IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

15463

RTM-Based Downscaling of Medium Resolution Soil
Moisture Using Sentinel-1 Data Over
Agricultural Fields

Thomas Weil3"”, Thomas Jagdhuber

Alexander Low

Abstract—High temporal soil moisture at field scale resolution
(10 m-100 m) is important for smart farming decisions. Although,
medium and coarse resolution (1 km-50 km) soil moisture infor-
mation is operationally available on a large scale, high resolution
(field scale) datasets are not. This study propose a data assimilation
approach to downscale medium resolution (1 km X 1 km) soil
moisture information—of intense agriculturally cultivated areas—
to field scale. For achieving high transferability of the proposed
method, the used input data (Sentinel-1 VV backscatter, Sentinel-2
derived vegetation water content, literature values) can be provided
systematically from global operational satellites. Microwave and
optical data are used together as input data of a radiative transfer
model to derive soil moisture information with high temporal and
spatial resolution. The retrieval approach shows a mean ubRMSE
for soil moisture estimates of all test fields (Munich-North-Isar test
site, Bavaria, Germany) with 0.045 m3/m? and 0.037 m’/m® for
2017 and 2018. Furthermore, the retrieved soil moisture estimates
cover a broad range of values from 0.05 m*/m? to 0.4 m*/m>. In
addition, the temporal evolution of the soil moisture patterns are
in line with precipitation events. Moreover, the drying behavior is
matched as well. The proposed method showed that for the test area,
high resolution soil moisture time series can be provided by only
using remote sensing derived input data. In this way, this study is
another step towards providing high spatio-temporal soil moisture
information for precision farming purposes.

Index Terms—Radiative transfer, Sentinel-1, Sentinel-2, soil
moisture, time series, vegetation water content (VWC).

1. INTRODUCTION

OIL moisture has an indisputable impact on climate, hy-
drological, and agricultural systems [1], [2], [3]. As soil
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moisture has a high variability in time and space, continuous
monitoring is essential [4], [5]. Moreover, different model ap-
plications, flood forecasting, or precision farming rely heav-
ily on spatio-temporal distributed soil moisture information.
Compared to remote sensing derived soil moisture products,
traditional in-situ measurements at the point scale are expensive
and fall short of providing spatio-temporal patterns on a larger
(e.g., subcatchment) scale [6]. Today, several operational NASA
and ESA missions (Soil Moisture Active Passive (SMAP), Soil
Moisture and Ocean Salinity (SMOS), or Advanced SCAT-
terometer (ASCAT)) produce global soil moisture maps at a
coarse spatial resolution of 25 km to 50 km [7]. Further prod-
ucts of medium spatial resolution (1 km to 10 km) are mostly
achieved by downscaling coarse resolution products [8], [9] or
combining information from coarse and medium/high resolution
sensors [10], [11]. Thus, medium resolution soil moisture prod-
ucts are available at a regional scale, e.g., a RADOLAN (radar
online calibration)-based soil moisture product for Germany
(RADOLAN Antecedent Precipitation Index—A Soil Moisture
Dataset derived from Weather Radar Data; Ramsauer et al. [12])
or a SMAP-based product for China [13]. Other soil moisture
products provided by the Copernicus Global Land Service [10]
or NASA [11] reach even global coverage. However, global and
regional products differ in their retrieval approach as well as in
temporal (hourly to several days) and spatial resolutions. Com-
pared to the the 1 km RADOLAN product which offers absolute
soil moisture values in vol.%, the 1 km Copernicus soil moisture
product is a change detection approach which leads to relative
soil moisture values in % from 0 to 100. However, compared
to medium resolution soil moisture products, operationally pro-
duced high resolution (field scale, meaning below 1 km) datasets
on a global scale are not yet available [7]. But regional studies
using polarimetric decomposition [14], [15], machine learning
approaches [16], data fusion [17], statistical modeling [18], or
radiative transfer models (RTMs) [19] show promising results
in estimating soil moisture from synthetic aperture radar (SAR)
data at the field scale. The use of RTMs and radar observations
has been proven to be a suitable approach [20], [21]. With RTM
a logical linkage between observations and physical processes
can be established [22]. Thus, a better physical understanding
as well as simulations of interactions between electromagnetic
waves and the land surface is possible. Furthermore, RTMs are
not only able to interpret satellite measurements, but also capable
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of providing predictions under different conditions [23]. For bare
soil applications, forward models of Oh [24], [25], Dubois [26],
or the Integral Equation Model developed by Fung et al. [27]
are often applied, among others. A study by Baghdadi et al. [28]
showed that the accuracy on plot scale of bare soil moisture
estimates is highly dependent on the surface roughness state. By
using Sentinel-1 images an overestimation of soil moisture by
high soil roughness and an underestimation of soil moisture by
low surface roughness is observed [28]. For vegetated areas, the
bare soil models need to be combined with vegetation scattering
models. Here, the Water Cloud Model (WCM) approach by At-
tema and Ulaby [29] or a Single Scattering Radiative Transfer
(SSRT) [30], [31] model is used for inverting radar backscatter to
retrieve soil moisture information. The main uncertainty of radar
based soil moisture retrievals in vegetated areas is the influence
of the canopy layer on the backscatter signal [32], [33], [34]. The
WCM considers the canopy layer as a collection of identical
spherical particles, that are uniformly distributed [29]. Thus,
the vegetation contribution within WCM (only considering di-
rect scattering contributions from plants) is simplified by not
differentiating between additional occurring scattering mech-
anisms (plant—ground, ground-plant, or ground—plant—ground
scattering contributions). In contrast, the SSRT distinguishes
the canopy layer by scattering mechanisms, so direct vegetation
contribution as well as canopy—soil and soil-canopy—soil inter-
actions are considered [31]. For accurate soil moisture retrievals,
information about vegetation in terms of crop type, structure,
phenology, and water content is necessary. Therefore, Vegetation
Optical Depths (VOD), Normalized Difference Vegetation Index
(NDVI), Normalized Difference Water Index (NDWI), or Vege-
tation Water Content (VWC) are used as remote sensing-based
indicators from optical and radar observations. [35], [36], [37].
Over large areas, optical remote sensing data has proven useful
in obtaining information on vegetation at field resolution. [38],
[39], [40]. Thus, a combination of SAR (Sentinel-1) and optical
data (Sentinel-2) provides unique possibilities for improving soil
moisture estimates by using microwave RTMs with additional
information provided by optical sensors [41], [42].

This article aims to investigate the potential of accurate down-
scaling of a soil moisture product at medium resolution (1 km)
to field scale by combining high-resolution SAR and optical
remote sensing data based on RTM. The approach is deliberately
based on a few input parameters, which can already be derived
from remote sensing sensors, to ensure easy transferability of the
approach to other areas worldwide. The used remote sensing in-
formation are a RADOLAN-based soil moisture product at 1-km
resolution, VV-polarized backscatter (Sentinel-1), and as a vege-
tation descriptor, the VWC (calculated from NDWI information
obtained from Sentinel-2). The spatio-temporal distributed data
is used to drive an inversion process for models Oh04 and SSRT.
Thus, a time series of almost daily spatially distributed absolute
soil moisture estimates (Vol.%) is achieved.

II. DATASETS
A. Test Site

For our study, the Munich-North-Isar (MNI) test site [43], [44]
with in-situ measurements of winter wheat and maize fields for
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Fig. 1. Munich-North-Isar (MNI) test site with sampled wheat and maize
fields of 2017 and 2018. The inset map shows the spatial relationship between
meteorological stations and the test site.

the years 2017 and 2018 was chosen. The winter wheat fields
were sowed beginning of October and harvested mid/end of July
in both years. The maize fields were sowed end of May in 2017
and beginning of May in 2018. The harvest of the maize took
place end of September in 2017 and beginning of September
in 2018. Besides the two main crop types (wheat and maize),
grassland is the third major type of agricultural cultivation. The
test site (48°13'N-48°20'N, 11°39’E-11° 45'E, Fig. 1) is located
near Munich, southern Germany. Two meteorological stations
(Eichenried and Grub) provide measurements within a 15-km
radius around the study area. For the year 2017, the measure-
ments show an annual mean temperature of 9.3 °C (Eichenried)
and 9.5 °C (Grub). Furthermore, an average annual precipitation
of 853 mm (Eichenried) and 863 mm (Grub) was observed in
2017. For the year 2018, the measurements show a higher annual
mean temperature of 10.3 °C (Eichenried and Grub) and a more
diverse average annual precipitation of 663 mm (Eichenried) and
926 mm (Grub). The river Isar within the test site is embanked
and has no significant influence on the water availability of
the agricultural areas in the vicinity. Furthermore, no irrigation
practices were observed during the years 2017 and 2018 within
the MNI test site.

B. In-Situ Data

For 2017, in-situ data comprising five different fields (three
wheat and two maize fields) and for 2018, measurements of four
different fields (two wheat and two maize fields) are available
for detailed and local analyses. Field measurements were taken
at three different locations (Elementary Sampling Points ESU)
on every test field. At each location, the plants of half a square
meter were taken, the wet and dry (drying temperature 102°C)
weights of the plants were measured, and the VWC was calcu-
lated. Soil moisture time series were provided by permanently
installed sensors (Decagon TMS5 sensors, Decagon Devices
Inc., Pullman, WA, USA) within the upper soil layer (first five
centimeters). The monitoring interval was ten minutes. Further
information about the in-situ measurements are summarized in
Table I.
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TABLE I
ACQUISITION TIME, TIME INTERVAL, AND RANGE OF IN-SITU MEASUREMENTS
(VEGETATION WATER CONTENT AND SOIL MOISTURE)

Variable Type 1;(0)(1];151t103(;11r§1e Range i;{i;izeal
03/24 04/04 0.04
Wheat - - -
VWC 07/17 07/13 6.3 "
[kg/m2] 06/08 0525  0.02 ekl
Maize - — -
09/22 08/29 10.2
03/24 04/20 0.02
Soil ‘Wheat - - -

Moisture 07/17 07/13 0.38 ten
(m3/m3] 07/06  05/16 0.03 minutes
Maize - - -

09/22 08/29 0.39
TABLE II

USED REMOTE SENSING DATA FOR MNI TEST SITE OF 2017
(03/24/2017-09/22/2017) AND 2018 (04/04/2018-08/29/2018)

Data set zogmoug(t)lg Bands Reb[Orgl]thIl
Sentinel-1 121 86 \AY 10 x 10
Sentinel-2 16 17 8a, 11 20 x 20

RADOLAN API - - - 1000 x 1000

C. Remote Sensing Data

1) Sentinel-1: The Sentinel-1 satellites (C-band) provide
continuous images for the MNI test site. In 2017 and 2018,
Sentinel-1A and Sentinel-1B provide four different overpasses
(relative orbit number 44,95,117,168) The MNI test site is
observed with two incidence angle sets of 35°-36° and 43°—45°.
The usage of all available scenes led to an average temporal re-
visit time of 1.5 days. The Level-1 Single Look Complex (SLC)
data product was preprocessed by using the default configuration
for time series processing of the python package SenSARP [45].
SenSARP utilizes ESA’s SNAP Toolbox to apply thermal noise
removal, radiometric calibration, geometric correction, radio-
metric correction, co-registering, and multitemporal speckle
filtering. Thus, a radiometric and geometric corrected as well
as temporal speckle filtered time series of Sentinel-1 images is
provided. El Hajj et al. [46] and Baghdadi et al. [47] suggested
that VV polarization is more suitable to monitor soil moisture
under well-developed agricultural vegetation than VH. There-
fore, VV polarized backscatter is the main focus of the study.
Table II summarizes the information from the used Sentinel-1
images.

2) Sentinel-2: Sentinel-2 satellites provide free multispectral
data with systematic global coverage. The Multispectral Imager
sensor on Sentinel-2 has 13 spectral bands covering wavelength
from 443 nm (Ultra Blue) to 2190 nm (Short Wave Infrared
(SWIR). The spatial resolution of different bands ranges from
10to 60 m. Within our study a combination of Bands B8a
(10 m, 842 nm—Visible and Near Infrared) and B11 (20 m,
1610 nm—SWIR) is used. Observations from Sentinel-2 of the
MNI test site are available every 2-3 days. However, only 32
images for the time period under investigation (2017 + 2018)
have a cloud coverage below 10% and were therefore used in
this study. The Sentinel-2 images are preprocessed and retrieved
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using the Google Earth Engine. In order to transform the top-of-
atmosphere to surface reflectance values and hence account for
atmospheric artifacts in the imagery, the 6S radiative transfer
code is used [48], [49]. Table II summarizes the information
from the Sentinel-2 data.

3) RADOLAN API: The utilized RADOLAN API
dataset [50] is an empirically retrieved soil moisture dataset
based on the German weather radar product RADOLAN
RW [51], [52]. It extends the idea of the Antecedent
Precipitation Index (API) [53], integrating information on
local soil characteristics (SoilGrids; Hengl et al. [54]) and
spatially distributed temperature data. The algorithm accounts
for general physical boundaries in soil hydrology (e.g.,
moisture content limits) when empirically modeling saturation
state dependent soil moisture gains and losses. The hourly
RADOLAN API dataset with a spatial resolution of 1 km X
1 km is openly available for the spatial domain of Germany
(utilized version 1.0.0 (2015-2019)) [12].

D. CORINE Land Cover

The CORINE land cover class 2 from 2018 [55], in particular
211 (“nonirrigated arable land”) and 231 (“pasture, meadows,
and other permanent grasslands under agricultural use”) are
used as a mask. Thus the algorithm is only applied on agri-
cultural areas excluding vineyards and forest areas. It has to be
mentioned that although forestry areas are excluded some scrub
vegetation/forestry areas are wrongly found within the 211 and
231 CORINE land cover classes.

III. METHODOLOGY

The main objective is the development of an approach to
downscale a medium resolution soil moisture product to field
scale by using RTMs. The proposed method was developed and
tested at a test site in southern Germany, Bavaria. Enabling trans-
ferability to other regions, the focus during method development
was set on a minimal set of input parameters for the RTMs, which
can already be operationally derived by remote sensing products.

A. Radiative Transfer Model

This section introduces a first order radiative transfer model
(SSRT), which is used in an inversion process for the retrieval of
soil moisture information in agricultural areas with vegetation
cover. The original SSRT [30], [31] can be described as

o _ 0 0 0 0
Opq = ngq + Ucpq + JCQtpq + 0-95917(1' M

An overview of the different scattering contributions simulated

by SSRT is given in Fig. 2. The ground contribution ngq (p and
q stand for the polarization) can be further described by

0o _ 0
0g,, = IpTq 05, 2
where ¢ , Tepresents the surface scattering and 7}, and 7 are the

transmissivity of the canopy for the respective polarization. The
transmissivity (11) accounts for the signal loss of the surface
scattering when passing through the canopy covers. For the
surface scattering, the model of Oh [25] (Oh04) is used. Oh04
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Fig. 2. SSRT modeled scattering contributions in a vegetation canopy. Di-

rect backscatter from soil (02), direct backscatter from plants (crg), ground—
plant (ch), plant—ground (ogg) scattering, and ground—plant—ground scattering
0

0 geg)- Figure adapted from Ulaby and Long [31].

is a semiempirical model that was developed by using in-situ
measurements of a variety of soil types, primarily silt loam,
loam, and sandy loam [56]. One advantage of OhO4 is that
no additional information about the soil type is necessary. The
authors claim that the backscatter has only a weak dependency
on soil type but is, in comparison, highly influenced by soil
moisture (sm) and surface roughness [56]. The backscatter o, ,,
of Oh04 is defined as

0.11 sm®7 (cosh)?2 [1 032 (ks)l.s}

svv T 0,095 (013 + sin 00) 14 [1 — e 13 977

3

Therefore, the soil moisture by Oh0O4 can be calculated with
information about the backscatter agvv, the local incidence
angle 6, and the soil roughness ks. The soil roughness can be
further specified by k as the radar wave number (k = 27/A)
and s as the rms height of the soil surface. The rms height (s)
characterizes the surface height variation and as such describes
the scattering effects of natural surfaces in the vertical domain
(profile). Furthermore, the soil roughness is dependent on the
sensor wavelength (1). The canopy scattering components of
the SSRT [30], [31] are defined as

o = W 1-T,T,) @
“ra kP + K pras
Uggtpq = Ukj/i;tq H [R, + R, T,T, and 5)
o0 :M(RR—TT) ©)
9CTpa 2o ge el = dplg

with 6 as incidence angle, H as canopy height, and R represents
the Fresnel coefficients of the respective polarization. The Fres-
nel coefficients for horizontal Ry and vertical Ry, polarization
are defined [31] as

 pipcos — \/ ipe, — sinf

1-cOos6 +

Ry (N

- P
L€ — sin?6
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€,c0st — €, — Sin’f
Ry = i o0 ®)
€080 + /i€, — Sin“6

where i, is the relative permittivity. Under the assumption
of isotropic canopy scatterers [31] following relationship is

assumed for the volume backscattering coefficient a%’j;ch and the

volume bistatic scattering coefficient U{’}iz:

oot = ghack — L. )

The scattering component &, is defined by the single scattering
albedo w and the extinction coefficient k. as

ks = w ke. (10)

The transmissivity 7" for the polarization p can be written as

an

whereas k2 H is often referred to as VOD. VOD can be retrieved
from passive and active microwave systems. In the passive
domain empirical studies showed a good correlation between
VOD and the Vegetation Water Content (VWC). Thus, VOD can
be expressed by kL H (active microwave domain) and b VWC
(passive microwave domain) as

VOD = k? H = b VWC

__—kP H secH
T,=e

12)

where the b parameter from the passive domain is empirical
derived and depends on vegetation type, structure, growth stage,
and water status [57], [58]. The Soil Moisture Active Passive
(SMAP) mission uses a static b parameter differentiated by
land cover type. However, recent studies found that b does vary
throughout the vegetation season due to significant change of
crop water [58], [59]. Thus, in order to archive a temporal
dynamic for b along the growing period, we found that linking
b to a normalized VWC parameter (range 0 to 1) works quite
well for the active microwave domain. Therefore, the utilized b
in our case can be written as

b=V vVWC*™ (13)
with VWC™™ for a specific timestep 7 as
VWC; — min(VWC
vwemem — | min(VWC) (14)

"~ max(VWC) — min(VWC)

The min and max values of the VWC are calculated on pixel
basis and for each growing period separately. Due to the inver-
sion within (14), VWC"™ decreases while the original VWC
increases. Based on the VWC normalization in (14) the depen-
dency of b and also of VOD changes to a more parabolic form
which helps the algorithm fitting process. In order to better dis-
tinguish between the original tranmissivity of the SSRT model
(T') and the introduced changes, we refer the used transmissivity
as T'. Combining (11), (12), and (13), the used transmissivity
of the canopy 7"’ can be written as

5)
(16)

To minimize the required input parameters, a literature value
for the single scattering albedo (w = 0.03) [20], [60] was used.

/! _ _—b VWC sect
T,=e

T — e—b’ vwee™ VWC sec
p .



WEIS et al.: RTM-BASED DOWNSCALING OF MEDIUM RESOLUTION SOIL MOISTURE USING SENTINEL-1 DATA OVER AGRICULTURAL FIELDS

Furthermore, during the analysis published in Weil} et al. [20]
and WeiBlet al. [60] the vegetation height H was found to be
a nonsensitive parameter within (5) and thus in absence of
height information, H=1 m is assumed. Thus, considering only
polarization VV the final equations for the canopy scattering
component can be written as

1

ol = 3@ cosf (1 — Ty, Ty,), (17)

00ty =w b VWC™™ VWC Ry + Ry| Ty Ty, (18)
1

Tgegry = 5 w cost (RyRy — T{,TY,) (19)

by considering Ry (8) and T, (16).

B. Vegetation Water Content (VWC)

VWC is often used as a parameter to characterize the vegeta-
tion above the ground. But unlike, e.g., NDWI, VWC cannot
be easily measured by optical satellites such as Sentinel-2.
Nevertheless, a high correlation between VWC and NDWI was
found in numerous studies (R?: 0.57-0.89) [39], [61], [62], [63].
The NDWI 440 is described as

NIRgg0 + SWIR; 640

where the near infrared channel at A=860 nm (NIRggp) and
short wave infrared channel at A=1640 nm (SWIR44¢) corre-
sponded to Band 8a and Band 11 of the Sentinel-2 satellites.
For a NDWI-based VWC calculation, several crop type specific
empirical equations exist in the literature [39]. For simplicity of
the approach, we used the wheat specific equation in Maggioni
et al. [62] to calculate the VWC for the entire test site. The
equation for VWC over wheat fields from Maggioni et al. [62]
is

NDWI640 =

(20)

VWC = 132 NDWI2s,, 4+ 1.62 NDWlygs0.  (21)

C. Soil Moisture Downscaling Approach

The RTM combination Oh04 and SSRT (Section ITI-A) is used
in an inversion process to downscale a medium resolution soil
moisture dataset (RADOLAN API [50]) by using a cost function
J, defined as

J = Jobs + Jprior (22)

and minimized by Limited-memory Broyden-Fletcher-
Goldfarb-Shanno with Box constraint (L-BFGS-B) [64] which
is a gradient descent approach. The cost function is described
by the model fit to the observations J,,s and deviations from a
priori information Jy0r Of the observation variables. Jops as the
mismatch between Sentinel-1 backscatter and modeled RTM
backscatter is described by

T = 3y~ H())"Ci y ~ H())

where y is the time series of Sentinel-1 VV polarized radar
backscatter (0,,). H (z) is the RTM backscatter with  describ-
ing the state variables sm (3), VWC (21), b (13), and rms height s
(3). The observation uncertainty is represented by the covariance

(23)
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Fig. 3. Schematic illustration of methodology.

matrix Cy. Another important part of the optimization process
is the prior information. Thus, Jyyor is defined as

Jprior = %(m — :Up)TC’fgl(x — Zp) (24)
with a vector x again describing the state variables, x), referring
to the prior estimates, and the covariance matrix C'p as the un-
certainty of the prior. Before the start of the parameter estimation
process, realistic boundaries based on the model physics as well
as a starting value were set for the applied optimization algorithm
L-BFGS-B. The possible equifinality problem in an underdeter-
mined system is addressed by the usage of a guided optimization
(weak constraint) approach. The derived parameters (sm, VWC,
b, and s) are not completely unknown parameters. Due to the
absence of tillage practices rms height s is assumed to be static
throughout the vegetation growing period, thus only one value
for s for each pixel needs to be optimized. Prior information
for sm (RADOLAN API) and VWC (derived from Sentinel-2
observations) as well as literature values for the initial starting
points of b" and s form in conjunction with provided uncertainty
information a weak constraint data assimilation system [65],
[66]. An overview of the boundaries, priors, starting values, and
uncertainty ranges is given in Table III. During the inversion
process, the entire state vector (sm, VWC, b, and s) is optimized
for each satellite pixel by comparing the entire time series
of Sentinel-1 VV polarized backscatter with a time series of
RTM derived backscatter values that depend on the respective
state vector values, priors (sm, VWC), boundaries (sm, VWC,
b, s) and uncertainty (VV backscatter, sm, VWC, ¥/, s). The
optimized state vector values for sm, VWC, and ' are allowed
to differ between each time step, whereas for rms height s only
one value for the entire time series is optimized. The entire
methodology is schematically illustrated in Fig. 3.

D. Applied Statistical Metrics

For the evaluation of the RTM based soil moisture down-
scaling approach, statistical metrics were used. The Root Mean
Square Error (RMSE), the bias, the unbiased Root Mean Square
Error (ubRMSE), the correlation coefficient R and the coefficient
of variation (CV) are defined as

1 N
— _ - 0).)2
RMSE = \/N > (Pi=0)

(25)
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TABLE III
APPLIED PARAMETER BOUNDARIES, PRIORS, STARTING VALUES, AND UNCERTAINTY RANGES

Parameter Boundaries Prior Starting point  Uncertainty
sm [m3/m3] 0.01 - 0.7 API 0.2 0.13
VWC [kg/m?] 0-175 Sentinel-2 Sentinel-2 0.1
s [m] 0.005 — 0.03 - 0.025 0.1
b [Npm?/kg] 0-1 13 0.4/0.6 0.5
VV backscatter [dB] - - - 1
0.270
-6 N 0.265
0.260
-8
o.zssnE
48.28°N E
flﬂé 0.2505
-12
-14 0.235
-16 ot 11.64°E 11.66°E 11.68°E 11.70°E 11.72°E 11.74°E
11.64 - 1.6“E 11.68°E 11.70°E
Fig. 6. Mean value of RADOLAN API soil moisture (1 km x 1 km) of

Fig.4. Mean Sentinel-1 VV backscatter (10 m x 10 m) of investigation time
period March to September 2017.
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Fig. 5. Sentinel-2 derived mean VWC (20 m x 20 m) of investigation time
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with N as total number of observation, O; as ith observation,
P; as ith prediction, O and P as average of observation and
predictions, o as standard deviation, and x4 as mean.

investigation time period March to September 2017.
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IV. RESULTS
A. Spatial Distributed Model Input

Spatially distributed model input data are the VV-polarized
Sentinel- 1 backscatter (Fig. 4), Sentinel-2 derived VWC (Fig. 5),
and a coarse resolution soil moisture product based on
RADOLAN data (Fig. 6). Looking at the high resolution
(10m x 10m) mean VV backscatter (Fig. 4) for the investigation
time period of March to September 2017, field boundaries are
clearly visible, whereas intra-field differences are low. The mean
backscatter of the entire scene is 10.5 dB for 2017 and 10.7 dB
for 2018. Certain areas with low backscatter values (black/dark
color) correspond to forestry or other nonagricultural areas,
which will not be considered in the quality assessment of the
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Fig. 11.  Unbiased in-situ soil moisture (five fields with three ESUs) compared
with downscaled soil moisture of year 2017.

approach later on. Field boundaries can be distinguished within
the high resolution (20 m x 20 m) mean VWC image (Fig. 4)
for the investigation time period of 2017 too. The mean VWC
of the entire scene is 1.37 kg/m? for 2017 and 1.25 kg/m?
for 2018. Contrary to the backscatter information, intrafield
differences for certain fields (515 or 301) are visible. The coarse
resolution (1 km x 1 km) mean RADOLAN API soil moisture

Mean downscaled high resolution soil moisture (10 m x 10 m) of
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Fig. 14.  Unbiased in-situ soil moisture (four fields with three ESUs) compared
with downscaled soil moisture of year 2018.

product (Fig. 6) for the investigation time period of 2017 shows,
compared to the backscatter and VWC, no field boundaries and
low overall differences (the legend of soil moisture range is
within 0.05 m*/m?). The mean soil moisture of the entire scene
is 0.25 m*/m? for both years. Input data for the year 2018 is
not shown due to similar patterns with small differences in
backscatter and VWC content based on field crop rotation.
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TABLE IV
PERFORMANCE METRICS (RMSE, BiAs, UBRMSE) FOR DIFFERENT GROWING PERIODS (TS=ENTIRE TIME SERIES; BBCH <40=TILLERING AND STEM
ELONGATION; BBCH>39=HEADING, FLOWERING, FRUIT DEVELOPMENT AND RIPENING) AS WELL AS FOR INDIVIDUAL FIELDS
SEPARATED BY YEAR AND CROP TYPE

RMSE [m3/m3]

Bias [m3/m3] ubRMSE [m3/m3]

Year  Field =~ Crop Type g ppCcH<40 BBCH>39 TS  BBCH<40 BBCH>39 TS  BBCH<40 BBCH>39
2017 301 Wheat  0.093 0079 0100 =009  —0.07 008 0049 0038 0.048
2017 319 Maize 0073 0089 0043 —008 008 2003 0038 0022 0.025
2017 508  Wheat 0059 0018 0040  -001  -0.01 002 0033 0018 0.032
2017 515 Maize 0055 0058 0033 003 005 0.01 0.046  0.028 0.032
2017 542 Wheat 0056 0039 0.063 0.02 0.03 004 0053 0014 0.045
2018 317 Wheat 0126  0.133 0117  -012  —0.13 001 0046 0004 0.043
2018 410 Maize 0013 0109 0105 011  —0.10 010 0033 0030 0.028
2018 508 Maize 0035 0042 0.027 0.01 0.01 0.02 0034 0.039 0.015
2018 525  Wheat 0056 0021 0.033 0.07 0.02 0.01 0032 0.008 0.032

B. Parameter b

Figs. 7 and 8 show the change of parameter b based on the
temporal evolution of VWC. As the VWC is normalized and
multiplied with b ( (13)), higher VWC values result in lower b
values and vice versa. Figs. 7 and 8 show the Sentinel-2 derived
VWC content for wheat field 508 and maize field 515. The
derived VWC content matches the temporal evolution of the
in-situ measurements quite well (R > 0.9). But a slight intensity
mismatch between the observed and calculated VWC can be
observed for wheat as well as for maize fields. The starting
point of b depends on the incidence angle of the respective VV
backscatter observations [60].

C. Downscaled Soil Moisture Results

Figs. 9 and 12 illustrate the mean downscaled soil moisture
of the investigation time period for 2017 and 2018, respectively.
Test fields with in-situ measurements show similar mean soil
moisture values despite crop rotation practices between the
years. The average soil moisture of the test area for 2017 and
2018 was 0.236 m*/m? and 0.235 m3/m?, respectively. Within
the test area, different fields show partly differing soil moisture
values. Thus, field boundaries are detectable, although not as
visible as the boundaries in the input variables of VV backscatter
and VWC. In order to analyze the temporal dynamics of soil
moisture, Figs. 10 and 13 illustrate the CV of the downscaled
soil moisture within the investigation time period for 2017 and
2018. Overall, slightly higher CV values were retrieved for 2018
(mean CV = 0.138) than for 2017 (mean CV = 0.109). This is in
line with in-situ observations, which indicate a drier summer and
wetter spring for 2018 than for 2017. Isolated pixels within some
crop fields show high CV values of > 0.4. These high CV values
might be the result of remaining speckle disturbances within the
backscatter data. Furthermore, areas with high CV values (> 0.4)
show very low mean backscatter values of < —15 dB. A com-
parison of in-situ and bias corrected downscaled soil moisture
for wheat and maize fields are illustrated in Figs. 11 and 14. The
mean RMSE for all ESUs is 0.069 m?*/m? and 0.089 m?/m?
for 2017 and 2018, respectively. Considering the ubRMSE,
values of 0.045 m*/m? and 0.037 m?/m? are shown. A higher
improvement of RMSE and ubRMSE is seen for 2018, though a
higher bias range is calculated for 2018 (Fig. 14) than for 2017
(Fig. 11). Furthermore, both years show a similar range of in-situ
soil moisture measurements (2017: 0.03—0.38 m?/m?3; 2018:

0.02-0.39 m*/m?). In addition, a higher soil moisture range is
seen within the downscaled values for 2018 (0.05 - 0.40 m3/m?)
than 2017 (0.08 - 0.34 m*/m?). In general, the soil moisture
results are well located around the 1:1 line. The performance
metrics for the individual fields, separated by year and crop type,
are illustrated in Table I'V. To differentiate between phenological
stages, the Biologische Bundesanstalt, Bundessortenamt and
CHemical (BBCH) [67] developed a system for uniform coding
of growth stages for all mono- and dicotyledonous plant types.
Performance metrics for different vegetation growing period can
be also found in Table IV as well. Considering the results for
the entire time series of the individual fields, no obvious pattern
which would suggest that the method works better for wheat or
maize fields can be detected. But a high RMSE goes along with
a high bias. The ubRMSE for the entire time series shows for all
test fields a similar performance of 0.032 to 0.053 m*/m?>. This
indicates that the temporal evolution is well met even for fields
with high RMSE values. Comparing the RMSE and ubRMSE
of wheat fields, a better RMSE and ubRMSE are observed for
BBCH<40 than BBCH>39. This suggests that the retrieval
works better for lower vegetation stages. The same behavior
can be observed for maize fields in 2017 whereas the results
from 2018 are contradicting.

The correlation coefficient and standard deviation of down-
scaled and in-situ soil moisture values as well as RADOLAN
API and in-situ values are illustrated on a field basis in Figs. 15—
17. For the results in Fig. 15, the entire investigation period
is considered, whereas in Figs. 16 and 17, the time series is
separated according to different phenological phases. Fig. 16
shows the soil moisture results for the time period with BBCH
values lower than 40 (tillering and stem elongation), and Fig. 17
shows the results with BBCH values higher than 39 (heading,
flowering, fruit development, and ripening). Overall, the time se-
ries and subsets show a low standard deviation of <0.04 m*/m>.
The correlation coefficient for the entire time series has a broad
range from 0.06 to 0.78 for the RT retrieved soil moisture. High
and low correlation coefficients are observed for maize as well as
wheat fields. Thus, no real crop-specific pattern between maize
and wheat fields is detectable. Considering only time steps with
BBCH values below 40 (sparse to medium vegetation cover), the
correlation coefficient of the wheat fields increases significantly
due to lower vegetation cover. Only one wheat field remains
with a correlation coefficient of 0.22, whereas the other test
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Fig. 15. Standard deviation and correlation coefficient of downscaled and
in-situ soil moisture values (red/blue represents wheat/maize; filled/nonfilled
represents 2017/2018) as well as RADOLAN API and in-situ values (magenta),
for the entire investigation period of 2017 and 2018.
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Fig. 16. Standard deviation and correlation coefficient of downscaled and
in-situ soil moisture values (red/blue represents wheat/maize; filled/nonfilled
represents 2017/2018) as well as RADOLAN API and in-situ value (magenta),
for the time period with BBCH values lower than 40 (tillering and stem
elongation).

fields, with crop type wheat, show values of up to 0.91. For
all maize fields, the correlation coefficient of the RT retrieved
soil moisture is dropping compared to the entire time series.
Maize fields of 2017 (blue filled icon) show a significantly lower
standard deviation for the entire time series as well as for the
time series with BBCH values lower than 40 (Figs. 15 and 16)
compared to maize fields of 2018 (blue nonfilled icon). However,
for the time series with BBCH values higher than 39 (Fig. 17),
the standard deviation of all maize fields (blue icons) is similar.
Comparing the RADOLAN API and RT retrieved soil moisture
results predominantly a lower standard deviation is observed
for the RADOLAN API. This is expected as the RADAOLAN
API has a lower resolution. Furthermore, the RADOLAN API
generally shows better correlation with the in-situ data. It is
suspected that this is due to the lower resolution. Through spatial
aggregation, it is often observed that soil moisture estimates tend
to have a better correlation with in-situ data since local variation
and measurement noise are smoothed out.

Fig. 18 shows the downscaled soil moisture pattern of the test
site from the end of May to the beginning of June 2017. Fig. 18(f)
presents the soil moisture distribution and the precipitation mea-
surements of two meteorological stations (for location relative to
the test site, see Fig. 1) for the 29th of May until the 6th of June.
A precipitation event occurred on May 30th after the Sentinel-1
overflight. Hence, the precipitation event is not visible in the
downscaled soil moisture image [Fig. 18(a)]. Moisture patterns
of May 31st indicate higher values for the northern part and
almost no soil moisture change in the southern part of the test
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Fig. 17. Standard deviation and correlation coefficient of downscaled and
in-situ soil moisture values (red/blue represents wheat/maize; filled/nonfilled
represents 2017/2018) as well as RADOLAN API and in-situ value (magenta),
for the time period with BBCH values higher than 39 (heading, flowering, fruit
development and ripening).

site. This behavior can be explained by the observations at the
meteorological stations, where high precipitation was measured
at Eichenried (latitude 48.27°) and low to no precipitation was
measured southward at Grub (latitude 48.17°). With almost no
precipitation between June Ist and 3rd, a conversion of the north-
ern and southern soil moisture values is visible in Fig. 18(c).
Another spatially distributed precipitation event occurred on
June 4th, with marginal soil moisture changes in the southeast
and high changes for the rest of the test area [Fig. 18(d)]. Similar
to the situation on June 30th, 2017, the meteorological stations
show the same behavior. After two days of precipitation (June
5th and 6th) within the entire test site area, a homogeneous
soil moisture pattern with high moisture values is illustrated in
Fig. 18(e). The downscaled soil moisture distribution of the test
site and the measured precipitation at stations Eichenried and
Grub are shown for April to July 2017 in Fig. 19. A comparison
of soil moisture changes of the downscaled soil moisture product
and the measured precipitation measurements reveal a high
alignment of dry-down phases and precipitation events within
the data.

Exemplary for the time period of July 19th to 24th of 2018,
Fig. 20 illustrates the drying process on the field scale of the
MNI test site. Low to no precipitation was measured between
July 18 and 20 [Fig. 20(e)]. The precipitation events on July
21st and 22nd are clearly visible by comparing the down-
scaled soil moisture patterns of July 19th [Fig. 20(a)] and 22nd
[Fig. 20(b)]. With almost no precipitation from July 23rd to
26th, the downscaled drying process within the test area can
be seen by comparing Fig. 20(b)—(d) and by looking at the soil
moisture distribution of July 22nd to 24th in Fig. 20(e). Fur-
thermore, comparing Fig. 20(e) top (downscaled soil moisture
distribution) and bottom (precipitation at stations Eichenried
and Grub) dry-down phases and precipitation events are mapped
very well in the downscaled soil moisture distribution of the test
site.

V. DISCUSSION

Continuous, high-resolution, large scale monitoring of a vari-
able like soil moisture with its high spatial and temporal variabil-
ity is challenging. Current operationally retrieved soil moisture
products do not fulfill the demand for temporal and spatial
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Fig. 18. Downscaled soil moisture pattern of the test site for (a) May 30th, (b) May 31st, and (c) June 3rd, (d) June 4th, and (e) June 6th of 2017. Downscaled
soil moisture distribution and measured precipitation events of meteorological stations Eichenried and Grub (f).



WEIS et al.: RTM-BASED DOWNSCALING OF MEDIUM RESOLUTION SOIL MOISTURE USING SENTINEL-1 DATA OVER AGRICULTURAL FIELDS

15473

035
—0.30
E
Eo02s % % %%
3
% 0.20

0.15

0.10

401 N Test

T %% lte | @Eichenried

E30

=

s

B Grube

=

¢

- | | | | | | | |

o 1 Il I 1] JII. ik k 1”' 1 I iIiJ J.II" | | Il li
2017-04-01 2017-05-01 2017-06-01 2017-07-01
Date

Fig. 19. Downscaled soil moisture distribution (top) and measured precipitation events of meteorological stations Eichenried and Grub (bottom) from April to
July 2017.

resolution for smart farming operations [68]. With the Sentinel
satellites in orbit, remote sensing data with suitable high spatio-
temporal resolution is available for further investigations of soil
moisture retrieval approaches. Sentinel-1 (SAR) and Sentinel-2
(optical spectrometer) provide information with a spatial resolu-
tion of 10 m (Sentinel-1) and 10—6 m (Sentinel-2), respectively.
Sentinel-1 and Sentinel-2 provide images over the same area
with the same viewing angle every 6 or 5 days, respectively. The
number of usable images from Sentinel-2 decreases when con-
sidering cloud cover. For the MNI test site, Sentinel-2 provides a
usable image approximately every 10 days. A special challenge
however results from a change in the Sentinel-1 observation
geometry, namely, modeling the radar backscatter response in
conjunction with the associated soil moisture value. Other high
resolution soil moisture approaches of Baghdadi et al. [47], El
Hajjetal. [19], or Nativel et al. [69] solely use Sentinel-1 images
with similar incidence angle. Although, in theory they might be
applicable to handle incidence angle changes, [60] has shown
that the incidence angle implementation within common RT
models (WCM, SSRT) are not sophisticated enough to handle
incidence angle changes within one time series. Thus, either
each incidence angle needs to be calculated as a separate time
series or as we proposed some changes need to be applied.
Although more observations (different observation geometries)
might be available (depending on the location of the test area)
most studies show only a time series based on the Sentinel-1A
and Sentinel-1B 6-day repeat cycle. In respect to Sentinel-1A
and Sentinel-1B it has to be mentioned that, Sentinel-1B was
retired in December 2021 and does not provide images anymore.
Nevertheless, the two satellite system should be restored with the
planned launch of Sentinel-1C end of 2024. This study proposes
a RTM based soil moisture downscaling method that allows for
all available Sentinel-1 images (varying viewing angles) to be
used, and thus a temporal resolution for the MNI test site of 1.5
days can be archived. However, it has to be mentioned that the
soil moisture retrieval quality is also effected by the incidence
angle. A study of Bazzi et al. [70] investigated the effect of the
incidence angle on soil moisture retrievals from Sentinel-1 and

found that lower incidence angle were more suitable than higher
ones. With such high spatio-temporal resolution, the results
provide an almost daily overview of soil wetting and drying.
Furthermore, a differentiation on the field scale is possible in
contrast to the medium resolution soil moisture input data. But
besides different field scale soil moisture levels, unique differ-
entiated soil moisture patterns due to spatially scattered rain
events are also captured (Fig. 20). Nevertheless, as Sentinel-1
images are snapshots of a specific acquisition time, a discrete and
noncontinuous time series is produced. A rain event which might
occur slightly after the Sentinel-1 overpass is only captured by
the follow-on overpass.

The literature shows, that a relationship between the b-
parameter and VWC is often used to parameterize vegeta-
tion attenuation (VOD) [57], [71], [72]. Furthermore, research
of Togliatti et al. [58] indicated that the b-parameter is changing
during the growing season. To account for changes in the grow-
ing season, the b-parameter was adapted by using normalized
VWC information (13) and (16). In previous studies [20], [60],
LAIL in combination with an emprical parameter similar to
b were used to describe the vegetation status. It was found
that the retrieval algorithm had problems deriving good soil
moisture estimates for later vegetation stages. Since the used
RT-models were not able to reproduce the backscatter increase
during later vegetation stages seen in the Sentinel-1 data, LAI
with its saturation in later vegetation stages was suspected to
be part of the problem. By changing the vegetation descriptor
from LAI to VWC, the retrieval algorithm produced better soil
moisture results, but did not resolve the backscatter mismatch
between the RT-model and the observed Sentinel-1. However,
by implementing the proposed VWC normalization and thus
changing the dependency of b to a more parabolic form, the
retrieval results and the mismatch between the RT-model and
Sentinel-1 backscatter could be further improved. Furthermore,
previous research by Weillet al. [60] has shown that a joint
dense Sentinel-1 time series (all available images disregarding
incidence angle changes) is usable within RTMs if considering
a correction of the transmissivity term 7" based on the incidence
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Fig. 20.

angle of Sentinel-1. Therefore, different starting points for pa-
rameter b based on the incidence angle were used. The VWC,
representing the other important input parameter describing the
vegetation state, can be derived by crop type specific empirical
functions from optical sensors (Sentinel-2), as shown by Mag-
gioni et al. [62], Cosh et al. [73], or Gao et al. [39]. But, as
field scale crop type information is often not available on large
scales, an empirical function for wheat, the worldwide most
widely cultivated crop [74], was used for the entire test site.
Although the applied wheat equation may not seem suitable

Downscaled soil moisture pattern of the test site for (a) July 19th, (b) 22nd, (c) 23rd, and (d) 24th of 2018. Downscaled soil moisture distribution and
measured precipitation events of meteorological stations Eichenried and Grub (e).

to derive VWC for mutliple crop types, the calculation of an
appropriate temporal VWC evolution during the growing season
was possible and tested during algorithm development. The
ubRMSE values on field scale for different wheat and maize
fields range between 0.032 m*/m? and 0.053 m*/m? with a mean
ubRMSE for the entire test site of 0.045 m?*/m? (2017) and
0.037 m3/m? (2018). It is very probable that the methodology
design and thus the modification of the b parameter and its
temporal guidance through VWC™™ is what produced these
good results for the maize fields.



WEIS et al.: RTM-BASED DOWNSCALING OF MEDIUM RESOLUTION SOIL MOISTURE USING SENTINEL-1 DATA OVER AGRICULTURAL FIELDS

Our results show a similar accuracy in terms of ubRMSE as
other high resolution approaches from Tao et al. [75] (0.060 to
0.039 m’/m?), El Hajj et al. [19] (0.097 to 0.040 m3/m?),
Ma et al. [32] (0.078 to 0.039 m3/m?) or Mengen et al. [76]
(0.063 m*/m?). Furthermore, compared with the abovemen-
tioned studies, our method provides the highest temporal res-
olution with almost daily updates for soil moisture values.

A. Transferability

The proposed method is purely based on publicly available
information, which can operationally be derived from remote
sensing sensors like Sentinel-1, Sentinel-2, or the weather radar
network RADOLAN. The applied RTM (Oh04 and SSRT) needs
radar backscatter, VWC, and the starting value of the parameter
b’ (temporal evolution is coupled to VWC) as input data. Specific
information about soil composition is not necessary. For VWC
calculation, the literature offers different approaches, which
are mostly based on spectral information provided by optical
sensors like Sentinel-2 or MODIS [62], [73]. Unfortunately,
different equations for different crop types are needed to ac-
curately retrieve VWC in absolute terms [39]. Therefore also
current crop type information is required. But with the proposed
approach (relationship between VWC"™™ and b), the absolute
value of VWC is not as important as the temporal dynamics of
VWC during the vegetation growing period. Thus, for simplicity
reasons, VWC is calculated using an empirical function suitable
for wheat regardless of the crop type. Our study shows, that,
although VWC calculation for maize fields is based on the
wheat equation, reasonable soil moisture time series patterns
(ubRMSE range between 0.032 and 0.053 m?*/m?) for wheat and
maize fields are retrieved. Due to the normalization of VWC, the
actual temporal dynamic seems to be more important than the
absolute value. This allows the approach to be applied on maize
and wheat fields without specific crop type information if the
temporal dynamic of VWC is matched. The transferability of
the proposed method compared to other approaches from Kim
and Liao [77] or Huang et al. [16] thereby is greatly enhanced,
due to a lack of specific crop information on field basis for most
parts of the world.

Another important input parameter of our study is a soil
moisture proxy with medium resolution (1 km x 1 km),
which represents the basis for the downscaling efforts. The
utilized RADOLAN API product’s hourly resolution makes it
an excellent prior dataset, however it only covers the spatial
domain of Germany. Nevertheless, Ramsauer and Marzahn [78]
recently published the global soil moisture product equivalent
based on GPM precipitation data (GPM_API). Furthermore, for
global use, soil moisture products with resolution from 25 km
down to 1 km [11], [79] exist and can be used as soil moisture
proxy instead of the RADOLAN based data. In addition, other
countries like Poland with POLRAD [80], Switzerland with
CombiPrecip [81], or the USA with NEXRAD [82] provide
similar information, like the German RADOLAN network. In
summary, the proposed approach qualifies for high transfer-
ability to be applied to other regions due to its limited set of
input variables (VV-polarized backscatter, VWC, and medium
resolution soil moisture proxy), which all are provided or can
be derived from operational remote sensing sensors.
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B. Limitations, Improvements, and Usage

The possible transferability of the approach was theoretically
stated in Section V-A, but has to be proven by applying the
method to other regions. Furthermore, because of the lack of
in-situ measurements for other crop types, only the accuracy of
the soil moisture results for wheat and maize fields could be
validated in this study. Nevertheless, maize and wheat already
account for 65% of the world’s cereal production [83]. However,
due to our approach (use of time variant b parameter which is
normalized by VWC), we found that the evolution of VWC
is more important than the absolute values for VWC. We do
not expect, that the absolute VWC values of empirical equation
defined for wheat will fit other crops like rapeseed or soybean,
but as the VWC is based on the optical NDWI index an increase
of VWC during the early growing season and an decrease during
the drying phase should be matched for all summer cultivated
plants. However, this has to be proven with in-situ data. Thus,
summarizing the next research focus will be the usage of the
method in other regions as well as testing different medium
resolution soil moisture products.

One advantage of using microwave data is its penetration
capabilities through vegetation cover, and thus the possible
retrieval of information about soil moisture conditions under
vegetation [84]. The penetration depth of electromagnetic waves
into the canopy depends on frequency, polarization, and inci-
dence angle [85]. C-band data is able to penetrate vegetation
cover, but with a combination of shallow incidence angles and
high vegetation cover (e.g., fully developed maize plants), the
backscattering signal of the soil might be very low [85], [86].
For high incidence angles, Joseph et al. [87] and El Hajj
et al. [33] showed that even at the biomass peak of maize
fields, C-band microwaves were sensitive to soil moisture. They
conclude that soil moisture sensitivity is given due to significant
soil-vegetation scattering contributions. On the other hand, in
case of a full developed wheat field, the penetration of C-band
into the canopy was found limited [33]. During certain growing
stages (booting, heading, flowering, fruit development) where
wheat plants contain a lot of canopy water, the penetration
of C-band is highly dampened [60]. However, for later wheat
growing stages (ripening) the sensitivity of C-band to the soil
and soil moisture does increase [88], [89]. The sensitivity in-
crease can be attributed to the loss of canopy water which
makes the vegetation layer more transparent for microwaves.
We see the effect of changing C-band sensitivity during the
growing season of wheat by comparing Figs. 16 and 17. The
correlation coefficient drops significantly between the first and
the second half of the growing season. In addition, the ubRMSE
in Table IV for wheat fields shows better results for BBCH <40
than BBCH>39. But, the ubRMSE values for BBCH>39 are
still in an acceptable range of 0.032 to 0.048 m*/m?>. Thus, we
suspect that during growing stages like heading and flowering
the proposed approach relies more on the soil moisture prior
information. Therefore, in case of high vegetation cover, the
application of radar sensors with lower frequencies, e.g., L-band
might increase the accuracy of the retrieval results due to its
higher vegetation penetration [90], especially at low incidence
angles. Unfortunately, no operational L-band dataset with high
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temporal and spatial resolution is currently available, but the
NISAR mission of NASA is upcoming [91].

Promising results for large scale provision of crop type in-
formation are shown with optical data by Inglada et al. [92]
and with combined optical and microwave data by Oryn-
baikyzy et al. [93], Ofori-Ampofo et al. [94], and Blickensdorfer
et al. [95]. But as crop types might differ every year, and
distinction levels might not exceed a differentiation of summer
and winter crops [92], operational application might be difficult
on global scales.

Another limitation of the proposed methodology in its current
status is that the normalization of VWC is based on maximum
and minimum values. This means that in its current status the
method can only be applied after the growing period. However,
additional crop specific a priori data from previous years might
be usable to apply the methodology already during the grow-
ing period. Nevertheless, this needs more investigation. If the
abovementioned limitation can be overcome, then we will be
another step further towards providing high temporal and spatial
soil moisture information for applications in terms of smart
farming decisions [8] and improved crop yield estimations [96].
In areas with irrigation, high spatio-temporal information about
soil moisture has the potential to improve water usage on a
local to regional scale [97]. Furthermore, spatially distributed
soil moisture information helps by minimizing fertilizer us-
age [7], and thus reducing pollution of surface and groundwater
resources [98]. In addition, soil erosion often depends on local
conditions, which means that for soil erosion modeling and agri-
cultural adaptation strategies, high spatio-temporal soil moisture
information is vital [68].

VI. CONCLUSION

A soil moisture time series product with medium spatial reso-
lution (RADOLAN API 1 km x 1 km) was downscaled to field
scale by applying an adapted microwave RTM. For model input,
high spatio-temporal VV-polarized backscatter (Sentinel-1; 10
m X 10 m) and VWC information derived from optical sensors
(Sentinel-2; 20 m x 20 m) were used. For parameters like
soil roughness, which were considered static over the growing
season, suitable literature values were chosen [60]. The retrieved
high spatio-temporal distributed soil moisture information was
further validated with in-situ measurements (MNI test site in
Bavaria, Germany) of wheat and maize fields during the vege-
tation growing periods of 2017 and 2018.

A validation of soil moisture with in-situ measurements of
several fields reveals good agreement with a mean ubRMSE
of 0.045 m*/m? and 0.037 m?/m? for the years 2017 and 2018,
respectively. Furthermore, the downscaled soil moisture covers a
broad range of values from 0.05 m3/m3 t0 0.4 m3/m?3. In addition,
spatial patterns from precipitation events and drying behavior
within the test site are clearly visible within the downscaled soil
moisture images. Overall, it is demonstrated that with a small
and well selected set of input parameters which are publicly
provided by different optical and microwave remote sensing
sensors, the generation of high spatio-temporal distributed soil
moisture patterns is feasible by using RTM-based downscaling
over the investigated agricultural fields.
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One advantage of the proposed methodology is the usage of
all available Sentinel-1 images regardless of the observation
geometry which lead to changes of the radar backscatter re-
sponse. Thus, the temporal resolution constraint due to the
Sentinel-1A and Sentinel-1B 6-day repeat cycle (same obser-
vation geometry, same orbit, same incidence angle, same ob-
servation time) is overcome and in case of the MNI test site a
1.5 d temporal resolution is archived. Unfortunately, right now
only Sentinel-1A provides images as Sentinel-1B had a power
supply issue and was retired in December 2021. Nevertheless,
the upcoming Sentinel-1C will hopefully restore the two satellite
system before the end of 2024.

Another advantage of the proposed methodology is its high
transferability to other regions, as the used retrieval algorithm re-
lies only on information that can be systematically retrieved with
existing global operational satellites (Sentinel-1 and Sentinel-2)
and a coarse to medium resolution soil moisture prior. A com-
parison of different medium and low resolution soil moisture
proxy as prior and the application of the methods on other
test sites is needed to further explore and optimize the quality
of the spatio-temporal soil moisture estimates at decameter
resolution. Possible pitfalls of the transferability of this and
other high resolution soil moisture retrieval approaches might
be uncertainties due to landscape heterogeneity (soil proper-
ties, crop types, vegetation stages). Thus, in order to further
reduce uncertainties, opportunities may arise by including site
specific auxiliary information (soil texture or crop type) within
the proposed downscaling scheme. Hence, the approach offers
multiple opportunities for enhancement by including additional
information which are or will be provided in the future by remote
sensing sensors and techniques.
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