and simpliÞcation of the speciÞc ML
model, given the limited operations supported by high-speed

programmable hardware, losing ßexibility in terms of feature
and ML analytics capabilities.

To effectively manage large-scale trafÞc while offering rich
analytics capabilities, our focus is on efÞcient in-network
extraction of monitoring information and out-of-band process-
ing on a powerful server, as shown in the middle part of
Figure1. However, in contrast to existing network telemetry
systems, we design our systemMarina (MAchine-learning-
based Real-time Network traf�c Analytics) explicitly for
ML-based real-time network trafÞc monitoring at terabit scale.
The rationale ofMarina is to devote and max out the limited
data plane resources to extract statistics, which are useful for
ML-based trafÞc analytics, even in case of encrypted trafÞc.
All subsequent and more complex workßow tasks, i.e., feature
generation from the extracted statistics and model inference,
are executed on a powerful ML server. This is possible,
as ML models can be trained to leverage the generated
feature sets to achieve excellent performance for different
real-time trafÞc monitoring tasks. This includes trafÞc/device
classiÞcation, application health (e.g., Quality of Experience),
and fault/anomaly detection (e.g., intrusion detection), which
we demonstrate in this work.

We distinguish from existing solutions, which often apply
techniques like sampling (e.g.,[1], [2], [27], [28]), sketching
(e.g., [29], [30], [31]), or Þltering/querying (e.g.,[19], [20],
[21], [32], [33]), and do not explicitly consider the ML-based
network intelligence paradigm. Instead,Marina implements
a temporal microaggregation of packets using sub-second
time slots and extracts moment-based trafÞc statistics. This
allows a Þne-grained tracing of trafÞc characteristics for each
monitored ßow at sub-second granularity. These statistics can
subsequently be mapped into a high-dimensional feature space,
which offers high visibility and discriminative power to the
downstream analytics and provides high ßexibility for apply-
ing arbitrarily complex ML models for different monitoring
tasks. By controlling placement and compute resources of the
ML server, we can obtain actionable results for all monitored
ßows within the next time slot, i.e., with sub-second delay.

The contributions of this paper are as follows:
1 Marina system design (Section 2): we present a novel

concept for data plane extraction of moment-based statistics at
line rate in combination with ML-based analytics on a pow-
erful server. Our design relies on temporal microaggregation
of packets into sub-second time slots and allows to ßexibly
realize different ML-driven real-time monitoring tasks with
high accuracy at scale, even for encrypted trafÞc.

2 Marina data plane implementation (Section 3) and
evaluation (Section 4): our implementation of theMarina data
plane on a Barefoot Wedge 100BF-65X P4 switch maxes out
the data plane resources to monitor up to6.4Tbps of trafÞc
in 524,288 concurrent ßows over 65 QSFP100Gbps ports. It
generates less than385Mbps monitoring trafÞc, and can keep
monitoring granularity and delay until obtaining monitoring
results for all ßows as low as500ms. For the sake of repro-
ducibility and as an additional contribution, we makeMarinaÕs
code publicly available at: https://github.com/lsinfo3/Marina

3 Marina ML-based real-time traf�c monitoring
(Section 5): we validate the analysis capabilities enabled by
Marina for four different use cases, namely, encrypted trafÞc
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classiÞcation, video streaming application health/Quality of
Experience, intrusion detection, and IoT device classiÞcation.
We achieve comparable or better than state-of-the-art results
with standard ML models.

II. Marina SYSTEM DESIGN

Monitoring large networks with high trafÞc volumes and
rates, such as ISP, data center, or enterprise networks, faces
well known challenges (e.g.,[33], [34], [35]). In particular,
our system design addresses the following challenges to enable
ML-driven real-time trafÞc monitoring at terabit scale.

Scalability: the monitoring system must be able to cope
with high trafÞc volumes in a large number of ßows within
its hardware resources. Extracting the monitored information
from packets must happen at line rate, while ensuring that the
monitoring does not negatively impact the basic forwarding
mechanism, and thus, the network performance or stability.

Overhead: the telemetry system must keep the monitoring
overhead as low as possible. Resource allocation of the
system should be constant, i.e., constant memory per ßow,
and independent of the trafÞc load. TrafÞc generated by the
monitoring system must not overload the management network
or any out-of-band consumer of the monitored data, such as
compute or storage servers.

Expressiveness:the monitoring system must provide suf-
Þcient compute resources to support a wide range of
performance- and security-related telemetry tasks with high
accuracy. It must be able to provide monitoring results on
different time scales like real-time insights, records of termi-
nated ßows, or periodic aggregate reports. Moreover, it must
allow to consider relationships between ßows and provide
monitoring results for sets of related ßows, e.g., a browser
session using several connections. As trafÞc encryption hides
important information contained in inner protocol header Þelds
and payloads, the monitoring system must make the best use
of information that is always available (i.e., information which
cannot be hidden by encryption). Consequently, monitoring
must be independent of trafÞc encryption by design, providing
the same accurate insights if the trafÞc is encrypted or not.
Nevertheless, aiming to overcome the limited visibility due to
encryption, it must allow to obtain valuable monitoring results
for many different monitoring tasks.

Flexibility: network operators require network telemetry to
be ßexible, such that they can add or change monitoring tasks
at any time without affecting the network. They need to be able
to deployMarina at different vantage points and combine the
monitoring results to obtain network-wide insights. Moreover,
it must be possible to store monitored information, e.g., to re-
visit or analyze the historical state of the network, to detect
changes, or to forecast trends.

Trade-offs: while scalability and extracted monitoring
data are limited by the data plane capabilities, there is
a trade-off between the number of monitored ßows and
the generated trafÞc and load at the server. Additionally,
the number and complexity of generated features and exe-
cuted ML models impact the processing time at the server,
depending on the serverÕs compute resources. This results

in a trade-off with the monitoring granularity and real-time
capabilities of our system. We investigate these trade-offs in
Section 4.

A. Design Principles

We design our systemMarina for real-time trafÞc monitor-
ing at terabit scale by implementing three design principles:

1 The data plane must do the heavy lifting work and
carry most of the monitoring burden. Its task is to reduce
the data volume as early as possible, but at the same time
extract valuable information. To be able to observe Tbps
trafÞc, our system is designed to be deployed at a core network
element or gateway where many high speed links interconnect.
Data planes are built to forward high volumes of trafÞc, but
offer limited computational or storage resources. Nevertheless,
specialized devices (e.g., programmable switches, FPGAs, or
ASICs) can execute packet operations at line rate, such as
arithmetic calculations, without affecting the forwarding and
the network performance. We require such a specialized device
for Marina and install a data plane program to efÞciently
forward and monitor at line rate for all ports. We allocate
constant memory to each ßow, aiming to max out the data
plane resources to monitor as many ßows in parallel as
possible. The controller should be located on the same device
for efÞcient communication with the data plane. It instructs
the data plane which ßows to monitor and where to forward
packets by installing appropriate ßow rules, and exports the
monitored data.

2 We move all complex operations to a powerful server.
It can efÞciently take over the more sophisticated work
on the reduced data, namely, generating feature sets and
running model inference for a large number of monitored
ßows and ML-based monitoring models. The server can
be equipped with appropriate and specialized compute and
storage resources, which allows to further speedup tasks on
many CPUs or GPUs in parallel. To avoid overloading the
server, its service rate (processing of transmitted data and
ML inference) has to be higher than the arrival rate (export
of monitored data from the data plane). Controlling server
placement, server resources, and complexity of features and
models allows to enforce an upper bound on the service
time, and thus, makes real-time monitoring possible. A single
server can serve one or more data planes, or multiple servers
can be combined into a server cluster. This allows to merge
data from multiple vantage points and obtain network-wide
insights. Finally, the server (cluster) allows to offer a rich
API for network operators to inspect and visualize the stored
data and monitoring results, as well as to ßexibly change or
add monitoring tasks. As the monitoring ßexibility is on the
controller or server side, we avoid having to restart the data
plane device to change the data plane program, which would
result in network downtime. The monitoring results can then
be sent to, e.g., a network management system. Note that
the development of a server API and the selection of trafÞc
engineering decisions based on the inferred results are beyond
the scope of this work.
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3 The key to the success of our system is how to link the
Þrst two design principles. In particular, we need to extract
a small amount of valuable information, which allows to
realize the monitoring tasks with high accuracy. To achieve
this, we perform temporal microaggregation on the data plane.
We temporally divide the packets per ßow into Þxed-length
time slots. We use statistical descriptors to characterize the
trafÞc within each time slot in constant memory. We read
out and reset the descriptors after each time slot, and export
them to the server. The stream of descriptors provides a
Þne-granular approximation of the observed trafÞc, which
allows the ML models at the server to accurately infer the
monitoring metrics. However, it is important to conÞgure the
time slot duration appropriately. As discussed above, to avoid
overloading the server and allow for real-time monitoring,
the time slot duration has to be higher than the end-to-
end monitoring delay consisting of data plane register read,
transmission between controller and server, feature generation,
and ML inference. Additionally, the time slot duration not
only deÞnes the real-time capability of the entire monitoring
system, but it also impacts the temporal granularity of the
stream of descriptors, and consequently, the accuracy of the
monitoring. Thus, we minimize the slot length to below1s.

B. Monitoring of Encrypted TrafÞc

As end-to-end encryption of Internet applications is becom-
ing the norm, enabled by protocols such as transport layer
security (TLS), we have no longer access to application-layer
information. This renders DPI ineffective without requiring
additional privacy-invasive methods (e.g., TLS interception),
and thus, substantially limits the visibility of many network
telemetry systems. TrafÞc encryption allows to only extract
information from the IP and transport protocol (TCP/UDP)
headers. Available information includes the ßow 5-tuple
(src/dst IP addresses and port numbers plus protocol type),
packet size, TCP ßags, or header options. In addition, a
network element can track the inter-arrival time (IAT) of
packets, i.e., the time since the last packet of the same ßow has
been forwarded. Despite this limited information, we can still
derive temporal and volumetric trafÞc information on a per-
ßow basis, i.e., how much trafÞc is transmitted over time. For
this, it is sufÞcient to inspect the 5-tuple and track packet sizes
and IATs. This information is highly valuable for performance-
and security-related network monitoring, as it allows, for
example, to identify characteristic device/application trafÞc
patterns or to detect when device/application trafÞc patterns
deviate from normal.

Since extracting and storing full time series of packet sizes
and IATs is infeasible at terabit scale, we employ temporal
microaggregation as discussed above and characterize their
distributions within each time slot using statistical descriptors.
We decide to use moments, i.e., sample moments about
the origin, as they provide valuable insights and can be
computed on the data plane in constant memory using only
simple arithmetic operations. To compute thek-th sample
moment, it is required to raise the observed values to the
power of k, sum the resulting powers, and divide by the

total number of packets. Note that this computation naturally
allows to obtain packet count and trafÞc volume. These
raw moments may then be converted into central moments
and standardized moments, allowing to compute the most
important named properties of the distribution (mean, variance,
standard deviation, coefÞcient of variation, skewness). It also
allows to accurately approximate the observed distributions
(cf. truncated Hausdorff moment problem[36]).

While higher-order moments are computationally expensive,
especially when considering the limited resources on
the data plane, we advocate for computing at least the
Þrst three moments. The reason is that skewness (third
standardized moment) describes where the distribution
mass is concentrated, e.g., towards small/large packets or
towards bursty/isolated packets. Skewness plays an important
role in many monitoring scenarios, also being one of the
reasons why sketching emerged decades ago (cf. AMS
sketches[37]). The suitability and generality of considering
sample moments and derived features is also conÞrmed when
looking at related work, where they are widely adopted for
a multitude of use cases, such as real-time anomaly/intrusion
detection [38], [39], [40], trafÞc classiÞcation [41],
QoE inference [10], [12], or IoT device Þngerprinting
[15], [42], [43].

We are not limited to use only the meta-information (times-
tamp, src/dst IP address and port number, protocol type) and
statistics (moments and derived features) of a single time slot
and ßow as input for the ML-based monitoring prediction.
Instead, we can perform derivations/augmentations (e.g., infer
IP ranges, domain name, or service type from the meta-
information in the 5-tuple) and aggregations at the server
side. Considering the temporal dimension, for example, we
can aggregate the statistics of consecutive time slots (e.g., in
a sliding window fashion[12]) to cover larger time spans.
For this, the corresponding moments have to be multiplied
with their packet counter to obtain summed powers again,
which can then be added together. Moreover, we can consider
a time series of statistics from consecutive time slots as
input to sequential ML models, such as popular recurrent
neural networks (RNNs). Besides the temporal dimensions,
aggregations can also be performed in the spatial dimension.
For example, the summation statistics of a matching pair
of unidirectional ßows can be added or combined to derive
features for bidirectional trafÞc, e.g., ratio of uplink/downlink
packets or volume, or total trafÞc volume. It is also possible
to merge or concatenate feature sets of a larger set of
related ßows, such as multiple TCP connections of a single
application having the same source IP address (e.g., using
hierarchical embeddings[44]). Similarly, feature sets from
different vantage points, e.g., considering the same ßows or
the same types of service, can be merged or concatenated to
infer network-wide insights. In short, as all data is gathered
on the server, we can process the collected meta-information
and statistics as well as derived and augmented information
from single/multiple time slots, single/multiple ßows, and/or
single/multiple vantage points on the server as needed in
order to obtain accurate monitoring results for our desired
monitoring tasks.



SEUFERT et al.:MARINA: REALIZING ML-DRIVEN REAL-TIME NETWORK TRAFFIC MONITORING AT TERABIT SCALE 2777

Fig. 2. Implementation ofMarina prototype.

Depending on the generated features, many ML models can
be applied to realize the monitoring task. This ranges from
shallow ML (e.g., decision trees) to elaborate methods such
as deep learning (DL), or (deep) reinforcement learning (RL),
which can provide accurate trafÞc insights. The limitations
to feature generation and model inference are given by the
expressiveness of the extracted statistics and the time con-
sumption for processing on the ML server, which adds to the
end-to-end monitoring delay, and thus, affects time slot length.

III. Marina DATA PLANE PROTOTYPE

Figure2 gives an overview of theMarina implementation.
To fulÞll the hardware requirements of theMarina data
plane, we implement the prototype on a Barefoot Wedge
100BF-65X P4-enabled ToÞno switch. As current P4 hardware
exhibits several limitations in terms of stateful processing,
memory capacity, and the complexity of available operations,
we highlight workarounds and approximations that went into
developing the prototype implementation.

Packet Forwarding: the switch performs statistics extrac-
tion in addition to (a) bridging the trafÞc, (b) L2 switching, or
(c) L3 routing. To do this, the Packet Forwarding component
(depicted at the bottom left) uses the Forwarding TCAM
(depicted above the packet forwarding component) or metadata
information attached to the ingress ports to identify the cor-
responding egress port. The available TCAM memory limits
the number of forwarding ßow rules to roughly 1.5 million
ßow rules. If the switch is used as a bridge (man-in-the-middle
device), the number of forwarding rules is of no concern,
but the number of available ports is halved. Note that the
installation of forwarding rules is not part of the P4 controller
developed in this work.

Packet Classi�cation and Flow Instantiation: after iden-
tiÞcation of the egress ports, packets pass through the Packet
ClassiÞcation module, which uses the ClassiÞcation TCAM to
identify ßows requiring further processing. For this, we reuse
concepts known from reactive OpenFlow[45] applications.
We maintain the set of relevant ßows to be monitored in the
ClassiÞcation TCAM. If a packet is not matched, it either
belongs to an irrelevant ßow and can be ignored, or is part
of a new ßow. In the latter case, it needs to be sent to the
controller. Our design is not impacted by the well known
problems of reactive ßow processing[46], [47], [48], as the
controller application runs on the switchÕs host controller,
which communicates with the data plane over the internal PCIe

interface, offering minimal delay and a throughput of up to
31Gbps (PCIe Gen3 x4). For TCP, new ßows can be easily
detected based on TCP SYN ßags. For UDP, we need to track
which ßows have been already seen. We employ a combination
of a partitioned Bloom Þlter[49], [50] in the data plane and a
counting Bloom Þlter[51] at the controller. They ensure that
we can efÞciently identify previously seen, but irrelevant UDP
ßows with an acceptably small false positive rate of below 1%,
when packets of 400,000 irrelevant UDP ßows are present.
This is expected, due to the probabilistic nature of the applied
Bloom Þlter. A false positive hit results in missed relevant
ßows that are falsely classiÞed as irrelevant by the Bloom
Þlter. Finally, all TCP SYN packets and the Þrst packets of
unknown UDP ßows are forwarded to the controller.

For each new ßow, the controller checks whether it is
relevant for monitoring. If so, it assigns a ßow id, inserts
the corresponding rules into the data plane ClassiÞcation
TCAM, and allocates register slots for the statistic compu-
tation. Additionally, it stores the mapping between 5-tuple
and register slots, such that the 5-tuple can be exported
together with the corresponding statistics as meta-information.
Likewise, ßow ids and allocated register slots are freed when
a ßow is considered ended. The removal of TCP ßows is
straightforward, based on the tracking of packets with the
TCP FIN ßag or a ßow timeout. To remove a UDP ßow
from the counting Bloom Þlter, we use a probabilistic aging
technique[52]. It decrements the corresponding entries of the
counting Bloom Þlter with an eviction probability that controls
the retention time. We conÞgured it to obtain an average ßow
retention time of25s. Any changes in the counting Bloom
Þlter are mirrored to the binary Bloom Þlter on the data
plane.

The controller decides on the relevance of ßows in the
Flow Instantiation module, e.g., based on ßow 5-tuple or
IP range. Additionally, we might be interested to selectively
monitor the trafÞc of a certain application, e.g., to monitor
application health. To identify which ßows may belong to
these applications, we rely on the hostnames of the contacted
servers, which we obtain from parsing DNS requests[53].
Therefore, all DNS responses are forwarded to the controllerÕs
DNS to IP Mapping module, where an IP Database with
relevant IP addresses is constructed. For example, to monitor
YouTube, the database is Þlled with all IP addresses for
googlevideo.comÐ the domain used by YouTubeÕs video chunk
HTTP requests. In case of DNS over TLS (DoT) or DNS over
HTTPS (DoH), where we no longer can leverage the clear
text from DNS requests and responses to differentiate between
ßows, we use the Server Name Indication (SNI) Þeld of TLS.
For this purpose, we forward TLS Client Hello packets to the
controllerÕs SNI to IP mapping module. As a result, we obtain
a similar database as for DNS. For example for YouTube
with DoT or DoH enabled, we therefore look for TLS Client
Hello packets having a SNI, which containgooglevideo.com.
As some applications like video streaming use several ßows
in parallel, we additionally implement a session mode, which
assigns all ßows with the same source IP to the same registers.
This allows to monitor the aggregated application trafÞc,
which saves data plane resources and facilitates downstream
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TABLE I
STATISTICS AND META-INFORMATION THAT CAN BE COMPUTED AT L INE RATE BY Marina ON A BAREFOOTWEDGE

100BF-65X.log� DENOTES THEAPPROXIMATION OF THELOGARITHM BASED ON LOOKUP TABLES

Fig. 3. Data plane stages: register/table allocation. Support registers are
shown in gray.

analytics. The controller can seamlessly switch between ßow
and session mode during runtime.

Statistic Computation: following our design principle, we
implement the calculation of sample moments for the distribu-
tion of packet size and packet inter-arrival time, while maxing
out the data plane resources. Figure3 shows the allocation of
registers and matching tables on the data plane stages. The
packet Þrst traverses the ingress pipeline (top), is switched to
the correct egress port, and Þnally traverses the corresponding
egress pipeline (bottom). The statistic computation is limited
by the number of stages of the switch Ð in total 24, 12 on
ingress and 12 on egress Ð and by the computation capabilities
of the ALUs at each stage. Resources are further limited
by the stages required for Packet Forwarding and Packet
ClassiÞcation. Thus, we are able to realize only the Þrst
three moments of the packet size and IAT distribution on our
P4 switch. More speciÞcally, as detailed in TableI, we count
the number of packets and compute (for both distributions)
the sums of (a) the raw values, the (b) square of the values,
and (c) the cubes of the values. We also track the timestamp
of the last arrival as a support statistic for the computation of
the inter-arrival times.

Here again, the hardware limitations of the switch forced us
to resort to certain abstractions for the computation process.
Consider computing the statistical moments of the packet size
distribution, i.e., the summed powers of the packet size. The
packet size can be easily computed by subtracting various
header lengths from the total packet size. However, recording
the sum of packet sizes using byte granularity in a32bit
register is likely to result in overßows, e.g., a ßow sending
at 100Gbps would overßow the register more than three
times per second. Moreover, the sum of squared packet sizes,

which allows to derive the variance, would overßow after
just around 2000 packets of size1500B. Additionally, as the
data plane supports only32bit addition and subtraction, we
also need to approximate multiplications by pre-computing
TCAM rules as shown in[54]. Although the P4 compiler sup-
ports64bit registers, we cannot perform arithmetic operations
on them. Implementing64bit arithmetic would be possible
using multiple registers with intermediate overßow detection.
However, we decided for a simpler approach, based on the
assumption that the magnitude of packet sizes and IATs could
still provide valuable information.

This was realized by using the logarithm of the packet sizes
and IATs instead of the actual value. This way, a32bit register
is sufÞcient to record the summed powers of logarithmic
values. As the logarithm is not natively supported by the ALUs
of the switch, it is computed using a ternary match table in
TCAM, constructed as described in[54], mapping input values
using a longest preÞx match on the binary representation
to their approximate logarithm. Hence, the implementation
column in TableI denotes the approximated logarithm aslog� .
Note that register overßows can still occur on long-running
or large volume ßows for these statistics. We investigate the
impact of these approximations on the performance of the
monitoring tasks in Section 5.

Monitored Flows: The number of concurrent ßows that can
be monitored is effectively limited by the memory capacity of
the data plane and the selected statistics. The Barefoot Wedge
100BF-65X has 4 parallel pipelines with 12 stages. Each
stage contains80blocks of SRAM with128kbit each.48of
those blocks, i.e.,6Mbit, are available as stateful memory. A
register always occupies whole blocks, at most 35 blocks, and
requires one additional block for organizational purposes. If
the selected statistics are32bit values, the maximum number
of slots in a register is35· 128·1024

32 = 143, 360. This is then the
theoretical maximum number of ßows that can be monitored
in a single pipeline. However, there is a trade-off between
the number of monitored ßows and the number of selected
statistics.

To simplify register addressing we use a power of two,
resulting in a ßow capacity of217 = 131, 072 ßows per
data plane pipeline, thus,4 · 217 = 524, 288 unidirectional
ßows at most, as the switch has four independent data plane
pipelines. In session mode, we summarize all uplink/downlink
ßows together by recording separate values for the aggregated
uplink/downlink trafÞc only. This allows us to monitor218 =
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262, 144 bidirectional sessions in parallel. These numbers are
derived using the memory capacities of the Intel ToÞno 1
chipset. Next generation devices are expected to be equipped
with more memory for both SRAM and TCAM, and could
hence monitor more ßows or compute additional statistics.

Export Module: the controller reads all data plane statistics
registers at regular time intervals, appends the corresponding
meta-information (5-tuple in ßow mode, 3-tuple in session
mode), and transmits them via the1Gbps management
interface of the switch to an external ML server. This results in
328bit generated monitoring data per ßow per time slot. Our
Þrst approach of using the Apache Thrift interface provided
by the ToÞno SDE failed, as it needed on average3s for
a complete read of all registers. Thus, we implemented a
custom controller library with access to internal functions
based on the suggestions of Yu et al.[55]. This allows us to
circumvent the Thrift layer and achieve a much smaller read
duration of268ms, independently of the number of monitored
ßows. Nevertheless, the number of monitored ßows affects
the transmitted data volume, and thus, the minimal end-to-end
monitoring delay. As the end-to-end monitoring delay has to
be smaller than the time slot length for real-time monitoring,
there is a trade-off on how small the time slot can be set,
which we analyze in SectionIV.

Feature Generation and ML Inference: the server
receives the extracted statistics and meta-information collected
from the data plane and generates feature sets as input to ML
models. Depending on the monitoring task, different features
can be derived as discussed in SectionII-B and depicted in
Table I. The computed features are assembled into feature
sets and forwarded to ML models to infer the monitoring
predictions. In this work, we adopt the majority of features,
which have also been computed in[12], because they cover the
most important characteristics of the packet stream and can be
computed in an online fashion[12]. Note that, although there is
basically no limit to what and how many features and models
can be used, the feature generation and model inference times
impact the end-to-end monitoring delay. To preserve the real-
time properties of the entire monitoring system, the server
enforces a Þxed upper bound on the end-to-end monitoring
delay to be less than the time slot length, which can be easily
achieved by controlling server placement, compute resources,
feature generation, and model complexity. Using a powerful
server also ensures that the resulting ML predictions for all
sessions can be forwarded in real-time, e.g., to a network
management system. In addition, the server can offer an API
for network operators to inspect and visualize the stored data
and monitoring results, as well as to ßexibly change or add
monitoring tasks at any time. This would instruct theMarina
controller to change which ßows are classiÞed as relevant, or
it would deploy another ML model on the server.

IV. PERFORMANCE OFMarina SYSTEM

To showcase the real-world performance ofMarina, we Þrst
highlight the isolated performance of all involved components
and subsequently demonstrate the total end-to-end monitoring
delay from collecting data plane statistics to obtaining ML

Fig. 4. Blocking probability for different mean session durations for
increasing session arrival rates.

predictions. As described above, we deploy theMarina data
plane on a Barefoot Wedge 100BF-65X P4-enabled ToÞno
switch with 65 QSFP100Gbps ports for a total data rate of
6.4Tbps. The controller application runs on the switchÕs host
controller Ð an 8-core Intel Xenon CPU with32GB of memory
running Ubuntu 18.04. Note that we do not validate the total
data rate of the switch through dedicated measurements as it
is a technical speciÞcation of the device. Instead, we focus
only on the performance of the controller and data plane
applications as well as the ML pipeline, as their operations
will ultimately limit the performance of the entireMarina
system to accurately monitor all relevant ßows. Thus, for the
evaluations in our testbed, the switch was connected to two
servers Ð each equipped with 10-core Intel Xenon CPUs, a
Mellanox ConnectX-5 series NIC offering two 100Gbps ports,
200GB of memory, and running Ubuntu 18.04. TheMarina
ML server is equipped with a 64 core Xenon CPU, 8 GPUs
(RTX 2080Ti 11GB), and768GB RAM and is connected via
the 1Gbps network management interface of the switch.

Flow Arrival Rate: the P4 switch has enough memory
for Marina to support up to 524,288 unidirectional ßows (or
262,144 bidirectional sessions) in parallel. We explore the
impact of this limitation by assessing the probability to drop
incoming sessions when the system is in a steady state, given
a certain arrival rate of new, relevant sessions, for an average
ßow duration ranging from30s to 600s, see Figure4.

We assume that the arrival process of new ßows is a
superposition of multiple independent renewal processes that
can be modeled as a Poisson process with a total arrival rate� ,
according to the Palm-Khintchine theorem[56], [57]. Using�
and the amount of available memory, we compute the blocking
probability of the system using the Erlang-B formula[56].
Thereby, we assume that the arrival rate to the four individual
pipelines of the switch is equally distributed.

For a mean session duration of 60/600 seconds,Marina
can handle 4411/441 new sessions per second while ensuring
a blocking probability below 1%. To put these results into
perspective, we use the data obtained in[58] on YouTube video
streaming characteristics, and assume a session duration of
600 seconds. This translates into approximately 14.2 million
users that can be handled by a single P4 data plane device
assuming an average request rate, and 3.5 million users when
considering the peak request rate reported in[58].

Controller Operations: to ensure real-time capabilities of
the control plane, we explore each involved operation in
isolation. To achieve this, we conducted stress tests on both the

























<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


