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Abstract: The metallic glass presented in this work with alloy composition Ni60Nb20Ta20 (at.-%) 

obtained its amorphous structure through a powder atomization process and was processed into 

an open-porous foam using laser powder bed fusion. Subsequently, the open-porous structure 

was infiltrated with an AlSi12 eutectic aluminum alloy by gas pressure infiltration. For 

manufacturing processes and applications, knowledge of thermal properties of the metallic glass 

foam as well as metal matrix composite is essential. Therefore, characteristics of thermal 

expansion were determined experimentally by dilatometry, specific heat capacity by differential 

scanning calorimetry and thermal conductivity by laser flash analysis. Thermal expansion as well 

as specific heat capacity are measured for the metallic glass foam as well as infiltrated 

composite. Laser flash analysis method was applied to the infiltrated composite only, as this 

method is not suitable for an open-porous structure. Thermal investigations revealed a 

relaxation in the metallic glass, which was investigated in detail. 

Keywords: metallic glass; metal matrix composite; thermal expansion; specific heat capacity; 

thermal conductivity 

1. Introduction 

Compared to crystalline metals, metallic glasses exhibit remarkable properties such as high 

strength, hardness, elastic strain limit due to their amorphous structure [1–3]. Conversely, they 

also exhibit low toughness and high susceptibility to brittle fracture, making them less qualified 

for the use as monolithic structural components [4]. To compensate for brittleness, metallic 

glasses are increasingly used as a reinforcing phase in a hybrid material, such as metal matrix 

composites (MMC) with interpenetrating structures. This requires that the metallic glass has an 

open-porous foam structure so that it can be infiltrated with a metal that has more ductile 

properties [5, 6]. The metallic glass used in this work with alloy composition Ni60Nb20Ta20 (at.-%) 

obtained its amorphous structure through a powder atomization process and was processed 

into an open-porous foam using laser powder bed fusion (LPBF). Subsequently, the open-porous 

structure was infiltrated with an AlSi12 eutectic aluminum alloy by gas pressure infiltration. Due 

to the high crystallization temperature of the metallic glass Ni60Nb20Ta20 alloy (721 °C [7]) and 

the low melting temperature of the AlSi12 alloy (577 °C [8]), it was possible to select a 

corresponding process temperature of 660 °C to maintain the amorphous structure of the 

metallic glass. For manufacturing processes and applications, the knowledge of thermal 

properties of the metallic glass foam as well as the MMC is essential. Therefore, the 

characteristics of thermal expansion were determined experimentally and characterized by 

dilatometer measurements, specific heat capacity by differential scanning calorimetry (DSC) and 
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thermal conductivity by laser flash analysis (LFA). The thermal expansion as well as specific heat 

capacity are measured and investigated on the metallic glass foam as well as on the infiltrated 

composite. The LFA method was applied to the infiltrated composite only, as this method is not 

suitable for an open-porous structure. In addition, the thermal investigations revealed a 

relaxation in the metallic glass, which was also investigated in detail. Metallic glasses are formed 

by supercooling a liquid melt at very high cooling rates (102-108 K/s) [9, 10]. During this process, 

free volume is frozen, and the metallic glass is in a thermodynamic metastable state. Upon 

reheating (below crystallization temperature), a relaxation process begins. Thermally activated 

diffusion closes the free volume and a thermodynamic equilibrium is reached [11–13]. 

2. Material and experimental methods 

2.1 Material 

The metallic glass presented in this work with an alloy composition Ni60Nb20Ta20 

(TaNi39.1Nb20.7 wt.-%) obtained its amorphous structure through a gas atomization process by 

the company Nanoval GmbH & Co.KG (Berlin, Germany). The Nanoval process is crucible-free 

[14] and was carried out in an inert argon atmosphere. Rapid cooling causes the material to 

solidify into an amorphous powder with particle size d50 = 44 µm. The powder was further 

processed into an open-porous foam with a measured reinforcement volume fraction of 37.7 % 

using LPBF. This Process was conducted by the research group “Production and Component 

Behavior” at the Institute for Applied Materials – Materials Science and Engineering, Karlsruhe 

Institute of Technology. Subsequently, the open-porous structure was infiltrated with an AlSi12 

eutectic aluminum alloy by gas pressure infiltration. Due to the high crystallization temperature 

of the metallic glass Ni60Nb20Ta20 alloy (721 °C [7]) and the low melting temperature of the AlSi12 

alloy (577 °C [8]), a corresponding process temperature of 660 °C was selected to maintain the 

amorphous structure of the metallic glass. This results in an interpenetrating MMC with metallic 

glass as reinforcement phase.  

2.2 Experimental methods 

Investigations on thermal expansion of the Ni60Nb20Ta20 open-porous foam, the infiltrated MMC 

as well as the AlSi12 for comparison were carried out in a dilatometer type DIL 402 Expedis from 

Netzsch (Selb, Germany). The examined samples were cuboid-shaped with dimensions of 

5 x 5 x 10 mm³ and plane-parallel surfaces. Due to the different structure of the Ni60Nb20Ta20 

open-porous foam along and across the building direction caused by the LPBF process, the 

material is investigated in both directions regarding thermal expansion. Figure 1 shows on the  

  

Figure 1. Samples for dilatometer measurements parallel (0°) and perpendicular (90°) to 

building direction. (a) Samples of Ni60Nb20Ta20 open-porous foam. (b) Samples of infiltrated 

MMC with AlSi12. 
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left side the Ni60Nb20Ta20 open-porous foam and on the right side the MMC infiltrated with 

AlSi12.Measurements parallel to building direction are identified with 0° and perpendicular to 

building direction with 90°. Three thermal cycles of 20 °C to 500 °C with a constant heating and 

cooling rate of 5.5 K/min were carried out for each sample. The upper temperature limit was 

chosen to remain below crystallization temperature of the metallic glass and melting 

temperature of the AlSi12 (577 °C [8]). The contact force was set to 0.2 mN. To avoid oxidation 

all measurements were performed in an inert argon atmosphere. Therefore, the dilatometer 

was evacuated to a vacuum of 10-4 mbar and purged three times with argon to minimize the 

residual oxygen content. A reference measurement was performed with a Al2O3 sample to 

eliminate any effects of the testing device. All measurements were carried out and evaluated 

according to DIN 51045-1. The coefficients of thermal expansion (CTE) were evaluated in a range 

of 60 °C to 480 °C. 

The specific heat capacity was determined by means of dynamic differential calorimetry in a DSC 

214 Polyma from Netzsch (Selb, Germany) according to DIN 51007. For comparison and 

validation of the results, an Al2O3 sample was again used as reference. Accordingly, a sample 

size of approximately 1 x 2 x 3 mm³ of the Ni60Nb20Ta20 foam and the MMC was chosen. The 

temperature program for the heat capacity measurements is composed of an isothermal start 

phase at 0 °C, a dynamic phase with constant heating rate of 20 K/min up to 200 °C and a final 

isothermal end phase at 200 °C. Since relaxation in metallic glasses has an influence on the 

specific heat capacity, the relaxation temperature Tr was first determined. For this purpose, four 

DSC measurements from ambient temperature to 500 °C (20 K/min) were carried out on one 

sample. All measurements were performed in an inert argon atmosphere. 

Thermal conductivity was determined using laser flash analysis. The measurements were carried 

out with a LFA 1000 of the company Linseis (Selb, Germany) according to ASTM E 1461. In this 

method, the thermal diffusivity (𝑎) of the material is measured, and the thermal conductivity (𝜆) 

is calculated with the density (𝜌) and specific heat capacity (𝑐𝑝 ) using equation 1.  𝜆 = 𝑎𝜌𝑐𝑝                    (1) 

The specimens must have plane-parallel top and bottom surfaces and a defined thickness. This 

resulted in a specimen size of 10 x 10 x 1.6 mm³ as shown in Figure 2.  

 

Figure 2. Samples for LFA. Left: Sample of AlSi12. Right: Sample of the infiltrated MMC. 

Furthermore, the measurements require a continuous sample body, which is why the 

Ni60Nb20Ta20 open-porous foam could not be investigated with this method. Therefore, the 

measurement was additionally performed on an AlSi12 sample for comparison.  
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3. Results 

3.1 Thermal expansion  

Figure 3 shows the temperature-dependent evolution of the thermal strain during the three 

thermal cycles of the Ni60Nb20Ta20 open-porous foam (Fig.3 (a)), the infiltrated MMC 

Ni60Nb20Ta20-AlSi12 (Fig.3 (b)), and for comparison of the AlSi12 matrix itself (Fig. 3 (c)).  

 

Figure 3. Results of dilatometer measurements. (a) Thermal strain of Ni60Nb20Ta20 open-porous 

foam in 0° and 90° direction. (b) Thermal strain of infiltrated MMC Ni60Nb20Ta20-AlSi12 in 0° and 

90° direction. (c) Thermal strain of AlSi12. (d) Differential CTE results for all samples.  

The first heating cycle of all samples exhibit a distinct increase starting at 200 °C, whereas the 

following second and third cycle are on the same track. The Ni60Nb20Ta20 open-porous foam 

exhibits with 0.43 % in 0°- and 0.45 % in 90°-direction nearly the same expansion in both 

directions. However, the sample in 90°-direction shows some remaining negative thermal strain 

after the cycles, as do the sample of AlSi12. AlSi12 exhibits a max. thermal strain of 1.11 %. The 
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infiltrated MMC combines metallic glass Ni60Nb20Ta20 and AlSi12 and results in a max. thermal 

strain of 0.66 % in 0°-direction and 1.0 % in 90°-direction. Additionally, the samples in 90°-

direction exhibit a positive remaining negative thermal strain after the second and third heating 

cycle. The increase in the first cycle can be attributed to relaxation in the metallic glass [11] and 

to an internal stress generated in MMCs during solidification at manufacturing process [15]. In 

order to exclude these influences, only the average value from the second and third heating 

process is considered in the analysis of CTEs shown in Figure 3 (d). The determined CTE of the 

metallic glass Ni60Nb20Ta20-0° is constant value of (9.24 ± 0.10) x 10-6 K-1 with increasing 

temperature. The CTE of Ni60Nb20Ta20-90° remains nearly the same at (11.17 ± 0.26) x 10-6 K-1 with 

a small increase starting at 250 °C. In contrast, the CTEs of the MMC as well as the matrix material 

AlSi12 are not linear with increasing temperature. The CTE of the Ni60Nb20Ta20-AlSi12 in 0°-

direction decreases with increasing temperature from (14.65 ± 0.19) x 10-6 K-1 at 60 °C to 

(11.21 ± 0.96) x 10-6 K-1 at 480 °C. Whereas, the CTE of the Ni60Nb20Ta20-AlSi12-90° is 

(15.88 ± 0.32) x 10-6 K-1 at 60 °C and increases to a maximum of approx. 21 x 10-6 K-1 at 300 °C. 

Subsequently, the value decreases again to (20.12 ± 0.94) x 10-6 K-1 at 480 °C. Similar behavior is 

observed for the AlSi12-matrix. The CTE starts with (21.35 ± 0.25) x 10-6 K-1, increases to a 

maximum of approx. 25 x 10-6 K-1 between 300 - 400 °C and decreases to (24.72 ± 2.88) x 10-6 K-1. 

3.2 Specific heat capacity and relaxation 

In order to obtain a specific heat capacity independent of the thermal history of the material, an 

upper temperature limit was first determined experimentally using DSC measurements 

(Fig. 4 (b)). The DSC signals of the first heating cycle differs from the three following ones. 

 

Figure 4. Results of DSC measurements. (a) Specific heat capacity of Ni60Nb20Ta20 open-porous 

foam MMC Ni60Nb20Ta20-AlSi12. (b) DSC signal of Ni60Nb20Ta20 open-porous foam. 

The relaxation temperature Tr therefore corresponds to the temperature at which the DSC 

signals start to diverge at approximately 200 °C. Consequently, this value was chosen as upper 

temperature limit for the determination of the specific heat capacity of the metallic glass 

Ni60Nb20Ta20 and the MMC Ni60Nb20Ta20-AlSi12 (Fig. 4 (a)). Both cp values increase with increasing 

temperature. Ni60Nb20Ta20 starts at 0.39 ± 0.01 kJ/kgK at ambient temperature (20 °C) and 
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increases until 0.42 ± 0.01 kJ/kgK at 200 °C. Whereas, the MMC Ni60Nb20Ta20-AlSi12 starts with a 

much higher value at 0.44 ± 0.01 kJ/kgK at 20 °C and increases until 0.47 ± 0.01 kJ/kgK at 200 °C. 

3.3 Thermal conductivity 

For the evaluation of the AlSi12 sample a density of 2640 kg/m³ and a heat capacity of 

0.90 kJ/kgK was used according to literature [16], with a measured thermal diffusivity of 

(0.65 ± 0.02) x 10-4 m²/s resulting in a thermal conductivity of 154.43 ± 4.21 W/mK. The thermal 

conductivity of the infiltrated MMC Ni60Nb20Ta20-AlSi12 is 59.44 ± 1.01 W/mK and was calculated 

with a measured density of 5690 kg/m³, the result of the investigated heat capacity of 

0.44 kJ/kgK at ambient temperature and a measured thermal diffusivity of (0.24 ± 0.01) x 10-

4 m²/s. All results are summarized in Table 1.  

Table 1. Results of thermal conductivity measured by LFA. 

Material ρ (kg/m³) cp,20°C (kJ/kgK) a (x 10-4 m²/s) λ (W/mK) 

AlSi12 2640 [8] 0.90 [16] 0.65 ± 0.02  154.43 ± 4.21 

Ni60Nb20Ta20 10790 0.39 ± 0.01 -  - 

Ni60Nb20Ta20-AlSi12 5690 0.44 ± 0.01 0.24 ± 0.01 59.44 ± 1.01 

 

4. Discussion 

The results show that the thermal expansion of the two components of the MMC differ strongly. 

Whereas the AlSi12 has a high max. thermal strain of 1.11 % and CTE of 21 to 25 x 10-6 K-1, which 

corresponds with literature [17, 18], the metallic glass Ni60Nb20Ta20 exhibits a significantly lower 

max. thermal strain of 0.43 % and 0.45 % and CTE of 9 to 11 x 10-6 K-1. There is no data published 

for the metallic glass Ni60Nb20Ta20
 yet, but an estimation according to [19] leads to an approx. 

CTE of 8.97 x 10-6 K-1 by using the glass transition temperature Tg = 936 K  of the same composition 

in [20], which confirms the results. The metallic glass shows an increase in thermal expansion 

during the first heating cycle starting at 200 °C, due to thermal relaxation as confirmed by the 

DSC measurements. In addition, a slight anisotropy between the sample parallel (0°) and 

perpendicular (90°) to building direction is apparent. AlSi12 also shows an increase during the 

first heating cycle, starting at 300 °C, which suggests that internal residual stresses already exist 

in the material. MMC with components whose CTE differ greatly exhibit thermal residual 

stresses after manufacturing. These are generally expected to be compressive stresses in the 

reinforcement phase and tensile stresses in the matrix when the CTE of the matrix material is 

higher than the CTE of the reinforcement phase [15, 21]. All these effects combined lead to the 

resulting thermal expansion of the MMC Ni60Nb20Ta20-AlSi12. Due to the structure of the 

Ni60Nb20Ta20 open-porous foam, the samples exhibit anisotropy in 0°- and 90°-direction. This is 

further enhanced by the different component proportions in the respective directions. The 

properties of the metallic glass dominate in 0°- and of the AlSi12 in 90°-direction. Therefore, the 

MMC in 90°-direction has a significantly higher thermal expansion of 1.0 % than the MMC in 0°-

direction with 0.66 %. The anisotropy in the CTE is equally evident. The AlSi12 dominated MMC 

(90°) behaves similarly to the CTE of AlSi12 and increases from 15 to 21 x 10-6 K-1, with increasing 

temperature. Whereas the metallic glass dominated MMC (0°) decreases linearly from 

14 to 11 x 10-6 K-1, and thus a linear behavior more typical for metallic glasses [19]. All thermal 
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expansion results are consistent with results of a MMC with Ni60Nb20Ta20 as particle 

reinforcement phase in literature [18]. 

The resulted specific heat capacity show that AlSI12 with 0.90 kJ/kgK (20 °C) combined with 

Ni60Nb20Ta20 with 0.39 kJ/kgK (20 °C) increases the cp of the MMC to 0.44 kJ/kgK. The cp of the 

metallic glass has not yet been determined, which is why there are no comparative values. 

However, if the value is compared with the cp of the individual components (cp,Ni = 0.45 kJ/kgK, 

cp,Nb = 0.26 kJ/kgK, cp,Ta = 0.14 kJ/kgK [16]), it can be seen that the values correspond well and lead 

to the conclusion that the results of the MMC also appear realistic. 

Same applies to the heat capacity of the MMC, no comparable literature values are yet available. 

However, the result of the AlSi12 shows that the method provides realistic results, since 

154 W/mK corresponds to literature [8, 16]. Considering that nickel (67 W/mK), niobium 

(54 W/mK) and tantalum (54 W/mK) [16] have a significantly lower thermal conductivity than 

AlSi12, it can be concluded that the results of the MMC with 59 W/mK appear realistic. 

5. Conclusion 

A metallic glassy Ni60Nb20Ta20 open-porous foam and infiltrated MMC were successfully 

investigated in terms of thermal expansion, specific heat capacity and thermal conductivity. 

Thermal expansion was investigated parallel (0°) and perpendicular (90°) to building direction 

and a pronounced anisotropy was determined. Samples in 90°-direction exhibit a significantly 

higher thermal expansion with increasing temperature than samples in 0°-direction. The 

determined heat capacity and thermal conductivity also provide new values for the metallic 

glass Ni60Nb20Ta20 as well as the MMC. 
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