
Citation: Zimbrod, P.; Fleck, M.;

Schilp, J. An Application-Driven

Method for Assembling Numerical

Schemes for the Solution of Complex

Multiphysics Problems. Appl. Syst.

Innov. 2024, 7, 35. https://doi.org/

10.3390/asi7030035

Academic Editor: Teen-Hang Meen

Received: 19 February 2024

Revised: 5 April 2024

Accepted: 19 April 2024

Published: 24 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

An Application-Driven Method for Assembling Numerical
Schemes for the Solution of Complex Multiphysics Problems
Patrick Zimbrod 1,* , Michael Fleck 2 and Johannes Schilp 1,*

1 Applied Computer Science, University of Augsburg, 86163 Augsburg, Germany
2 Metals and Alloys, University of Bayreuth, 95447 Bayreuth, Germany; michael.fleck@uni-bayreuth.de
* Correspondence:patrick.zimbrod@uni-a.de (P.Z.); johannes.schilp@uni-a.de (J.S.)

Abstract: Within recent years, considerable progress has been made regarding high-performance
solvers for partial differential equations (PDEs), yielding potential gains in efficiency compared
to industry standard tools. However, the latter largely remains the status quo for scientists and
engineers focusing on applying simulation tools to specific problems in practice. We attribute this
growing technical gap to the increasing complexity and knowledge required to pick and assemble
state-of-the-art methods. Thus, with this work, we initiate an effort to build a common taxonomy
for the most popular grid-based approximation schemes to draw comparisons regarding accuracy
and computational efficiency. We then build upon this foundation and introduce a method to
systematically guide an application expert through classifying a given PDE problem setting and
identifying a suitable numerical scheme. Great care is taken to ensure that making a choice this way
is unambiguous, i.e., the goal is to obtain a clear and reproducible recommendation. Our method
not only helps to identify and assemble suitable schemes but enables the unique combination of
multiple methods on a per-field basis. We demonstrate this process and its effectiveness using
different model problems, each comparing the resulting numerical scheme from our method with
the next best choice. For both the Allen–Cahn and advection equations, we show that substantial
computational gains can be attained for the recommended numerical methods regarding accuracy and
efficiency. Lastly, we outline how one can systematically analyze and classify a coupled multiphysics
problem of considerable complexity with six different unknown quantities, yielding an efficient,
mixed discretization that in configuration compares well to high-performance implementations
from the literature.

Keywords: simulation; multiphysics; finite difference; finite volume; finite element; discontinuous Galerkin

1. Introduction

Within the discipline of modeling physical processes by partial differential equations
(PDEs), one is confronted with an increasing number of choices of numerical methods to
perform this job. To an application-oriented expert, that is, engineers as well as scientists
who are familiar with the physics to be modeled, but not necessarily with the numerics of
PDE approximation, this abundance of choices may quickly appear daunting due to the
growing amount of research in the numerics community. Modern, general, and mathemati-
cally rigorous implementations of the finite element method (FEM), such as deal.II [1],
FEniCS [2], Firedrake [3], or MFEM [4], offer a wide variety of formulations that one can
choose from, with varying degrees of customizability. The number of different options
is best illustrated by considering the various finite elements and corresponding function
spaces that the application expert typically can and must choose from nowadays. For in-
stance, the popular website DefElement, which summarizes a vast amount of finite element
types along their characteristics and shape functions, offers over 45 different choices of
element to approximate scalar and over 40 for vector quantities [5]. These elements are, for
the most part, readily implemented in the abovementioned software libraries. However,

Appl. Syst. Innov. 2024, 7, 35. https://doi.org/10.3390/asi7030035 https://www.mdpi.com/journal/asi

https://doi.org/10.3390/asi7030035
https://doi.org/10.3390/asi7030035
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/asi
https://www.mdpi.com
https://orcid.org/0000-0003-3108-3171
https://orcid.org/0000-0002-2799-9075
https://doi.org/10.3390/asi7030035
https://www.mdpi.com/journal/asi
https://www.mdpi.com/article/10.3390/asi7030035?type=check_update&version=2

Appl. Syst. Innov. 2024, 7, 35 2 of 42

not all of them necessarily produce good or even stable approximations for any given
PDE problem [6]. Even if one were to have prior knowledge on a good choice of function
space, e.g., H(div) to approximate divergence-free quantities [7], one would still have to
choose between more than 20 different kinds of finite element. Choosing the right tool for
the problem naturally becomes even more of an issue when other standard tools that are
used in practice are additionally considered, such as finite difference and finite volume
methods. These recent advancements are, however, in contrast to established numerical
techniques that are oftentimes still used as a standard in practice. For example, the finite
volume method is still widely considered the standard practice for solving problems in
computational fluid dynamics [8]. In contrast, there have been several recent developments
based on the discontinuous Galerkin method that have shown to perform noticeably better
for fluid dynamics problems [9]. We, thus, note that a gap has emerged between industry
standard tools and modern, high-performance numerical methods that we attribute to the
increasing complexity and insight required to properly assemble the latter.

Additionally, apart from these outlined recent developments, choosing an approxima-
tion method that offers the right number and type of degrees of freedom is essential for
obtaining a solution that can be efficiently computed, especially under the requirement of
good convergence and stability. Where the former might be negligible in practice, since
achieving the utmost performance is not always important, having a stable approximation
is paramount. This line of reasoning not only applies to problems governed by a single PDE
but even more so to multiple equations forming a system with sometimes notably different
dynamics. Thus, using one discretization method in a monolithic way will not necessarily
perform equally well for each PDE of that system, creating bottlenecks regarding either
stability or accuracy and, thus, further complicating the question of which specific method
is best suited for the job. Using multiple numerical methods within one multiphysics prob-
lem, however, requires the interoperability of all discretizations. Coupling different solvers
has been shown to quickly become tedious regarding implementation and may even yield
severe bottlenecks due to large amounts of data transfer. Having a common formulation for
some schemes is, thus, desirable, such that one may recover specific methods by imposing
abstractions, for example, by omitting some steps in assembling a global linear system.

In this work, we make an initial effort towards closing the outlined, increasing gap
between state-of-the-art research in the numerics community and best practices in applica-
tions. As covering the entirety of numerical methods available is impossible in practice,
especially for nonexperts in every single aspect, we initially restrict the scope of view to a
rather narrow subset of methods. The added benefit of this approach is that this enables
us to remove methods that would otherwise render making a problem-oriented choice
largely ambiguous.

The contributions of this work to address the abovementioned problems are twofold:
First, we propose a unifying approximation taxonomy that enables recovering the most
prevalent grid-based numerical methods by imposing some well-defined abstractions, albeit
with a relatively narrow scope for now. Secondly, we propose a generalized framework
for choosing an appropriate, that is, stable and performant, numerical scheme given a
fixed set of inputs. These include the system of PDEs and the triangulation where the
problem is defined, as well as the available computing hardware. As such a method
necessitates a unified view of all the numerical methods considered to enable quantifiable
comparisons, this heavily builds on the first part of this article. In combination, this enables
an application expert to make an informed choice of which scheme to use on a per-field
basis given some equally well-defined inputs. Since in an application setting, stability is
typically more important than convergence rate, we focus our effort on providing methods
that produce stable solutions but do not fall behind too much compared to the utmost
performant alternatives.

The remainder of this work is, thus, structured as follows: We first present a brief
review of works in the literature that are concerned with comparing the mentioned nu-
merical schemes that we subsequently build upon. The theory necessary to construct such

Appl. Syst. Innov. 2024, 7, 35 3 of 42

a baseline will be covered in the following sections. We will then proceed by analyzing
typically given inputs for a PDE problem and assemble a method to systematically derive
suitable numerical schemes. The results of choosing and implementing numerical methods
according to our developed framework will be demonstrated afterward. We will investigate
two distinct benchmark problems, each comparing two methods that would be closest to
being optimal in that specific case. Special attention will be given to accuracy concerning
the analytical solution as well as computational complexity and performance. Finally, we
will demonstrate the effectiveness of the presented framework by assessing a complex and
currently relevant multiphysics problem. We show how to systematically arrive at a mixed
choice of discretization schemes using the proposed decision method. Finally, we indicate
some relevant works in the literature that employ similar approximations, highlighting the
validity and relevance of this work.

2. Previous Works

In this section, we outline some prior efforts aimed at comparing different grid-based
numerical methods or drawing connections between them.

Some authors rigorously showed the equivalence of the finite volume method to either
mixed finite element [10] or Petrov Galerkin finite element methods [11,12]. With regards
to the finite difference and finite element method, Thomèe showed early on that the FEM
can be understood as a somewhat equivalent, yet generalized, variant of taking finite
differences on arbitrary grids [13]. Some general differences between these schemes were
outlined by Key and Krieg [14]. In the work of Shu, some analogies were brought up be-
tween finite volume and finite difference schemes in WENO formulation [15]. A theoretical
and numerical comparison between higher-order finite volume and discontinuous Galerkin
methods was conducted by Zhou et al. [9]. Additionally, Dumbser et al. constructed a
unifying framework to accommodate high-order finite volume and discontinuous Galerkin
schemes [16]. In the context of elliptic PDEs, Lin et al. presented a theoretical and empirical
comparison between the comparably new weak Galerkin, discontinuous Galerkin, and
mixed finite element schemes [17]. A comparative study between discontinuous Galerkin
and the streamline upwind Petrov Galerkin method for flow problems can be found in [18].
These works in summary draw point-wise comparisons between some grid-based approx-
imation schemes. Despite being quite useful for disseminating individual advantages
and disadvantages for a given application, one may still lack an understanding of the
general properties. Furthermore, Bui-Thanh presented an encompassing analysis and
application of the hybridizable discontinuous Galerkin method (HDG) to solve a wide
variety of PDE-governed problems. It was, therefore, shown that this numerical scheme
is general and powerful enough to form a unified baseline [19]. In addition, due to the
generality of this method, there have been works that attempt to benchmark DG methods
to more conventional and widely adopted continuous Galerkin methods (CG) [20–22].
Some authors proposed combinations of numerical schemes that operate optimally to solve
hyperbolic [23] or parabolic [24] systems of PDEs.

In summary, we draw the following conclusion from this brief review of the relevant
literature. To this date, there only exist a few comparisons between grid-based approxi-
mation schemes that outline common properties in a mostly ad hoc or point-wise manner.
We have, however, outlined in the previous section that it would be beneficial from an
application-oriented perspective to have an encompassing taxonomy for these numerical
schemes. Furthermore, many different variants of numerical schemes have been proposed
to tackle a wide variety of PDE problems. What appears to be missing, though, is a general
guideline on how to choose between these vast alternatives to obtain a method, or possibly
a combination of different methods, to solve a system in a stable (above all) and reasonably
efficient way.

Appl. Syst. Innov. 2024, 7, 35 4 of 42

3. Theoretical Baseline

The general procedure of this chapter is as follows. We first introduce the most general
scheme considered here, which is the discontinuous Galerkin method. Then, for each
additional scheme considered, we individually work out the necessary simplifications
to arrive at that numerical method, starting at the DGM. In the remaining sections of
this article, we use underline notation (·, ·) to indicate vectors and matrices and Roman
indices (i, j) to denote elements of lists or arrays at the computational level. We assume the
reader of this article to have a coarse overview of the presented methods, but not much
insight into the specifics of each. We, thus, present the necessary theory in a comparably
coarse manner that focuses on the qualitative characteristics.

3.1. Discontinuous Galerkin Method

This method was originally proposed in 1973 to solve challenging hyperbolic transport
equations in nuclear physics [25]. In spirit, it can be held as a synthesis of finite element
and finite volume schemes and poses a generalized variant of both.

To derive such a scheme, we begin by stating the strong form of a given PDE. The
most straightforward example in this case would be a first-order linear advection equation
with a homogeneous von Neumann boundary condition:

∂tα + u · ∇α = 0,
∂α

∂n
= 0 ∀x ∈ ∂Ω, (1)

where ∂t signifies the temporal derivative, x is the set of spatial coordinates, ∂Ω denotes
the boundary of the computational domain Ω, and n is the unit normal with respect to
∂Ω. In this case, and henceforth in this article, we assume for reasons of simplicity that the
velocity field is divergence-free, i.e., ∇ · u = 0.

We now state the weak form of Equation (1), that is, we multiply with a test function
v, integrate over the entirety of the domain Ω, and apply partial integration to the second
term on the left-hand side that contains the nabla operator. For a divergence-free velocity
field, one may set u · ∇α = ∇ · (uα), which results in the following formulation: Find α ∈ V
such that ∫

Ω
v · ∂tα dx +

∫
∂Ω

vα(u · n) ds −
∫

Ω
∇v · uα dx = 0, ∀v ∈ W, (2)

where we need to make an appropriate choice for the solution space V and the test space
W which may, but do not need to, differ from each other.

Due to partial integration, we now encounter an additional term that has to be in-
tegrated over the domain boundary ∂Ω, where (u · n) denotes the velocity component
normal to the boundary.

To make such a problem solvable by a computer, one must additionally choose the
discretization of the solution space V, denoted Vh. A particularly popular choice of space is
the set of Lagrange polynomials. In addition, the physical space must be discretized in the
form of a triangulation. The DG scheme then consists of assembling the finite-dimensional,
linear system on the element level. This enables high locality of the solution process, which
leads to efficient computation on parallel architectures, as less data transfer is required.

One resulting key feature of the DG scheme is that the elements now do not overlap
anymore in terms of their degrees of freedom. Thus, the global problem is broken up into
individual problems. This, in general, leads to large systems that are, however, sparse and,
in the case of the mass matrix, even block diagonal. The remaining term, often denoted the
numerical flux, is the only term within the physical domain that ensures coupling across
elements. Through evaluation of this surface integral, adjacent degrees of freedom are
coupled and, thus, global conservation of quantities can be assured.

As the polynomial space of DG schemes only belongs to the L2 space of functions
but not H1, the basis functions are discontinuous; thus, the derivative at boundaries is not
well defined. Solving PDEs involving second derivatives is, thus, not possible as is. As a

Appl. Syst. Innov. 2024, 7, 35 5 of 42

consequence, there have been many successful extensions of this method to circumvent that
problem. At this point, we name the most prevalent schemes, namely the symmetric interior
penalty [26], hybridizable [27] and local DG scheme [28]. These methods, despite having
different approaches, have been extensively studied and compared to each other [29]. As
it turns out, all methods work well and have individual advantages and disadvantages.
For this work, we will take the hybridizable DG scheme as a general framework. We
note here that the proposed method would, however, work with any of the other schemes
given above.

Within the abovementioned methods, one introduces an additional term in the weak
form that serves as a penalty for discontinuous solutions. An alternative approach that is
also pursued within the HDG scheme is the algebraic manipulation of the PDE system by
splitting. One recursively introduces new dependent variables for quantities that appear in
higher-order derivatives such that each quantity is differentiated at most once. We illustrate
this using the Laplace equation

∆u = 0. (3)

The corresponding, well-known weak form is as follows: Find u ∈ V, such that for all
v ∈ V ∫

∂Ω
v(∇u · n) ds −

∫
Ω
∇v∇u dx = 0. (4)

By introducing the auxiliary variable σ = ∇u, Equation (4) is extended to the
following system: ∫

∂Ω
v(σ · n) ds −

∫
Ω
∇vσ dx = 0, (5)

σ = ∇u. (6)

Employing such an approach enables splitting PDE systems of arbitrary order, result-
ing in larger systems of first-order PDEs.

3.2. Continuous Galerkin Finite Element Method

The most straightforward step to conduct is to derive the continuous Galerkin (CG)
from the DG method. The former is oftentimes also referred to as the classic finite element
method, being the original formulation used to solve problems in structural mechanics [30].

In this case, all degrees of freedom (DoFs) in the domain are global, in contrast to
being local to each cell. However, each basis function associated with a given degree of
freedom has compact support and is, thus, only nonzero within the direct vicinity. The
resulting linear system hence remains sparse but has considerably fewer DoFs than an
equivalent discretization produced by a DG method.

One may obtain a CG method starting from the DGM by strongly coupling the degrees
of freedom at cell interfaces. In other words, the previously discontinuous approximation
must be made continuous. In terms of the weak form of a given problem, the numerical
flux that has been introduced by partial integration has to vanish. This step is exactly taken
in deriving weak forms for the CG scheme. The equivalent weak form of the advection
equation given by Equation (2) is, then, the following: Find u ∈ V such that∫

Ω
v · ∂tα dx −

∫
Ω
∇v · uα dx = 0, ∀v ∈ V. (7)

By coupling coinciding DoFs, one may equivalently introduce shared DoFs between
cells. This results in comparison to the DGM in a smaller global system that is in turn more
coupled, yielding more nonzero entries per row and column in the system matrices.

The condensation of such a system by coupling DoFs is illustrated in Figure 1. From
the numbering of DoFs in both figures, it becomes apparent that the number of additional
allocations grows drastically with increasing dimensionality of the problem.

Appl. Syst. Innov. 2024, 7, 35 6 of 42

I II

III IV

φ1 φ2 φ3

φ4 φ5 φ6

φ7 φ8 φ9

(a)

I

IV

II

III

φ1 φ2 φ3 φ4

φ5 φ6 φ7 φ8

φ9 φ10 φ11 φ12

φ13 φ14 φ15 φ16

(b)
Figure 1. Coupling of global DoFs in the continuous Galerkin (a) versus discontinuous Galerkin
FEM (b), both of first order. In the latter case, DoFs are entirely local to the cell and, thus, receive no
contribution from neighboring cells. Weak coupling is only introduced by the additional numerical
flux. Coupled DoFs are drawn in identical colors.

As the numerical flux is zero by definition for a CG scheme, we may also omit it
from computation. Thus, the CGM is noticeably less arithmetically intensive in this regard.
However, this computational saving is offset by the strong coupling of DoFs, resulting in
a more dense linear system and possibly a more complex assembly process in terms of
memory management.

As equivalence can be shown here based on the weak form and, thus, early on in the
model assembly process, the choice of finite element is unaffected. This, in consequence,
also applies to the chosen type of triangulation or the order of approximation.

3.3. Finite Difference Method

At first glance, the finite difference method (FDM) might appear to be conceptually
different from the finite element methods given above. Instead of treating the discretized
problem in an element-wise manner, the FDM operates on discrete points directly and, per
se, lacks a notion of cells in the domain. Yet, both methods still may yield identical results
in discretization. A comparison of both approaches is shown in Figure 2.

i, j i+ 1, ji− 1, j

i, j + 1

i, j − 1

(a)

I II

III IV

φ1 φ2 φ3

φ4 φ5 φ6

φ7 φ8 φ9

(b)
Figure 2. Comparison of the nodal nature of the FDM (a) versus the cell-wise assembly used in the
CG FEM (b) for an identical, Cartesian triangulation with 9 nodes. Both methods are formulated
as first-order approximations. Red-colored nodes signify the points where the PDE is evaluated.
Contributions to this node are taken from blue nodes, whereas no contribution—white nodes.

In the figures, i and j denote vertical and horizontal indices of grid nodes, ϕi are the
FE basis functions, and Roman letters denote indices of cells. Forming, for example, the
Laplacian for an FDM requires access to the vicinity of vertex i, j (red node) in all Cartesian
directions (blue-colored nodes). For both methods, gray-marked nodes do not pose a
contribution to the value of the central node. For a special case of FEM with quadrilateral
elements, the same nodes form contributions to the global basis function ϕ5. However, we

Appl. Syst. Innov. 2024, 7, 35 7 of 42

now do not evaluate the Laplacian operator directly but, instead, gather contributions from
weak form integrals. In the case of ϕ5, we have to gather contributions from cells I to IV.

However, one may still show the equivalence of CGM and FDM by investigating the
resulting global linear system. We exemplify this claim using the Laplacian as a differential
operator and the second-order central stencil. This formulation continues to be widely used
as an approximation technique. As will be shown later, this particular choice of operator is
especially straightforward to compare with the CG-FEM due to the choice of trial and test
functions. On a Cartesian, two-dimensional grid with uniform spacing h in both directions,
the approximation reads

∆u ≈
ui−1,j + ui,j−1 − 4ui,j + ui+1,j + ui,j+1

h2 . (8)

Such a system in stencil notation will produce a global matrix with main diagonal
values 4 and four off-diagonals with entries 1.

We now proceed to construct an equivalent CG finite element scheme, where the
global system matrix is required to be exactly equivalent to the FD formulation.

The weak (CG) Laplacian can be formulated as follows: Find uh ∈ V such that for all
vh ∈ V ∫

Ω
v∆u dx =

∫
∂Ω

v(∇u · n) ds︸ ︷︷ ︸
=0

−
∫

Ω
∇v∇u dx. (9)

We have in this case introduced the additional restriction that trial and test space be
identical, that is, we use a Bubnov Galerkin method. Now, let Ω be an identical triangulation
to the FD variant using quadrilateral Q1 elements, that is linear Lagrange elements.

Then, the four basis functions spanning the reference element are

ϕ1(x, y) = xy − x − y + 1; (10)

ϕ2(x, y) = x(1 − y); (11)

ϕ3(x, y) = y(1 − x); (12)

ϕ4(x, y) = xy. (13)

The finite difference stencil given by Equation (8) only takes into account contributions
from nodes that lie strictly horizontally or vertically from the node of interest. As a
consequence, the node on the reference quadrilateral that is positioned diagonally from
the center node must not have any contribution to the weak form integral, otherwise the
resulting linear system cannot be equal. We thus need to evaluate the weak form in a
way such that the resulting matrix ϕi · ϕj becomes sparse. It turns out that this can be
achieved by choosing a collocation method for quadrature. In that case, quadrature points
are chosen to coincide with the node coordinates, and as a consequence, the mass matrix
ϕi · ϕj becomes the identity matrix.

From the family of Gaussian quadrature schemes, one can achieve this using a Gauss–
Lobatto quadrature of order equal to the polynomial order of the finite element. We note at
this point that choosing this particular combination of quadrature method and number of
nodes will lead to inexact integration and, thus, a numerical error is introduced. In this case,
to produce a collocated scheme, one must pick the second-order Gauss–Lobatto variant
using two quadrature nodes per coordinate direction. As this type of integration is known
to be accurate up to degree 2n− 3, this scheme will only integrate linear polynomials exactly.
However, the above-listed basis functions are bilinear and have a combined polynomial
order of 2. Thus, integration will not be accurate in this case. However, the modern FEM
in general does not prescribe any particular method of integrating the weak formulation,
per se [31]. Thus, although the results of a properly implemented FEM in the sense of
exact integration will be slightly more accurate, one can still show equivalence regarding a
particular instance of the FEM.

Appl. Syst. Innov. 2024, 7, 35 8 of 42

We now evaluate the element-wise stiffness matrix −
∫

Ω(e) ∇kϕi∇kϕj dx within the ref-
erence domain [0; 1]× [0; 1] for the given first order Lagrange element using Gauss–Lobatto
quadrature, more specifically the variant using two quadrature points per coordinate
direction. This results in

K(e) =

−1 1/2 1/2 0
1/2 −1 0 1/2
1/2 0 −1 1/2

0 1/2 1/2 −1

. (14)

As such, K(e) does not yet equal Equation (8). The final step consists of assembling the
linear system in the physical domain using the reference stiffness matrix. In a Cartesian
mesh in two dimensions, an interior node is owned by four quadrilateral elements. If one
carries out this assembly process, an equivalent formulation can be obtained:

K =

.
...

...
...

.
... 1

...
.

...
...

...
. 1

...

· · · · · · · · ·
... · · · · · · · · · · · ·

· · · 1 · · · 1
. . . −4

. . . 1 · · · 1 · · ·

· · · · · · · · · · · ·
...

. · · · · · · · · ·
... 1

.
...

...
...

.
... 1

...
.

...
...

...
.

. (15)

The exact position of the one entry in the typically large and sparse matrix depends
on the mesh topology as well as the global numbering of the degrees of freedom.

For the discretization of other operators, a similar argument holds, as the shown
procedure is irrespective of the choice of weak form or basis function. For example, one
could discretize the gradient of a function ∇u using an upwind finite difference formulation
in fluid mechanics for resolving convective terms. An equivalent finite element method can
be assembled by producing a weak form, as given in the above example, choosing the same
collocation method and carrying out the integration numerically. However, one important
difference is that one cannot choose the test space to be equivalent to the trial space. This
would yield a symmetric system that does not correspond to an upwind finite difference
formulation and is also not stable in the case of solving a pure advection equation. One
must instead choose a test space with asymmetric test functions to account for the notion
of an upwind node, thus yielding a Petrov Galerkin scheme [32].

We can, as a result, summarize the FDM to be a special instance of the CG FEM. On
one hand, integration is restricted to a collocation method, and on the other hand, the
Jacobian mapping from reference to physical elements is constant throughout the domain.
This close relationship has also been hinted at by analysis of boundary value problems by
Thomèe [13].

For the sake of achieving the same discretization, the use of finite differences over
finite elements becomes apparent from the discussion above. Most strikingly, the process
of producing a local stencil is vastly more straightforward than performing element-wise
assembly and gathering the weak form integrals in a global, sparse linear system. Each
element-wise operation in assembly would otherwise require the evaluation of the mesh

Appl. Syst. Innov. 2024, 7, 35 9 of 42

Jacobian for the requested element, that is, the mapping from the reference to physical
space. Furthermore, this constant stencil enables finite difference schemes to operate in
a matrix-free manner easily. For larger systems, this can help to avoid a large amount
of allocated memory, thus being well suited for modern hardware architectures that are
typically memory-bound.

These advantages are, however, offset by some topological restrictions on the mesh.
The simplicity of a constant stencil also implies that the mesh must not deviate from a
Cartesian geometry. Otherwise, additional complexity is introduced since Equation (8)
becomes a stencil in the reference domain that has to be mapped to the physical domain.
This would still save the computational effort to assemble the weak form. However, since
this process only has to be carried out once for the reference element, the computational
impact can be held low by precomputing the integrand.

3.4. Finite Volume Method

In a similar vein to the FDM, the use of finite volumes might appear distinctly different
from the idea of finite elements. Here, we make extensive use of Stokes’ theorem to replace
volume with hull integrals in conservation laws [33]. There exist different formulations
of this method, most namely, a cell- and vertex-centered form. The main difference lies
in where the solution is stored. In the former case, the solution is stored at the polygonal
cell centers that are spanned by the mesh vertices. The latter, instead, directly uses these
vertices as solution points [34]. In this case, one does not operate on the computational
mesh directly but, rather, on its dual. As the cell-centered formulation is considerably more
widely used, we investigate this variant further in the following.

It can be shown, however, that the FVM can simply be considered a Bubnov discon-
tinuous Galerkin method of polynomial order zero. To illustrate this, we again turn to
Equations (1) and (2) describing the strong and weak form of the advection equation. A
finite volume approximation in conservation form is∫

Ω
∂tα dx +

∫
Ω

u∇α dx =
∫

Ω
∂tα dx +

∫
∂Ω

α(u · n) ds. (16)

Apart from the presence of a test function v in Equation (2), the second integrand sim-
ply represents the net flux of the conserved quantity uα over the set of element boundaries.

For Equations (2) and (16) to be equivalent in this case, the third integrand resulting
from partial integration has to vanish in addition. However, this can be shown trivially by
setting the order of the polynomial space for the trial and test function to zero. Then, the
derivative of the test function vanishes and, thus, the entire term does not contribute to the
weak form.

After performing this step, the test function is still present in the remaining parts
of Equation (2). For the remaining terms to be equivalent, they must vanish out of the
equation as well. This can be accomplished straightforwardly by fixing the value of the
test function to be unity. In the weak form, this step is admissible since it must hold for all
instances of V. As 1 ∈ V0 where V0 is the space of constant polynomials, this statement
holds in particular for a Bubnov Galerkin scheme, as trial and test space must be identical.
The qualitative similarity of both schemes is illustrated in Figure 3.

For both schemes, DoFs are entirely local to the cell and coupling happens through the
calculation of a numerical flux—or, in more formal terms, through the evaluation of the hull
integral in the corresponding weak form. However, the FVM only stores one DoF per cell,
which has notable implications for the calculation of the numerical flux. This means that as
a first step, the cell values have to be reconstructed at the mesh facets. These reconstructed
DoFs which depend on the cell values that they interpolate between can then be coupled
to their counterparts at opposing mesh facets. These relationships are denoted by DoFs
being colored identically (coupled) and being transparent (reconstructed) in Figure 3a. For
a DGM scheme of first order or higher, this interpolation step is oftentimes not necessary if
the quadrature scheme is chosen carefully. For a collocation method (see Section 3.3 for a

Appl. Syst. Innov. 2024, 7, 35 10 of 42

more thorough discussion), one does not need to tabulate the full list of DoF values at the
set of facet quadrature points, but rather, only a small subset of DoFs that are owned by the
facet [35].

φ1 φ2

φ3 φ4

(a)

I

IV

II

III

φ1 φ2 φ3 φ4

φ5 φ6 φ7 φ8

φ9 φ10 φ11 φ12

φ13 φ14 φ15 φ16

(b)
Figure 3. Comparison of FVM (a) versus DGM (b) on an identical quadrilateral triangulation.
Coupled DoFs are marked in identical colors. For the FVM, one must first reconstruct the values of
the DoFs at the mesh facets to then compute the numerical flux.

In summary, the FVM can again be considered as a special instance of the Bubnov type
DGM, where the shared polynomial space V is taken to be of constant order and the test
function v is set to be unity.

We note, similarly to the discussion on the FDM, that this simplification of Equation (2)
brings with it some computational advantages that can be offset by sacrificing flexibility.
The absence of a true weak form in a finite volume formulation again means that actual
assembly is not needed. In addition, one may omit the transformation from the reference
to physical space, as interpolating degrees of freedom to mesh facets and forming a finite
sum of these contributions can be performed on the mesh directly. The caveat of this
approach is that FVM in principle is bound to be at most first-order accurate. In practice,
this does not hold as the FVM can be extended to higher orders by applying higher-order
flux reconstruction techniques [9,15]. Such techniques can, however, quickly become
computationally expensive as well with increasing order. This is achieved in this case by
widening the stencil for polynomial reconstruction, increasing memory and time complexity
by a considerable amount [36].

3.5. Summary

In this section, we established a common framework to formulate the most prevalent
grid-based numerical schemes for the solution of PDEs.

It turns out that the DG method possesses enough flexibility to incorporate the CGM,
FDM, and FVM by imposing a set of restrictions. A summary of the results presented in
this section on how the schemes compare overall is given in Table 1.

This framework is not only of theoretical use; rather, such a common formulation also
enables us to combine these schemes arbitrarily to solve larger problems. As each scheme
possesses strengths and means to gain computational efficiency, this is an important result
since it enables efficiently mixed discretizations of multiphysics problems. Establishing a
practical method to achieve exactly this will be the content of the next section.

Before concluding the discussion on relating the above numerical schemes, we add an
important remark. There do exist several extensions to these methods that in general do
not fit into the framework that has been established. We will list a few examples for the
sake of illustration.

Appl. Syst. Innov.2024, 7, 35 11 of 42

Table 1. Comparison of the individual restrictions that the presented schemes impose. Certain
simpli�cations bring with them computational advantages, as discussed above.

Scheme Geometry Function Space Weak Form Quadrature

DGM Arbitrary Discontinuous (L2) Full Arbitrary

CGM Arbitrary Continuous (H1) No hull integrals
over interior facets

Arbitrary

FDM Cartesian Continuous (H1) No hull integrals
over interior facets

Collocation

FVM Arbitrary Discontinuous (P0 2 L2),
Bubnov Galerkin

No volume integrals None required

There do exist formulations of the FDM that can capture domains with less regularity;
see, for example, [37–40]. One can also �nd alternative discretization methods based on
FDM in the literature that encompass the notion of missing structure in grids more naturally,
such as understanding vertices as centroids of Voronoi cells [41].

As mentioned previously, there exist various formulations of the FVM that extend far
beyond the original restriction of being �rst-order accurate. The cell-averaged �ux is then
determined in terms of reconstructing polynomials that, in theory, can be of arbitrary order.
Such approaches, per se, do not �t well into the above given DG scheme but do, however,
achieve similar results.

4. Method for Assembling Numerical Schemes

The overarching goal of this section is to identify a suitable combination of numerical
schemes for a given multiphysics problem that is stable and accurate on one hand, but also
performant with regards to a speci�c choice of hardware on the other hand.

With the set relations between methods discussed in Section 3, we can now use the
simpli�cations and, thus, computational advantages that each scheme presents. That is, we
follow the guideline to impose as many restrictions as possible whilst sustaining enough
degrees of freedom to accurately capture the behavior of a given PDE. In this way, we
aim to provide the application expert with a recommendation on which schemes to use
for a particular computational problem. Our key concerns are, above all, to make this
recommendation unambiguous. Also, we focus on providing recommendations that will
produce a stable solution and do not require tuning of arti�cial parameters. If at least
either of both requirements were not given, the usefulness of this method would be lost as
one would have to undergo substantial experimentation to attain a valid solution. Thus,
by proposing such a method, we aim to give a sensible trade-off between practicality
and reproducibility, on one hand, and utmost performance at the cost of possibly many
model-building iterations and tuning, on the other hand.

4.1. Preliminary Assumptions

As a starting point, it has to be stated that encompassing the entire state of research
on such schemes would be an impossible task. The likewise formalization of a common
framework is equally challenging as a consequence and, thus, is not considered in this work.

Instead, we follow the path of introducing some restrictions that are, on one hand,
enough to construct a unifying scheme but, on the other hand, not too strict such that the
ef�cient solution of real-world problems would be out of scope.

Thus, we propose the following restrictions to arrive at a one-to-one choice of numeri-
cal schemes. These apply to single-�eld, as well as to multiphysics problems.

1. Only Bubnov Galerkin schemes are considered, that is, we omit Petrov Galerkin
methods. The former restricts the choice of test space to be identical to the trial
space. As such, we omit schemes that, for instance, use weighted functions or stencils
to account for �ow �elds. An example of such schemes would be the streamline

Appl. Syst. Innov.2024, 7, 35 12 of 42

upwind Petrov Galerkin (SUPG) method [32]. This restriction is essential to obtain an
unambiguous choice of method, as the notion of Petrov Galerkin methods does not
imply any particular choice of function space. Naturally, omitting the use of arbitrary
test function spaces contains a trade-off as we, in theory, restrict the solution space by
doing so. However, the majority of numerical methods developed so far indeed fall
within the category of Bubnov Galerkin schemes. Thus, we mainly disregard special
instances of numerical methods that are tailored to particular use cases, such as the
SUPG method outlined above.

2. We omit function spaces for approximation other than the L2 and H1 Sobolev spaces.
There exist a vast variety of so-called mixed �nite element schemes that use �nite
elements based on different or composite function spaces with unique properties [42].
For example, one may construct function spaces that can exactly ful�ll divergence-free
properties (H (div)) or conditions based on the rotation of a �eld (H (curl)). The spe-
ci�c choice of �nite element, then, would require a considerable amount of expertise
and would warrant a complex decision process of its own. Furthermore, the number
of elements available for such spaces is vastly ambiguous, as outlined in Section 1. We
thus focus on scalar-, vector-, and tensor-valued Lagrange elements solely. They have
been shown to encompass a similar solution space as well and perform comparably
for �uid and electromagnetic problems [43,44]. In summary, we similarly sacri�ce
some freedom in choosing possibly very-well-suited function spaces for the bene�t of
attaining a decision metric that allows for an unambiguous recommendation.

3. Closely related to the previous statement, we restrict the solution space further by
requiring that only �nite elements utilizing Lagrange polynomials should be used.
As the standard scalar- and vector-valued Pk and Qk �nite elements, being by far
the most popular choices, use exactly this family of polynomials, this requirement is
weaker in practice than it might seem at �rst glance [45,46].

4. We impose a coarse taxonomy to classify the qualitative behavior of a given PDE,
that is, we specify limits regarding the leading coef�cients of the differential oper-
ators. This should indicate whether the physical process described by the PDE is
either more dissipative or more convective by nature. We thus introduce a more
physical interpretation than the considerably stricter coercivity measures employed in
functional analysis. Our taxonomy closely follows the classes that were proposed by
Bitsadze [47]. We do not claim this classi�cation to be universally accurate. In practice,
it has been shown, however, that having discrete cut-off values to disambiguate classes
of PDE eases the choice of numerical scheme for application experts considerably.
Hence, we choose to follow this path despite some shortcomings regarding generality.

5. We only investigate systems of PDEs with differential operators up to second order.
These are most common within physical processes and enable a wider range of
numerical schemes to be used. For instance, equations of higher order, such as the
Cahn–Hilliard equation, would require the use of �nite elements where up to third-
order derivatives are de�ned. Such elements of high continuity are cumbersome to
derive and are rarely used. Instead, we propose that in such cases the system should
be reformulated as a mixed problem, where in the mentioned example, one could
represent the quantity of interest as two �elds with second derivatives each. This
technique is also regularly used in practice.

6. For �nite volume methods, we use the cell-centered variant, as already outlined in
Section 3.4, instead of the vertex-centered or cell-vertex formulation. This is due to
this form being the most popular choice in practice. Furthermore, it resembles the
other schemes more naturally, as has been shown in previous sections.

4.2. PDE Classi�cation

To �nd a numerical scheme that produces stable results, knowing the qualitative
behavior of the system is oftentimes a necessity. In particular, this means that the speci�c

Appl. Syst. Innov.2024, 7, 35 13 of 42

capabilities that a chosen numerical scheme possesses need to re�ect the properties that the
system presents.

We illustrate this by example. We once again investigate the simple advection equation
(Equation (1)), which is known to be �rst-order hyperbolic. Such systems are prone to
either preserving or even amplifying discontinuities given in the initial condition; thus,
the capability of accurately representing these should be incorporated into the choice of
numerical schemes. Suitable candidates would then be a �nite volume or discontinuous
Galerkin method. However, the �nite difference method using a centered stencil or the
continuous Galerkin method would give suboptimal results. The strong imposition of
continuity in the domain would then yield spurious oscillations that affect stability.

We hence require the system of PDEs to be classi�ed �rsthand. We follow the pop-
ular taxonomy of second-order PDEs that can, for example, be found in the book by
Bitsadze [47], but follow a more general method for determining the appropriate class [48].
That is, we de�ne a singular governing equation in the form of a PDE to be either elliptic,
parabolic, or hyperbolic, depending on the shape that its characteristic quadric takes in
space. More formally, consider a differential operator L of the form

L[u] =
n

å
i ,j= 1

ai j
¶2u

¶xi¶xj
, (17)

where xi are the dependent variables and ai j is the matrix forming the coef�cients of the
highest spatial derivatives. Considering the eigenvalues l i of ai j , L is called

• Elliptic, if all l i are either positive or negative;
• Parabolic, if at least one eigenvalue is zero and all others are either positive or negative;
• Hyperbolic, if at least one eigenvalue is positive and at least one is negative.

The characterization of �rst-order differential operators is more straightforward, how-
ever. It can be shown that �rst-order PDEs with constant, real coef�cients are always
hyperbolic. This condition is met for most cases relevant to engineering or physical appli-
cations. More precisely, a �rst-order PDE is hyperbolic if the resulting Cauchy problem is
uniquely solvable. In the case of real, constant coef�cients, the polynomial equation for
each variable has to admit n solutions for an equation of order n while keeping all other
variables constant. In the present case, this is trivially true.

We apply this classi�cation for each governing equation of the independent variables
for a given multiphysics problem. In practice, one may oftentimes identify the class by the
differential operators that frequently appear in a given PDE. For example, a PDE that only
has a Laplacian as a spatial differential operator—such as the Laplace equation Du = 0
or the heat equation ¶tu � Du = 0—exhibits dissipative behavior and is prototypical for
elliptic and parabolic PDEs. Oftentimes, one can easily identify a differential operator as
parabolic if it has an elliptic operator in its spatial derivatives and an additional temporal
derivative, as is exactly the case for the heat equation.

Both the abovementioned classes of PDE are dissipative, with the reason being that
PDEs of second order can only have discontinuous derivatives along their characteristics.
Since elliptic differential operators lack any characteristics, they strictly admit smooth
solutions in that sense [48]. Thus, we associate this qualitatively dissipative behavior with
elliptic and parabolic PDEs, as de�ned above.

However, the advection equation (Equation (1)) only has the gradient as a spatial
differential operator, representing purely convective behavior. Exactly this behavior of
transporting information through the domain with �nite speed is associated with the
wave-like character of hyperbolic equations. Figure 4 gives an overview of the classes of
PDEs considered.

Appl. Syst. Innov.2024, 7, 35 14 of 42

PDEs of (up to)
second order

Diffusive /
Continuous

Convective /
Discontinuous

Ellptic Parabolic
First order
hyperbolic

Second order
hyperbolic

Character of the
PDE / solution

Class of the PDE

Figure 4. Classi�cation of PDEs up to second order by qualitative nature and types following [47].

In alignment with the postulate at the beginning of this section, we aim to solve a
given class of PDEs with as few degrees of freedom as possible whilst not overconstraining
the solution.

Most importantly, discontinuities that might appear in the solution should be properly
accounted for and re�ect the choice of numerical scheme. The direct consequence is that
methods enforcing continuity should be used for problems that qualitatively exhibit high
regularity and continuity. From the previous discussion, it becomes apparent that this
is the case for �nite differences and continuous Galerkin �nite elements. Problems that
either conserve or even develop shocks, however, should be solved using methods that
naturally allow for such. This means that either �nite volumes or discontinuous Galerkin
�nite elements suit this requirement most naturally.

4.3. Domain Geometry

As discussed in Section 3.3, the discretization using �nite differences inherently as-
sumes an even grid with uniform spacing between nodal points. The direct consequence of
this simpli�cation is that assembly can be performed in the computational domain directly
and in an equal manner for every node point.

In general, if the domain has a particularly simple shape, for example, a hypercube,
and does not contain any holes, it can be triangulated using a Cartesian grid. Thus, if the
discrete domain ful�lls these conditions and the differential operators form an elliptic or
parabolic PDE, using the FDM to ef�ciently assemble the global system is advisable.

For FVM, CGM, and DGM, regularity of the computational domain, in general,
does not pose any considerable advantages that may accelerate the assembly of the
discretized system.

4.4. PDE Linearity

Another crucial property to assess is its linearity. In this case, we disambiguate strictly
linear, semilinear, quasilinear, and fully nonlinear equations, following the de�nition given
in Evans [49]:

A k-th order partial differential equation of the form

F(Dku(x), Dk� 1u(x), ...,Du(x), u(x), x) = 0

is called

1. Linear, if it has the form

å
jaj� k

aa(x)Dau = f (x)

for given functions aa(jaj � k), f . The PDE is homogeneous if f � 0.
2. Semilinear, if it has the form

å
jaj= k

aa(x)Dau + a0(Dk� 1u, ...,Du, u, x) = 0

Appl. Syst. Innov.2024, 7, 35 15 of 42

3. Quasilinear, if it has the form

å
jaj= k

aaDau(Dk� 1u, ...,Du, u, x) + a0(Dk� 1u, ...,Du, u, x) = 0

4. The PDE is fully nonlinear if it depends nonlinearly upon the highest-order derivatives.

While linearity does not pose much of a problem for elliptic or parabolic equations, it
plays an important role in whether a discretization is stable for hyperbolic equations. The
theory of nonlinear �ux limiters is, in general, well researched for DG methods and largely
pro�ts from extensive developments that originally stem from the FVM. However, accurate
computation and implementation remain to be a hurdle in practice. There have thus been
several approaches to circumvent this issue, for example, by switching to an FV scheme in
regions where there might be problems regarding the stability of the solution [50,51].

As the overarching goal of this method is to provide straightforward guidance for end
users, we will omit such approaches that must in most cases be implemented in a custom
and rather particular fashion in favor of simplicity.

We thus recommend that, for equations where the solution is not likely to require
many nonlinear iterations per time step, one may safely use a DG scheme. In other cases
where stability cannot be assured universally, one should, rather, switch to a �nite volume
formulation that may be overly diffusive, but on the upside is guaranteed to yield a
stable solution.

4.5. Computing Environment

Within the last decade, advancement of computer hardware has been known to slowly
hit the so-called memory wall [52]. That is, applications tend to be bound by the capability
of the hardware to transfer memory instead of performing arithmetic operations. This, in
particular, holds for numerical simulations that are performed using many workers or large
problems. In such cases, the evaluation of sparse matrix-vector products poses high loads
regarding memory bandwidth [53].

Then, there are numerical schemes that naturally lend themselves toward parallelism
and others that are more memory-bound by design. Thus, for a given computing hardware
that places enough emphasis on massive parallelism and two numerical schemes perform-
ing (nearly) identically, one should prefer the one that handles parallelism better. We thus
naturally arrive at the question of where one should disambiguate between massively
parallel and other, regular hardware.

There are essentially two factors that would affect such a classi�cation. First, the
hardware architecture itself plays an important role. We may, on one hand, solve a PDE on
the classic CPU architecture that is capable of performing arithmetic on many precision
levels and use many specialized instruction sets, such as AVX or fused multiply–add (FMA).
Another possibility is the use of highly parallel computing units, such as general-purpose
graphics processing units. Those, however, have a memory layout and instruction set
that is much more tailored toward one purpose. In the case of a GPU, this is medium-
to low-precision operations with comparably low memory intensity but instead high
arithmetic effort.

The other deciding factor is the number of workers involved in the simulation process.
The more workers that exist, the more processor boundaries that are present and, thus,
more information has to be shared between processors. For some schemes, this overhead
due to the exchange of memory between workers can become prohibitive. Within the
�nite volume method, for instance, parallel ef�ciency measured in GFlops/s starts to drop
notably within the regime of 50 to 100 workers [54]. The quantitative drop-off also depends
on the speci�c implementation, since other authors report slightly different results. Fringer
et al., for instance, note a decline in parallel ef�ciency for a �nite volume solver starting
at 32workers [55] . Thus, as a general guideline, we recommend employing methods that
are suited for highly parallel environments at roughly 50 or more CPU workers. For

Appl. Syst. Innov.2024, 7, 35 16 of 42

execution on massively parallel architectures, such as GPUs, the switch to such algorithms
is considered necessary to obtain good ef�ciency.

4.6. Problem Scale

Another deciding factor for whether adaptivity is needed or not is the presence of
multiple length scales in a multiphysics model.

We follow the de�nition given in [56,57] and characterize a PDE-governed problem
to have a Multiscale nature if models of multiple spatial or temporal scales are used to
describe a system. Oftentimes, this is the case if equations are used that originate from
different branches of physics, such as continuum mechanics versus quantum mechanics or
statistical thermodynamics.

This may, on one hand, be a physical process with slow and fast dynamics, for example,
in chemical reaction networks. Then, the multiscale nature shows itself in the time domain
of the problem. Another example of a commonly encountered problem in alloy design is the
evolution of the temperature �eld and phase kinetics during heating and solidi�cation. In
this case, various length scales can be involved, such as in processes involving laser heating.
The temperature gradients then involve resolutions at a scale of around 1 � 10� 5 m, whereas
the width of a solidi�cation front, rather, reduces to a submicrometer scale, that is, around
1 � 10� 7 m [58]. Regarding the previous de�nition, we have one model that is governed by
laws of macroscale thermodynamics (that is, the heat equation). The other part of physics
present is typically described by the evolution of a phase �eld. The corresponding equations
of this model are, however, derived from the formulation of a free energy functional from
Landau theory [59].

Due to the wide variety of physical processes and combinations thereof, formulating
general criteria for the presence of a multiscale problem from a mathematical point of
view is challenging. To the knowledge of the authors, there do not exist any metrics in the
literature that would enable such a classi�cation. We instead rely on the knowledge of the
application expert who we assume to be familiar with the physics that should be captured.
For a rough disambiguation, however, one may use the de�nition given above.

Such multiscale phenomena are prohibitively expensive to resolve on a uniform mesh
due to the nonnegligible difference in the dynamics of the system. One option to ef�ciently
resolve the physics at multiple scales is to employ different grids and solve the resulting
problem in parallel. This has, for example, been conducted for the abovementioned case,
speci�cally metal additive manufacturing [60].

A rather effective, alternative approach is the modi�cation of the governing equations
such that they become tailored to a speci�c numerical scheme. For instance, the well-
known phase �eld model has been adapted using specialized stencils to the FDM such
that spurious grid friction effects are eliminated [61,62]. This approach, however, requires
extensive knowledge about the numerics as well as the physical nature of a given problem.

Another possibility that requires fewer adaptions of the code to the speci�c problem
is to make use of grid adaptive algorithms. This approach for the problem presented
is a popular alternative and has been implemented multiple times [63–66]. Thus, grid
adaptivity plays a key role in creating solutions to such problems, if the domains are not to
be resolved on different discretizations entirely. Numerical methods as a consequence need
to re�ect on this requirement; as such, �nite difference methods are not suitable for such
types of problems.

CG �nite element methods do enable grid as well as polynomial degree adaptivity.
Yet, the imposition of hanging node constraints is oftentimes not trivial. Though there
have been considerable strides toward easy and intuitive handling of hanging nodes for
continuous elements [67,68], these methods naturally fall short of the inherently decoupled
nature of DoFs present in discontinuous methods.

Whereas grid adaptivity is easily realizable within FVM, there is little room for adap-
tivity regarding the order of approximation and it can, at best, be achieved using varying
reconstruction stencils [15].

Appl. Syst. Innov.2024, 7, 35 17 of 42

By far, the most naturally suited method for h- as well as p-adaptivity is the DG
FEM. The locality of DoFs enables the splitting of cells without the need for hanging
node constraints. The same argument applies to altering the degree of a �nite element, as
additional DoFs within the cell need not be attached to a counterpart on its neighbors.

4.7. Summary

We may now condense the various aspects of choosing appropriate numerical schemes
as follows into a unifying method, given the restrictions we posed in Section 4.1.

First, we take three sets of inputs that are of practical relevance: the mathematically
formulated, continuous problem, the computational domain that one wishes to solve the
former on, and the con�guration of the target hardware.

To design the intended decision process, we start by evaluating the decision metrics
that impact the target scheme in the most general manner at �rst. The general question of
whether the prescribed system of PDEs requires an ef�cient solution on a large scale ful�lls
this requirement here. By the term large scale, we understand state-of-the-art computing
hardware on massively parallel architectures. That decision, in turn, is in�uenced by two
factors: One may directly intend to ef�ciently solve the system of PDEs on that hardware,
or the multiscale nature of the problem demands such a computing environment. If either is
the case, solving the entire system using the HDG method is advisable due to the resulting
locality of the problem.

The remaining parts of the decision process depend on the class of PDE present.
From here on, we operate in a �eld-wise manner and classify the system of PDEs for each
independent variable separately. If a PDE is convective in character, that is, hyperbolic, we
recommend the use of numerical schemes that incorporate discontinuous approximations.
But, if a problem is diffusive by nature, the solution will be continuous and, thus, the use
of continuous approximations is more advisable.

In the case of the former, following the discussion in Section 4.4, a �nal disambiguation
must be made regarding linearity. If the PDE is linear or semilinear, a DG scheme can
be applied due to the unlikeliness of stability issues. Otherwise, the use of a simple FV
scheme is more advisable to obtain a stable solution without having to iterate through
many different choices of �ux limiters in a trial-and-error fashion.

Regarding the continuous schemes, as was explained in Sections 3.3 and 4.3, the
con�guration of the domain geometry plays an important role in the ef�ciency of the
overall scheme. If the domain is Cartesian, irrespective of dimensionality, the FDM can
deliver accurate results with a considerably decreased number of arithmetic operations.
The conceptual �exibility of the FEM regarding the domain is then unnecessary. In the other
case, though, where the domain is topologically more complex, relying on FEM algorithms
that account for the necessary global mappings is more appropriate. It would, of course,
be possible to identify a middle ground between both schemes, for example, when a
simple and prescribed transformation can be applied to the entire domain. This would,
for example, be the case for systems that can be described by polar coordinates. However,
few computer codes implement such functionality. As the focus of this method lies on
practicality and usefulness, we rather choose a method that can make use of widespread
and established computer codes and thus omit these possibilities.

As a result, we obtain one process that guides the user through iteratively selecting the
most appropriate combination of numerical schemes for a given, �xed, and well-de�ned set
of inputs. This method may be summarized in a �ow chart, which is depicted in Figure 5.

Appl. Syst. Innov.2024, 7, 35 18 of 42

Start
I1: System

of PDEs
I2: Hardware
con�guration

P1: Classify
hardware scale

(4.5)

P2: Evaluate
length scales (4.6)

D1: Massive
parallelism
required?

P3: Classify PDE
for current �eld

(4.2)

Advance to
next �eld

D2: Clas-
si�cation

I3: Domain
Geometry

P4: Evaluate
PDE Linearity

(4.4)

D4: PDE
Linearity

D3: Domain
Regularity

Finite
Difference

Continuous
Galerkin

Finite
Volume

(Hybridizable)
Discon-
tinuous
Galerkin

D5: All �elds
assigned?

Stop

yes

no

parabolic or
elliptic

Irregular Cartesian

hyperbolic

Quasilinear,
Nonlinear

Semilinear,
Linear

no

yes For massively parallel
problems, apply to all
�elds

Figure 5. Graphic summary of the proposed process for choosing appropriate numerical schemes.
Inputs (I) are given by purple trapezoids, decision points (D) by white diamonds, and processes (P)
by orange rectangles. Processes with additional vertical bars denote more complex processes and
have references to their respective sections. Results are shown in green trapezoids.

5. Examples

The purpose of this section is to walk through the proposed method, employing
two simple example PDEs. Although these are not multiphysics problems, they may be
combined in theory.

Appl. Syst. Innov.2024, 7, 35 19 of 42

5.1. Allen–Cahn Equation

First, we consider the following scalar PDE together with zero �ux boundary condi-
tions to be imposed at the four borders of a rectangular domain W : [0;L] � [0;W]:

1
K

¶t f � Df = �
2
x2 ¶f g(f) �

m0

3gx
¶f h(f) 8f 2 W, (18)

¶f
¶n

= 0 8x 2 ¶W. (19)

This equation is called the Allen–Cahn equation and describes the time-evolution of a
scalar, nonconserved order-parameter �eld f , as is often called the phase �eld. The equation
is commonly used in the modeling of self-organized microstructure evolution or complex
pattern formation processes, as driven by local thermodynamics and/or mechanics. The
phase �eld variable f can be understood as a coloring function that locally indicates the
presence or absence of a certain phase or a certain material state within a given microstruc-
ture. For instance, in modeling of microstructure evolution during solidi�cation, f = 1
may denote the local presence of the solid and f = 0 may denote the local presence of the
liquid phase [61,62]. If applied to the description of crack propagation, the order-parameter
�eld f is understood as the local material state, which can be either broken f = 1 or not
f = 0 [69,70].

The scalar quantities K, x, m0, and g are model constants that determine the evolution
of the scalar �eld f , and we adopt the notation of [71]. The polynomials g and h on the right-
hand side of Equation (18) pose a nonlinearity to the equation. Their derivatives are given
by ¶f g(f) = 2f (1 � f)(1 � 2f) and ¶f h(f) = 6f (1 � f). In the following, we will gather
those polynomial terms in the joint potential term f (f) = 2¶f g(f)/ x2 + m0¶f h(f)/3 gx.
Further details on the parametrization of the model are given in the Appendix A Table A1.

Concerning the Allen–Cahn equation, we will consider two different scenarios, high-
lighting different aspects of the physics behind the equation. For each of these two scenarios,
we formulate quantitative measures to be able to adequately question the accuracy of the
numerical solutions.

In the �rst scenario, we consider the motion of a planar interface between two phases
at different energy density levels. The low-energy phase is expected to grow at the expense
of the high-energy phase, which induces a motion of the interface between them at a
velocity proportional to the constant energy density difference m0. The scenario is realized
as a quasi 1D problem [0;L = 100] � [0;W = 1], where the interface normal direction
is pointing in the x-direction and the use of simple von Neumann boundary conditions
with zero phase �eld �uxes at the borders of the rectangular domain is legitimate. The
realization of this scenario with tilted interface orientations, including the formulation of
appropriate boundary conditions on the borders of the rectangular domain, is discussed in
detail in [62]. In this highly symmetric quasi-1D case, the scenario can be quantitatively
evaluated using the existing analytic solution for the phase �eld:

f (x, t) =
1
2

�
1 � tanh

x � x̃(t)
x

�
, (20)

where the time dependence of the central interface position x̃ is given by x̃(t) = x0 +
M m0t/ g, with the initial position at x0 = 20. The initial condition of this problem is, thus,
formed by evaluating Equation (20) at time zero. To investigate the impact of arithmetic
complexity on computational ef�ciency, we will seek an approximation of this real-valued
function f (x, t) in one spatial dimension on a [0; 100] grid with equispaced vertices.

We can now start applying the proposed methodology, as described above in Section 3
and following Figure 5. That is, we follow the path of the �owchart from the top to the
bottom. We �rst classify the hardware scale according to P1 in the �gure. The given
hardware architecture, that is, an 8-core CPU system, falls well below the established

Appl. Syst. Innov.2024, 7, 35 20 of 42

recommendation for the threshold of partitioned problems, which is at least 50 workers.
Therefore, there is no need from a hardware side for massive parallelism.

Next, we investigate the problem scale with process P2. The problem is governed
by one scalar equation and there are no submodels involved, as de�ned in Section 4.6.
Concerning the length scales, the presented system exhibits one extra physical length scale
and that is the width x of the diffuse interface. This extra physical length scale originates
from the nonlinearity of the Allen–Cahn equation and complements the other length scales,
such as the dimensions of the domain, as well as the grid spacing, both being more natural
in the numerical solution of PDEs. This poses the issue of numerical resolution of the
systems length scales, that is, both the domain dimensions, as well as the width x of the
diffuse interface, need to be properly represented on the discrete numerical grid [61,62].
However, the fact that the problem is quasi-one-dimensional restricts the computational
demands of the scenario. We thus arrive at the �rst decision point D1, where we can negate
the necessity for massive parallelism.

The next process step, P3, involves classifying the problem at hand, following the
de�nition given in Section 4.2. As dependent variables, we encounter the time t as well
as the spatial components x and y. The coef�cient matrix ai j , summing up all leading
coef�cients of second derivatives, then becomes for the 2D case

aAC
ij =

2

4
0 0 0
0 � 1 0
0 0 � 1

3

5. (21)

In this case, enumerating the eigenvalues l i is trivial, since aAC
ij is a diagonal matrix,

and we have l 0 = 0, l 1 = � 1, l 2 = � 1. We thus �nd that one eigenvalue is zero since the
temporal derivative is only of �rst order and all other eigenvalues are of the same sign.
Therefore, Equation (18) is a second-order PDE of parabolic type and we can proceed in D2
with the left branch.

Moving on in the decision process, we would next classify the problem domain in
D3 given input I3. As we use an equispaced grid in 1D, the discretization is Cartesian;
thus, solving the problem using �nite difference would be the best choice. As there are no
other �elds to classify according to decision point D5, we conclude the decision process.
Within the uni�ed methodological framework, we implement both FD and CG schemes
and the scenario is comparatively solved using both schemes. This allows us to compare
the schemes concerning numerical resolution capabilities and to investigate differences in
the mutual arithmetic complexity and their impact on ef�ciency.

Evaluating the CG method requires the reformulation of Equation (18) in its weak
form, though. The �nite dimensional weak statement is, then, as follows: Find f h 2 Vh,
such that

Z

W

1
M

vh¶t f h dx +
Z

W
r vhr f h dx �

Z

W
vh f (f h) dx = 0 8vh 2 Vh, (22)

where we have already assumed the solution and test function to lie in the �nite-dimensional
subspaceVh.

Equation (18) requires the discretization of the Laplacian as its only differential opera-
tor. The temporal derivative will be treated using the method of lines approach, that is, we
solve a large system of spatially discretized ordinary differential equations.

The �nite difference discretization of the Laplacian results in the well-known second-
order central difference stencil

Df �
f i+ 1 � 2f i + f i � 1

Dx2 . (23)

The nonlinear right-hand side f (f) must be updated every time step using the current
value of f . As such, we do not need to perform any assembly and can even avoid forming

Appl. Syst. Innov.2024, 7, 35 21 of 42

a global system of equations. Instead, we rely on (23) for the Laplacian, which can be
handily vectorized. There is also no need to perform any mapping between the reference
and physical domain, as explained in Section 3.3.

For the �nite element discretization, we need to perform all these steps, resulting in a
global nonlinear system of equations for each time step. The discrete form of Equation (22)
then reads

M ¶t f + K f � F(f) = 0. (24)

where we introduced the mass matrix M and the stiffness matrix K for the Laplacian. These
represent the spatially discretized differential operators that act on the vector of degrees of
freedom f . The algebraic terms that are nonlinear in f are gathered in the discrete vector
F(f). For the sake of comparison regarding ef�ciency, we require the resulting �elds of
both schemes to be (nearly) identical apart from �oating point errors.

Given this requirement, we note that the �nite difference formulation lacks an analo-
gous term to the �nite element mass matrix. We consequently require M to be the identity
matrix in an equivalent �nite element formulation, given that all other terms are equal.
The latter can easily be veri�ed for a stiffness matrix assembled with �rst-order Lagrange
polynomials and a collocation method. The derivation of such an equivalent scheme was
covered in Section 3.3. Using collocated �nite elements is chosen here for the sake of
comparison as well as for computational ef�ciency. The resulting mass matrix can then be
inverted trivially by taking the element-wise inverse instead of computing the full inverse.
Such an operation is considerably more expensive and should thus be avoided if possible.

To compare both schemes regarding ef�ciency, we implement both schemes from
scratch within the Julia programming language [72]. Due to its �exibility, high-level syntax,
and simultaneous, granular control over various performance aspects via its rich type
system, Julia has gained considerable momentum in the past few years within the scienti�c
community. We carefully set up both schemes using analogous data structures to enable a
side-to-side comparison of the computational complexity. The most high-level parts of the
codes are given in Listing 1.

We also include the functions that are called within each time step to solve the semidis-
crete system, to give a high-level view of which steps are necessary and how they are
implemented in particular. Both semidiscrete systems use in-place operations to avoid
memory allocations. For the CG-FEM code, we implement a full mesh topology to solve
the problem with a �rst-order method, although both discretizations consist of Cartesian
meshes. One could in this case assume a globally constant Jacobian and, thus, save a
considerable amount of arithmetic complexity. However, this would skew the results
regarding performance and would not make full use of the �exibility of the FEM.

It becomes immediately apparent from the comparison that solving the Allen–Cahn
equation using �nite elements requires an assembly process that is noticeably more complex.
The only arrays that need to be stored for the FD version are the grid coordinates and the
solution array. Because the latter can be arranged in memory such that it represents the
Cartesian topology of the grid, one can simply point to the neighbors of a vertex in memory
without having to look up the vertex–vertex connectivity. This is not the case for the FEM.
Instead, we encounter an additional indirection through a cell-vertex list, where we gather
all DoFs associated with the currently visited cell.

We furthermore cannot construct the global linear system at once, but need to go
through the cell-wise assembly process which effectively leads to most of the nonzero
matrix entries being visited multiple times. This is in sharp contrast to the FDM where the
global system is only present implicitly through functions that apply the Laplacian stencil.
As a consequence, memory requirements are greatly reduced.

Appl. Syst. Innov.2024, 7, 35 22 of 42

Listing 1. Top-level overview of the necessary data structures and the functions to update the
semidiscrete systems for the CG FEM (left) and FDM (right). In the case of the FDM, one can avoid
assembling a global linear system entirely; thus, the top-level data structure only holds the solution
and grid as large arrays. For the FEM, assembly on general grids in a matrix-free manner is far from
trivial. Additionally, the triangulation data structure is more complex due to the necessary topological
information. Furthermore, the reference FE needs to be stored and correctly mapped using Jacobian
values. The full code is available in the code repository mentioned at the end of this article.

1 struct FETriangulation{V,C}<:Triangulation
2 vertices::V
3 connectivity::C
4 dim::Int
5 end
6

7 struct FiniteElement{E<:ElementType,
8 P<:Primitive,B<:AbstractMatrix,
9 Q<:AbstractVector,G<:AbstractArray}

10 primitive::P
11 element_type::E
12 order::Int
13 ndofs::Int
14 basis_coeffs::B
15 quadrature_nodes::B
16 quadrature_weights::Q
17 basis_at_quad::B
18 grad_basis_at_quad::G
19 grad_monomial_basis::G
20 end
21

22 struct AssemblyCache{T<:AbstractVecOrMat}
23 coeffs::T
24 loc::T
25 glob::T
26 end
27

28 struct CGProblem{T<:Triangulation,J,P,C
29 E<:FiniteElement,M<:AbstractMatrix,
30 V<:AbstractVector,F<:Function}
31 triangulation::T
32 referenceElements::E
33 detJ::J
34 bilinearForm::M
35 linearForm::V
36 u::V
37 massMatrix::Union{M,Nothing}
38 parameters::P
39 rhs::F
40 cache::C
41 end
42

43 function (a::CGProblem)(du,u,p,t)
44 mesh = a.triangulation,
45 element = a.referenceElements
46 K = a.bilinearForm
47 F = a.linearForm
48 detJ = a.detJ
49 params, = a.parameters
50 cache,rhs = a.cache, a.rhs
51 M = a.massMatrix
52

53 mul!(du,K,u,-1.,0.)
54 # f(u) changes, thus we reassemble
55 assemble_F!(F,cache,u,element,
56 mesh,detJ,params,rhs,M)
57 du .+= F
58

59 end

1 struct FDTriangulation{V,D}<:Triangulation
2 vertices::D
3 h::V # dx in each dim
4 dim::Int
5 end
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28 struct FDProblem{T<:FDTriangulation,
29 B<:Function,L<:Function
30 V<:AbstractArray,P,BC<:Function}
31 triangulation::T
32 order::Int
33 bilinearForm::B
34 linearForm::L
35 u::V
36 parameters::P
37 boundaryCondition::BC
38 end
39

40

41

42

43 function (a::FDProblem)(du,u,p,t)
44 apply_bilinear! = a.bilinearForm
45 apply_linear! = a.linearForm
46 apply_bc! = a.boundaryCondition
47 h = a.grid.h
48 params = a.parameters
49

50

51

52

53 a.bilinearForm(du,u,h)
54

55

56

57 a.linearForm(du,u,a.parameters)
58 a.boundaryCondition(du)
59 end

Appl. Syst. Innov.2024, 7, 35 23 of 42

For transient problems, one needs to additionally make a suitable choice for the
temporal discretization, that is, the choice of method as well as the time step. Here,
we make use of the well-optimized Julia library DifferentialEquations.jl [73]. As an
exemplary implementation of modern, high-performance codes for the solution of ordinary
differential equations (ODEs), this package offers various algorithms that are capable of
adaptive time stepping such that an application expert does not need to provide any input
regarding temporal discretization. Here, in particular, we can even make use of built-in
heuristics that automatically select a suitable integration scheme, based on the supplied
ODE problem [74]. The resulting effort for the end user can be condensed to selecting a
suitable numerical scheme for the spatial discretization, as outlined by Figure 5, and leave
the problem of tuning the spatial discretization aside entirely, as it is not required for the
application expert in the formulation of the ODE given above. For this particular problem,
we prescribe the use of an adaptive, implicit, fourth-order Rosenbrock method for the
temporal evolution of both FD and CG-FE systems to achieve a fair comparison between
both solutions. This solver is stable and third-order accurate when used on nonlinear
parabolic problems [73]. The spatially discretized, nonlinear problems at each time step are
solved explicitly according to the timestep update functions given in Listing 1.

Before comparing both schemes regarding computational ef�ciency, we �rst verify
that the FD and collocated CG-FE schemes produce identical results. Figure 6 shows the
solutions of both schemes for solving the phase �eld evolution (Figure 6a) and for modeling
interface position over time (Figure 6b).

0 25 50 75 100
0:00

0:25

0:50

0:75

1:00

�S�Q�b�B�i�B�Q�M �(�K�)

�S
�?

���
b�

2
�}

�2
�H

�/
�

�i �4 �y�b
�6�B�M�B�i�2 �.�B�z�2�`�2�M�+�2 �b�Q�H�m�i�B�Q�M
�6�B�M�B�i�2 �1�H�2�K�2�M�i �b�Q�H�m�i�B�Q�M

0 25 50 75 100

22

24

26

28

30

�h�B�K�2 �(�b�)

�S
�Q

�b
�B

�i�
B

�Q
�M

�Q
�7

�T
�?

���
b�

2
�7

�`
�Q

�M
�i

�(
�K

�)
���M���H�v�i�B�+ �b�Q�H�m�i�B�Q�M

�6�B�M�B�i�2 �.�B�z�2�`�2�M�+�2 �b�Q�H�m�i�B�Q�M
�6�B�M�B�i�2 �1�H�2�K�2�M�i �b�Q�H�m�i�B�Q�M

(a) (b)

Figure 6. Solution of the one-dimensional Allen–Cahn equation using the �nite difference and �nite
element method. (a) Evolution of the phase front at t = 100s with respect to the initial condition.
(b) Comparison of �nite difference and �nite element solutions to the analytical solution given by
Equation (20).

As can be observed, both schemes produce visually identical results. The quantitative
differences in the numerical results are minimal and can be attributed to �oating point
errors that accumulate over the process of time integration. However, there is a consider-
able difference between the analytical and the numerical interface velocity, as visible in
Figure 6b. The reason for this discrepancy is grid friction, which results from the limited
numerical resolution of the diffuse interface pro�le and could be reduced by increasing the
dimensionless ratio x/ Dx = 1.5, where Dx denotes the grid spacing [61,62]. Grid friction
and pinning during stationary interface motion has been studied previously, for instance,
by [75,76]. So far, this detrimental effect has been only studied using �nite-difference-based
schemes. It relates to metastabilities that result from a broken translational invariance of
the discrete numerical schemes [61,62]. As a consequence, the current interface velocity
oscillates as the center of the interface passes one grid point after the other. If, further,
the time discretization error is small enough, the average interface velocity turns out to
be considerably below the expectation. With decreasing phase-�eld width, we obtain
increasingly larger deviations of the average velocity as well as increasing larger oscil-
lations. This culminates in a vanishing velocity, where the phase �eld is pinned to the
computational grid. Interestingly, spurious grid friction and pinning can be eliminated in

Appl. Syst. Innov.2024, 7, 35 24 of 42

fast Fourier and �nite difference implementation of the Allen–Chan equation, using the
newly proposed sharp phase �eld method [77,78]. For phase �eld models, which use a
double-obstacle potential instead of the double-well potential, a comparable technique was
proposed by Eiken [79]. It is quite interesting to note that this discretization error, which is
very characteristic for the Allen–Cahn equation, turns out to be so very similar for the two
different numerical schemes in this case. This again highlights the close relationship of the
two different numerical schemes.

Furthermore, we point out that computational resource usage differs considerably.
Table 2 reports some descriptive statistics on the performance of both implementations.
These differences in run times as well as memory consumption can be attributed to multiple
factors. First, the nonlinear right-hand side changes each time step; thus, assembly has to
be performed dynamically for the �nite element method. The �nite difference method in
contrast can simply rely on point-wise evaluation of the strong form instead of numerically
computing the weak form integrals. Secondly, the �nite difference method does not need to
perform any mapping during the time step as no assembly is required. During computation
of the right-hand side integral, this is a necessity for the �nite element method.

Table 2. Run times of the �nite element and �nite difference model of the 1D Allen–Cahn equation.
Both models were run on identical hardware and Julia 1.8.5 with LLVM 13.0.1 [72]. Time stepping
was performed using the DifferentialEquations.jl library [73]. Linear algebra operations were
performed using OpenBLAS [80,81] on a single-threaded Apple M1Pro ARM processor. Fast evalua-
tion of fused array expressions was provided by the Tullio.jl library [82]. Allocated memory refers
to the physical size of the problem-speci�c data structures given in Listing 1. The sample size for
each scheme isn = 100.

FDM FEM Relative

Median run time 0.450 ms 9.503 ms 21.1�
Mean run time � 1s 0.578 ms ± 0.759 ms 9.643 ms ± 0.741 ms 16.7�
Allocated memory 1.446 kB 15.598 kB 10.8�

The largest performance discrepancy, however, can be attributed to the fact that the
�nite difference method can operate in a matrix-free manner due to the Cartesian grid it is
applied on. As all vertices are equispaced, there exists one global stencil that can be applied
on each vertex independent of all other members of the grid. The �nite element method, in
contrast, uses the grid topology to accumulate the weak form integrals into corresponding
entries of the global system matrices and vectors. Thus, it always produces a typically
very sparse global system that cannot be vectorized similarly. It should be noted that the
discrepancy in results should not be expected to be as drastic as shown for linear problems,
as then the FEM does not require the reassembly of the right-hand side. The computational
advantage then reduces to the matrix-free evaluation of the linear system.

In the second scenario, we investigate a more practically relevant benchmark in two
dimensions and turn to the well-known vanishing grain problem, leaving all other aspects
of the problem as is. Here, the dissolution of a circular-shaped nucleus under the interface
energy density pressure under two-phase equilibrium condition m0 = 0 is simulated. These
dynamics are also governed by the Allen–Cahn equation and denote the complementary
physical effects as compared to the above scenario. In a sharp interface picture, with a
constant and isotropic interface energy density g, we expect the temporal evolution of the
grain radius to be given by

r(t) =
q

R2
0 � 2Mt , (25)

where R0 indicates the initial radius and M is the phase �eld mobility. Snapshots of the
phase �eld f at initial and terminal times are given in Figure 7.

Appl. Syst. Innov.2024, 7, 35 25 of 42

x[m]

0

10

20

30

40

50
y[m]

0
10

20
30

40
50

0.2

0.4

0.6

0.8

Phase field at t=0s

0.2

0.4

0.6

0.8

x[m]

0

10

20

30

40

50
y[m]

0
10

20
30

40
50

0.0

0.2

0.4

0.6

0.8

Phase field at t=100

0.0

0.2

0.4

0.6

0.8

(a) (b)

Figure 7. Solution of the two-dimensional Allen–Cahn equation using the �nite difference and �nite
element method. (a) Initial con�guration of the phase �eld. The domain shows a quarter-slice of the
nucleus. (b) Phase �eld distribution within the quarter domain after 100 s. The nucleus has shrunk to
a smaller radius whilst retaining the interface pro�le.

We also report the temporal evolution of the radius function for solving this scenario
using both numerical methods in Figure 8. As in the one-dimensional simulation, the
collocated FE and FD solutions behave identically to each other. Both exhibit a notable
discrepancy towards the sharp interface behavior, which again relates to known issues of
�nite numerical resolution in the phase �eld simulation [62]. We note at this point that the
solution generated by a common FE model, i.e., with fully accurate quadrature, as explained
in Section 3.3, also produces very similar results given that all other parameters are chosen
the same, albeit with a large computational disadvantage due to the full inversion of the
resulting mass matrix. The linked code repository at the end of this article contains the
necessary data structures to reproduce these results.

0 25 50 75 100

Time [s]

15

16

17

18

19

20

21

R
ad

iu
s

[m
]

analytic solution

FD solution

FE solution

Figure 8. Evolution of radius over time of the vanishing grain problem. Both �nite difference and
�nite element solutions show a considerable, accumulating error toward the analytical solution.

To assess the performance gap of both schemes for higher dimensions, we again
benchmark both codes against each other. The results are given in Table 3. Comparing the
results from the 2D simulation benchmark in Table 3 with its 1D counterpart (Table 2), we
�nd that the discrepancy in performance becomes noticeably more drastic with increasing
dimensionality of the problem. This can be attributed to the increased scattering of DoFs in
memory. Thus, memory access is less stridden, increasing the lookup time. For a hardware
architecture that demands more parallelism and has a shared memory architecture, this
could quickly evolve into a serious bottleneck.

Appl. Syst. Innov.2024, 7, 35 26 of 42

Table 3. Run times of the �nite element and �nite difference model of the 2D Allen–Cahn equation.
Both models were run on identical hardware and Julia 1.8.5 with LLVM 13.0.1 [72]. Time stepping
was performed using the DifferentialEquations.jl library [73]. Linear algebra operations were
performed using OpenBLAS [80,81] on a single-threaded Apple M1Pro ARM processor. Fast evalua-
tion of fused array expressions was provided by the Tullio.jl library [82]. Allocated memory refers
to the physical size of the problem-speci�c data structures given in Listing 1. The sample size for
each scheme isn = 100.

FDM FEM Relative

Median run time 4.743 ms 192.837 ms 40.7�
Mean run time � 1s 4.731 ms ± 0.059 ms 192.787 ms± 0.219 ms 40.7�
Allocated memory 21.490 kB 494.730 kB 23.0�

Of course, this scenario has been discussed already in many different works. Quite
often, it is used to highlight accuracy gains or performance improvements of advanced
numerical techniques, that are particularly suggested to solve the Allen–Cahn problem. For
instance, Gräser et al. discussed the scenario in the context of solving the anisotropic Allen–
Cahn equation using fully implicit or a linearized time discretization and semi-implicit
time discretizations and globally convergent truncated nonsmooth Newton methods. They
provide information on resulting differences in the achieved accuracies and concerning
the complexity of the schemes [83]. Another example is the nonlinear preconditioning
for diffuse interface models based on the Allen–Cahn equation, as �rst suggested by
Glasner [84]. Interestingly, this preconditioning technique seems to be related to the
abovementioned sharp phase �eld method suggested by Finel et al. [77]. Both methods
provide a tremendous improvement potential, as demonstrated by a comparative study
using this scenario.

5.2. Two-Phase Advection

As a second model problem, we will investigate the advection equation in two di-
mensions. This problem is well studied in the literature and is known as challenging to
solve accurately. Due to the absence of dissipative terms, numerical algorithms oftentimes
struggle to converge towards the entropy solution and either produce spurious oscillations,
rendering the solution unstable, or yield overly diffusive approximations, where conserva-
tion laws are violated [85]. We choose this problem in particular due to being simple yet
challenging enough to study. In addition, the advection equation frequently arises in mod-
eling multiple phases in an Eulerian framework and the motion of immersed immiscible
�uids in general. It is, thus, of high relevance in a multitude of multiphysics problems.

In particular, we investigate a pure advection problem involving two phases. We
choose to describe the motion of two �uids and track the volume fractions ai , as is common
for the volume-of-�uid (VoF) formulation [86]:

¶ta + u � r a = 0, (26)

a1 + a2 = 1, (27)

W 2 [0; 5] � [0; 5], (28)

t 2 [0; 5]. (29)

The initial condition to this problem is given as a rectangle function that is one in
the interval x 2 [2; 3] � [2; 3] and zero everywhere else. One may alternatively track only
the motion of the interface using a coloring function f . This is common for the level set
method; the governing equation, however, is the same as Equation (26).

We would like to solve this problem on three different architectures to showcase the
effect of parallelism on the ef�ciency of numerical schemes. The choices of hardware along
with important quantities are given in Table 4.

Appl. Syst. Innov.2024, 7, 35 27 of 42

Table 4. Hardware con�gurations for the advection equation model problem. The three setups mimic
popular computing environments in applied settings: a mobile computer, a stationary workstation
grade tower, and a server tailored to numerical computing.

CPU Name
Number of
Cores

Core Clock
Speed [GHz]

Memory Size
[GB]

Memory
Bandwidth
[GB/s]

Memory
Speed [GHz]

Apple M1
Pro

8 3.2 16 200 6.4

Intel Xeon
W-2295

18 3.0 128 94 2.9

2x AMD
EPYC 7763

128 2.45 512 204 3.2

We once again follow the process summarized in Figure 5. Regarding the system
of PDEs (I1), Equation (27) is simply an algebraic constraint and thus can be calculated
in a simple postprocessing step. Thus, (27) is not a governing equation in the sense of a
PDE, and a2 will consequently not be considered an independent variable, as detailed in
Section 4.2. We are then left to solve a single scalar advection equation fora1.

Proceeding in the �ow chart, we next classify the hardware scales within P1. Here, we
�nd that the last hardware con�guration listed in Table 4 necessitates the use of schemes
that are tailored for high parallelism, as the given amount of 128 processes is above the
speci�ed regime where the use of parallelizable algorithms is worthwhile using. Therefore,
this con�guration should be run using a discontinuous Galerkin method. For both other
con�gurations using 8 and 18 processes, this does not apply. Continuing with process
P2, we �nd that the given problem only exhibits one length scale; thus, this criterion
for parallelism can be omitted. Thus, we arrive at decision D1 and �nd that for the
problem statement involving the largest of the three computing architectures, the use of the
discontinuous Galerkin method is advised.

For the remaining two con�gurations, we can proceed by classifying the PDE according
to process P3. With the temporal derivative and gradient as the only differential operators,
Equation (1) is a �rst-order PDE. The advection velocity vector u has constant and real
components. Thus, following Section 4.2, we �nd that the advection equation presented
here is hyperbolic and proceed with the right branch of the �ow chart after decision D2.

Consequently, we need to evaluate the linearity of Equation (26) for process P4 as
a next step. As the terms including the differential operators are linear and there is no
right-hand side, it may be classi�ed straightforwardly to be linear. Due to its linearity, the
most ef�cient choice for the remaining con�gurations turns out to be the discontinuous
Galerkin method as well. As stated previously, the original two-equation system only
consists of one PDE; thus, we conclude the decision process here, as all �elds governed
by a PDE have been assigned (decision D5). It should be noted here that when the VoF
method is used together with the �nite volume method, one can expect the interface of
two phases to diffuse considerably. Within the numerics community, this problem is well
known and has led to the practice of introducing an additional interface compression term
into the advection equation [87].

¶ta + u � r a + r � [uca(1 � a)] = 0, (30)

uc = min (cajuj, max(juj))
r a

jr aj
, (31)

where the newly introduced, arti�cial interface compression velocity uc is used. In this
case,ca is a positive, scalar constant somewhere around unity. As can easily be observed
by combining Equations (30) and (31), this makes the resulting PDE fully nonlinear, which
can be regarded as a severe disadvantage in this case. This additional, arti�cial interface
motion counteracts the diffusion that the �nite volume method has shown to exhibit. As

Appl. Syst. Innov.2024, 7, 35 28 of 42

will be shown, such an additional term can be omitted if the problem is solved using
the recommended DG scheme due to the considerably lowered numerical diffusion. In
summary, choosing the FV over the recommended DG method, in this case, would not
only require evaluating a fully nonlinear variant of the advection equation to gain accurate
results, but it would also force the application expert to pick an appropriate value for an
arti�cial model constant, which can be subject to tedious calibration work.

In the following, we will compare this particular choice of method with the �nite
volume method, which would be the next alternative and is, in principle, also well suited to
tackle such problems. The continuous Galerkin and �nite difference methods do not lend
themselves well to solving such equations and will thus be omitted from this benchmark.
In particular, the CG method is known to be unstable for �rst-order hyperbolic equations,
as the stability of the scheme can be shown to be dependent on mesh size [42].

One must add that in principle, the �nite difference method could be applied here,
where, however, two different limitations apply. First, the only choice of stencil that would
be stable for this equation is the forward difference (or upwind) approximation. This choice,
however, is not covered by the proposed decision process, as it is formally equivalent to
a continuous Petrov Galerkin method. One can show that this scheme corresponds to
a simpli�ed streamline upwind Petrov Galerkin (SUPG) method. As we have restricted
ourselves for the sake of decidability to Bubnov Galerkin methods, this stencil is not
admissible here. Secondly, using the �nite difference method here implies the strict use of a
Cartesian grid.

We thus proceed to write the weak form for Equation (26) by multiplying with a
discrete test function vh, integrating over the whole domain Wand subsequently performing
integration by parts. Find ah 2 Vh such that

Z

W
vh

¶ah

¶t
dx +

Z

G
vhah(u � n) dS�

Z

W
(r vh � u)ah dx = 0, 8vh 2 Vh, (32)

ah,G̃b,l
= ah,G̃t,r

, 8x 2 ¶W, (33)

where Gdenotes the union of all interior and exterior facets of the domain and G̃are the
subsets of the domain boundary ¶W. In this case, speci�cally, G̃b,l are the slave facets at the
bottom and left boundary that the values of the slave facets from the top and right master
facetsG̃t,r are mapped to. This PDE in combination with periodic boundaries possesses an
analytical solution of the form

a(x, t) = a(x � ut, 0). (34)

That is, after traversing the quadratic domain with the given velocity u =
�
1 1

� T
, the

solution �eld must exactly correspond to the initial condition. Veri�cation of numerical
results is, thus, very straightforward.

We solve this problem using the Firedrake problem-solving environment along with
the popular libraries PETSc and Scotch for ef�cient parallel computing [3,88–95]. As the
�nite volume method can simply be understood as a discontinuous Galerkin method of
polynomial degree zero, the implementation is virtually the same for both schemes.

Note that for the �nite volume method, the last term in Equation (32) becomes zero
since the derivative of a constant vanishes. Thus, we omit this term from the assembly to
save computations and to more accurately represent the arithmetic intensity posed by the
original formulation of this scheme.

For the sake of visualization, we project the solution onto a �rst-degree space with
H1 continuity. The equations are solved by a three-stage implicit Runge–Kutta method.
In both cases, careful attention has to be paid regarding the time step. For hyperbolic
problems of such time, the time step where stability is given is strictly bounded by the
Courant–Friedrichs–Lewy number CFL � 1

2k+ 1 for a scheme of degreek [96]. One can
easily verify that for a �nite volume scheme, this corresponds to the well-known condition
that the CFL number must stay at or below unity. Not only does that mean, regarding

https://github.com/pzimbrod/multiphysics-pde-methods

http://doi.org/10.1145/1268776.1268779
http://dx.doi.org/10.11588/ans.2015.100.20553
http://dx.doi.org/10.25561/104839
http://dx.doi.org/10.1016/j.camwa.2020.06.009
http://dx.doi.org/10.6084/m9.figshare.23294939.v1
http://dx.doi.org/10.1016/0045-7825(90)90157-H
http://dx.doi.org/10.1137/15M1047696
http://dx.doi.org/10.1023/A:1012282706985

http://dx.doi.org/10.1051/m2an/1996300404451
http://dx.doi.org/10.1002/num.1021
http://dx.doi.org/10.1002/nme.1620371908
http://dx.doi.org/10.1017/S000497270002150X
http://dx.doi.org/10.1016/B978-0-12-253250-4.50019-1
http://dx.doi.org/10.1080/1061856031000104851
http://dx.doi.org/10.1016/j.jcp.2008.05.025
http://dx.doi.org/10.1016/j.cam.2014.06.024
http://dx.doi.org/10.1016/S0045-7825(96)01102-4
http://dx.doi.org/10.1016/j.jcp.2015.04.009
http://dx.doi.org/10.1007/s10915-015-0076-6
http://dx.doi.org/10.1137/16M110455X
http://dx.doi.org/10.1007/s10915-011-9501-7
http://dx.doi.org/10.1007/s11831-020-09411-7
http://dx.doi.org/10.1016/j.advengsoft.2016.06.003
http://dx.doi.org/10.1016/j.cam.2006.08.029
http://dx.doi.org/10.1006/jcph.1999.6248
http://dx.doi.org/10.1137/S0036142997316712
http://dx.doi.org/10.1137/S0036142901384162
http://dx.doi.org/10.1007/s11831-022-09740-9
http://dx.doi.org/10.1016/0045-7825(82)90071-8
http://dx.doi.org/10.1016/S1570-8659(00)07005-8
http://dx.doi.org/10.1007/978-3-319-16874-6
http://dx.doi.org/10.1007/978-0-387-72067-8
http://dx.doi.org/10.1007/s10915-012-9598-3
http://dx.doi.org/10.1090/S0025-5718-1988-0935077-0
http://dx.doi.org/10.1006/jcph.2002.7117
http://dx.doi.org/10.1111/j.1365-246X.2012.05472.x
http://dx.doi.org/10.1016/0045-7949(75)90018-8

http://dx.doi.org/10.1002/nme.664
http://dx.doi.org/10.1007/978-1-4757-4355-5
http://dx.doi.org/10.1016/j.jcp.2003.09.007
http://dx.doi.org/10.1016/j.cma.2005.06.018
http://dx.doi.org/10.1137/16M1073352
http://dx.doi.org/10.1016/j.jcp.2022.111755
http://dx.doi.org/10.1007/978-3-319-05591-6_96
http://dx.doi.org/10.1007/978-0-387-09766-4_234
http://dx.doi.org/10.1007/978-3-030-47956-5_8
http://dx.doi.org/10.1029/96JC02775
http://dx.doi.org/10.1016/j.ocemod.2006.03.006
http://dx.doi.org/10.4249/scholarpedia.11527
http://dx.doi.org/10.1038/138840a0
http://dx.doi.org/10.1016/j.addma.2020.101518
http://dx.doi.org/10.1007/s00366-022-01729-z
http://dx.doi.org/10.3390/cryst12101496
http://dx.doi.org/10.1016/j.addlet.2022.100051
http://dx.doi.org/10.1115/1.4047733
http://dx.doi.org/10.1016/j.mfglet.2020.01.003
http://dx.doi.org/10.1016/j.matcom.2007.02.011
http://dx.doi.org/10.1145/1486525.1486529
http://dx.doi.org/10.1140/epjp/i2011-11100-3
http://dx.doi.org/10.1103/PhysRevE.83.046213
http://www.ncbi.nlm.nih.gov/pubmed/21599276
http://dx.doi.org/10.1016/j.commatsci.2018.06.049

http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.5334/jors.151
http://dx.doi.org/10.1016/j.advengsoft.2019.03.009
http://dx.doi.org/10.1007/BF01307490
http://dx.doi.org/10.1103/PhysRevE.57.4323
http://dx.doi.org/10.1103/PhysRevLett.121.025501
http://www.ncbi.nlm.nih.gov/pubmed/30085723
http://dx.doi.org/10.17170/kobra-202007161457
http://dx.doi.org/10.1088/1757-899X/33/1/012105
http://dx.doi.org/10.1145/2503210.2503219
http://dx.doi.org/10.1109/ICPADS.2012.97
https://zenodo.org/records/10035615
http://dx.doi.org/10.1093/imanum/drs043
http://dx.doi.org/10.1006/jcph.2001.6933
http://dx.doi.org/10.1007/978-3-0348-8629-1
http://dx.doi.org/10.1016/j.cej.2007.12.035
http://dx.doi.org/10.3390/fluids6020080
http://dx.doi.org/10.1137/15M1021167
http://dx.doi.org/10.1137/15M1021325
http://dx.doi.org/https://doi.acm.org/10.1145/224170.224228
http://dx.doi.org/10.1016/j.parco.2007.12.001
http://dx.doi.org/10.1145/2998441
http://dx.doi.org/10.1016/j.advwatres.2011.04.013
http://dx.doi.org/10.1023/A:1012873910884
http://dx.doi.org/10.1109/ICECCME55909.2022.9988504
http://dx.doi.org/10.1137/20M1328786

http://dx.doi.org/10.1016/j.jmrt.2022.07.121
http://dx.doi.org/10.1016/j.pmatsci.2017.10.001
http://dx.doi.org/10.1016/0021-9991(92)90240-Y
http://dx.doi.org/10.1177/1094342016671790
http://dx.doi.org/10.1016/j.jcpx.2023.100127
http://dx.doi.org/10.1007/s00366-022-01719-1
http://dx.doi.org/10.1007/s11665-020-05230-w
http://dx.doi.org/10.2351/7.0000330
http://dx.doi.org/10.1063/1.1744102
http://dx.doi.org/10.1137/1018076
http://dx.doi.org/10.1016/j.cma.2024.116841

	Introduction
	Previous Works
	Theoretical Baseline
	Discontinuous Galerkin Method
	Continuous Galerkin Finite Element Method
	Finite Difference Method
	Finite Volume Method
	Summary

	Method for Assembling Numerical Schemes
	Preliminary Assumptions
	PDE Classification
	Domain Geometry
	PDE Linearity
	Computing Environment
	Problem Scale
	Summary

	Examples
	Allen–Cahn Equation
	Two-Phase Advection
	Laser Powder Bed Fusion
	Physics and Governing Equations
	Computational Domain
	Computing Resources
	Problem Scale
	Classification

	Resulting Discretization

	Conclusions and Future Work
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.2.1
	Appendix A.2.2

	References

