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Figure 1: Inference calculation of the infant multimodal annotation predictor using bi-LSTM. DinoV2 PCA components (16 x16 
x 4) are visualized in CMYK color space. Wav2Vec2-BERT is the size of 1024 audio feature embeddings. 
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Abstract 
Caregiver mental health disorders increase the risk of insecure in-
fant attachment and can negatively impact multiple aspects of child 
development, including cognitive, emotional, and social growth. 
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Infant-caregiver interactions contain subtle psychological and be-
havioral cues that reveal these adverse efects, underscoring the 
need for analytical methods to assess them efectively. The Face-to-
Face-Still-Face (FFSF) paradigm is a key approach in psychological 
research for investigating these dynamics, and the Infant and Care-
giver Engagement Phases revised German edition (ICEP-R) annota-
tion scheme provides a structured framework for evaluating FFSF 
interactions. However, manual annotation is labor-intensive and 
limits scalability, thus hindering a deeper understanding of early 
developmental impairments. To address this, we developed a compu-

tational method that automates the annotation of caregiver-infant 
interactions using features extracted from audio-visual founda-
tional models. Our approach was tested on 92 FFSF video sessions. 
Findings demonstrate that models based on bidirectional LSTM 
and linear classifers show varying efectiveness depending on the 
role and feature modality. Specifcally, bidirectional LSTM models 
generally perform better in predicting complex infant engagement 
phases across multimodal features, while linear models show com-

petitive performance, particularly with unimodal feature encodings 
like Wav2Vec2-BERT. To support further research, we share our 
raw feature dataset annotated with ICEP-R labels, enabling broader 
refnement of computational methods in this area. 

CCS Concepts 
• Computing methodologies → Neural networks; Behaviour 
analysis; • Human-centered computing → Human computer 
interaction (HCI); • Applied computing → Life and medical 
sciences. 
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1 Introduction 
From the earliest days of life, the intricate dance between infant and 
caregiver shapes the foundation for a lifetime. These interactions 
are complex and contain multiple aspects, which directly shape 
regulatory, emotional, cognitive, and social capacities in infants’ de-
velopment [12, 31]. Early theoretical frameworks, like Bowlby’s tril-
ogy on attachment [5, 6], and Ainsworth’s deep dive into maternal 
sensitivity [1], emphasize the important role of responsive caregiv-
ing in developing secure bonds between caregiver and their infants. 
Later, research found that these caregiver-infant interactions are 
not one-directional. Rather, infants actively engage in these ex-
changes, infuencing their developmental trajectories [38, 39]. Reck 
et al. [35] evaluated the impact of maternal anxiety disorder on 
caregiver-infant interaction in the postpartum period. Therefore, 

it is crucial for psychologists to understand and evaluate these 
behaviors for early interventions. 

Developmental psychologists employ structured observation 
techniques to evaluate infant-caregiver interactions, including free 
play, standardized play, and the Face-to-Face Still-Face (FFSF) para-
digm [26]. Our research focuses on the FFSF method, a standard-
ized procedure designed to analyze infants’ reactions to socio-
emotionally challenging situations. This paradigm allows the eval-
uation of infant interaction patterns with behaviors exhibited after 
a socio-emotional stressor. It consists of three episodes, each last-
ing two minutes. Initially, during the play episode, the caregiver 
engages in typical play with the infant without the use of toys 
or pacifers. This is followed by a transition interval where the 
caregiver turns their head aside and quietly counts to ten. The still-
face episode then ensues, during which the caregiver maintains a 
neutral expression, refraining from any gestures or vocalizations, 
thereby creating a state of interactive mismatch. Finally, the reunion 
episode begins, with the caregiver resuming face-to-face play with 
the infant without a transition interval. Throughout these episodes, 
the interactions are video recorded and coded [41, 42]. 

In coding the interactions observed during the FFSF paradigm, 
two well-known coding techniques are employed: macro-temporal 
and micro-temporal behavior annotations. The Coding Interactive 
Behaviour (CIB) system [13] is a prominent example of macro-

temporal annotation, where entire sessions are recorded on audio 
and video, and evaluated as complete sessions by CIB annotators 
across a range of behavioural characteristics. In contrast, micro-

temporal annotation involves a more detailed approach, breaking 
down the behavioral stream into distinct intervals, often second by 
second. The Infant Carer Engagement Phases (ICEP)[46] and up-
dated German version (ICEP-R) [34] illustrate this method, coding 
each stage of infant-caregiver involvement by assigning codes to 
each frame. 

Although observational tasks and evaluation methods in infant 
caregivers have substantially advanced in the last few decades, they 
are not without their challenges. Translating qualitative observa-
tions into quantitative coding introduces an element of subjectivity, 
which can afect inter-rater reliability and the validity of fndings 
across diferent research settings. To mitigate this, researchers of-
ten rely on rigorous training programs to standardize the coding 
process, but these programs are both time-consuming and costly. 
Aside from that, coding video sessions remains labor-intensive 
and resource-intensive, posing challenges for clinicians in develop-
ing regions that have limited access to such facilities. As a result, 
achieving equitable evaluation in these areas remains an ongoing 
challenge, underscoring the need for more efcient and accessible 
approaches to analyzing behavioral data. 

The rapid progress of machine learning and neural networks 
holds great promise for analyzing intricate behavioral patterns in 
caregiver-infant interactions. Despite this potential, few studies 
have applied machine learning for micro-annotation analysis. [22] 
developed a model predicting attachment types (secure or inse-
cure) using data from 64 infant-caregiver pairs during the FFSF and 
Ainsworth’s Strange Situation Assessment (SSA). Their modest pre-
diction accuracies for a two-class classifcation problem underscore 
the need for advanced computational methods to interpret these 
complex interactions. 

429

https://doi.org/10.1145/3678957.3685704


Towards Automated Annotation of Infant-Caregiver Engagement Phases with Multimodal Foundation Models ICMI ’24, November 04–08, 2024, San Jose, Costa Rica 

In this work, we introduce a novel approach to automating the an-
notation process of ICEP-R for both infants and caregivers utilizing 
linear classifers model and bidirectional LSTM model, as illustrated 
in Fig. 1. We wish to streamline the traditionally labor-intensive 
annotation task by employing standardized feature extraction tech-
niques and deploying trained models to predict ICEP-R annotations 
on new data. By leveraging audio and video foundational back-
bone models to extract features instead of traditional ones like 
Mel-Frequency Cepstral Coefcients (MFCC) for audio and Con-
volutional Neural Networks (CNN) features for visual data, our 
method better captures holistic feature representation from audio-
visual signals. Unlike previous studies that focused solely on binary 
attachment classifcation, we analyze seven distinct engagement 
types for infants and caregivers. To facilitate progress in this inter-
disciplinary feld, we publicly release our pre-trained models, raw 
feature datasets, and software pipelines for researchers to access at 
https://github.com/Daksitha/SCHWAN-ICEP-R-Automation.git. 

2 Related Work 
Caregiver-infant interaction has been extensively researched in de-
velopmental psychology due to its critical role in early childhood de-
velopment [3, 40]. Studies highlight the complex nature of early in-
teractions between caregivers and infants, emphasizing their signif-
cance in creating a nurturing social learning environment [4, 14, 44]. 
These interactions are fundamental not only for cognitive and social 
learning but also for developing emotional regulation and estab-
lishing a secure caregiver-infant attachment [15, 16, 29]. Maternal 
mental health issues like postpartum depression and anxiety can 
have prevalence rates of up to 27.8% (EPDS ≥9) and 9.0% (EPDS 
≥14), according to recent studies. SCID-based assessments also 
report a 9.0% prevalence, underscoring the critical importance of 
analyzing their impact on infant-caregiver interactions [25, 35]. 

The ICEP micro-annotation scheme, initially developed by Wein-

berg and Tronick [46] to analyze interactions between infants and 
their caregivers, was later refned into the ICEP-R system by [34] 
for German studies. Macro-temporal schemes such as CIB [13], the 
Attachment Q-Set (AQS) [45], and the Parent-Child Early Relational 
Assessment (PCERA) [10] are utilized to evaluate broader interac-
tion patterns and the overall quality of relationships over extended 
periods. In our work, we have chosen to predict the ICEP-R an-
notation due to its micro-temporal granularity that matches the 
frame-level detail provided by audiovisual signals. 

2.1 Current Computational Approaches in 
Caregiver-Infant Analysis 

Recent advancements in computational methods have signifcantly 
enhanced the analysis of social interactions in developmental psy-
chology, particularly in understanding infant-caregiver dynamics. 
This section reviews notable studies that leverage these methods 
to gain insights into parent-child interactions. Leclere et al. [21] 
utilized 2D and 3D Microsoft Kinect motion capture data to study 
mother-infant interactions. They correlated motion-derived param-

eters, such as shoulder angles and body distance, with macro CIB 
scores. A Support Vector Machine (SVM) was employed to efec-
tively distinguish between high-risk and low-risk groups. However, 
the reliance on Kinect landmark-based features and CIB annotation 

schemes may limit the analysis by potentially overlooking subtle be-
haviors. Klein et al. [20] examined the coordination across various 
modalities—such as head and arm movements combined with vocal 
frequencies—to enhance the understanding of mother-infant inter-
actions during the FFSF procedure. While this study successfully 
highlights the importance of multimodal analysis, its dependence 
on key-point and landmark-based features is prone to error in dy-
namic and complex environments like infant-caregiver interactions. 
Mills, Koonce, and Cox applied machine learning techniques to au-
tomate the evaluation of “three-bag-assessment” based parent-child 
interaction video recordings, aiming to enhance attachment-based 
interventions. They utilized OpenPose for pose estimation and vocal 
fundamental frequency of mothers and their infants for behavior 
assessment, correlating these with manual CIB ratings. Despite 
demonstrating potential for AI in streamlining interventions, the 
study’s accuracy was limited by environmental variables such as 
camera angles and acoustics, highlighting the challenges of apply-
ing these technologies in varied settings. However, self-supervised 
model-based features ofer versatility in such dynamic and challeng-
ing conditions, potentially mitigating the impact of environmental 
factors on automated assessment accuracy [27]. Despite the ad-
vancements, all three studies face limitations due to their reliance 
on manually crafted features and landmark-based annotations. 

Li et al. [22] developed a model to predict attachment types as 
secure or insecure using 64 infant-mother pairs during the FFSF and 
Ainsworth’s SSA. Instead of using landmarks for video analysis, 
they utilized video frames together with VGG9 to extract visual fea-
tures, and audio features such as pitch, short-time energy (STE), and 
MFCC. They employed SVMs to classify the labels from audio and 
then used late fusion with VGG9 classifcation to predict the fnal 
label. Their approach showcased the potential of neural networks in 
identifying attachment patterns, achieving classifcation accuracies 
of 38% for the Still-Face phase, 60% for the Reunion phase, and 61% 
when combining both phases using only infant data. Incorporating 
caregiver data somewhat improved results to 50% (Still-Face phase), 
67% (Reunion phase), and 78% (combined phases). Moreover, the 
authors mentioned the need to consider selecting context-based 
representative features and making a better fusion of visual and 
audio features. They also suggested expanding the dataset and fur-
ther distinguishing among the insecure attachment types, including 
ambivalent attachment, avoidant attachment, and disorganized at-
tachment. To address these issues, our work proposes the use of 
multi-labeled micro-annotation schemes and occlusion-invariant, 
holistic self-supervised learning-based feature representations for 
both audio and video signals. These methods aim to provide more 
detailed insights into the complexities of parent-child interactions, 
enabling computational models to classify between diferent attach-
ment types more accurately. 

2.2 Foundational Models and Temporal 
Modelling 

Foundational models, trained on vast amounts of data, excel in 
learning a wide range of patterns and features, enabling them to 
generalize efectively across tasks and domains [23]. These models 
have achieved signifcant advancements in both Natural Language 
Processing (NLP) [9, 11, 18, 32] and computer vision [8, 30]. 
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In NLP, speech encoder models like W2V-BERT 2.0 also known 
as Wav2Vec2-BERT [11] in SeamlessM4T v2 was pre-trained on 4.5 
million hours of unlabeled audio and fne-tuned with supervised 
data, enhancing performance on low-resource languages. Seam-

lessExpressive, built from diverse datasets, preserves vocal style 
and prosody in translation. In computer vision, the DinoV2 [30] 
model demonstrates superior image classifcation performance 
by focusing on relevant information within images. For instance, 
DinoV2 achieves high accuracy on recognition benchmarks like 
UCF101 [37] (91.2%) but underperforms on temporally sensitive 
action prediction tasks such as SSv2 [17], with a 38.3% overall pre-
diction accuracy using a linear classifer on averaged features from 
eight spaced frames. This discrepancy highlights the challenges in 
temporally sensitive action prediction. These challenges are ampli-

fed in contexts such as child-caregiver interactions, as the continu-
ous and dynamic nature of behavioral annotations within a single 
video and audio session signifcantly increases the complexity of 
the modeling process. 

Bidirectional Long Short-Term Memory (bi-LSTM) networks 
have achieved notable success in the domain of computer vision, 
particularly in the recognition of actions within video sequences [43]. 
Traditionally, actions in video sequences are considered static and 
can be described in detail, similar to a sentence that narrates the 
sequence of events in the video [17, 37]. However, the introduction 
of micro behavior annotations, such as those provided by ICEP-
R, complicates this paradigm. Unlike conventional action labels, 
which remain constant for a given video, behavioral actions an-
notated with ICEP-R exhibit frequent changes within the same 
video, thereby increasing the predictive complexity compared to 
traditional action recognition tasks. 

Addressing these challenges, our method evaluates the efec-
tiveness of integrating bi-LSTM networks and linear classifers 
with foundational model-extracted features for predicting ICEP-R 
annotations independently for both caregivers and infants. This pro-
cess leverages the strengths of audio and video-based foundational 
models combined with both sequence modeling and traditional 
classifcation techniques to capture the intricate spatial and tem-

poral dynamics of caregiver-infant interactions. To the best of our 
knowledge, this is the frst instance of evaluating the combined use 
of bi-LSTM networks and linear classifers with frozen audio-visual 
foundational model features to predict caregiver-infant engagement 
annotations. 

3 Dataset 
We obtained access to a video and audio dataset originally utilized 
to analyze the impact of postpartum anxiety disorder on caregiver-
infant interactions and infant development [28, 35]. The dataset 
comprises video and audio recordings during FFSF interactions. 
FFSF episodes are play (i.e., unstructured interaction between in-
fant and caregiver) still face (i.e. caregiver suddenly becomes unre-
sponsive, observing the infant’s reaction,) and reunion (i.e. normal 
interaction resumes after the still face episode, gauging the infant’s 
recovery). 

The dataset includes a total of 92 video and audio sessions. The 
participants were divided into two groups: 39 women diagnosed 
with DSM-IV postpartum anxiety disorder and 53 healthy control 

caregivers. However, the diagnostic information is not considered 
in our predictive task. The infants involved had an average age of 
4.1 ± 1.5 months at the time of the study. The caregivers in the 
study had an average age of approximately 33 years and all are 
female. 58% of the caregivers held a university degree, indicating 
a high level of education among the participants. All participants 
were Caucasian ranging from German and French nationalities, 
and 51% were in a marital or stable relationship at the time of the 
study. caregiver and the infant interact with each other for about 6 
min [28], as illustrated below. 

Play Still Face Reunion 
0–2 min 2–4 min 4–6 min 

0 min 2 min 4 min 6 min 

Table 1: Overview of Infant Engagement Phases 

Phases Modality Explanation 

Negative Engagement 
(Ineg) 
Protest (Ipro) Visual + Audio 

Further divided into Ipro + Iwit 

Active negative behaviors, e.g., cry-
ing, fussy vocalizations, arching 
back or kicking. 

Withdrawn (Iwit) Visual Shows sadness, lack of focus, gaze 
aversion, minimal movement. 

Object/Environment Visual Focus on objects, interest or neutral 
Engagement (Inon) expressions, may vocalize. 
Social Monitor (Ineu) Visual + Audio Neutral/interested gaze at caregiver, 

neutral/positive vocalizations. 
Social Positive En- Visual + Audio Positive interactions, joy, engaging 
gagement (Ipos) 
Sleep (Islp) 
Unscorable (Iusc) 

Visual 
Visual 

in play, specifc facial cues. 
Infant is asleep, no interaction. 
Cannot be scored due to obscured 
view or partial visibility. 

3.1 ICEP-R Annotations 
Initially, the ICEP coding system, by Tronick et al. [46], was trans-
lated and revised into German by Reck et al. [34]. These 6-minute 
video sessions are then analyzed and coded using the ICEP-R cod-
ing system [28]. This approach involves detailed coding of each 
time interval to categorize behaviors into distinct phases for both 
the infant and the caregiver. The videos are coded by two trained 
and certifed, blinded coders using split video, where infant and 
caregiver videos are synchronously merged side by side to create a 
single video with a unifed audio track. Annotators used the Noldus 
Observer Video-Pro system, with interrater reliability for engage-
ment phase codes measured by Cohen’s �. (� = [0.73; 0.82] for 
infant codes; � = [0.72; 0.73] for maternal codes). It is important to 
note that the codes within the infant and caregiver categories are 
mutually exclusive, ensuring that there is no overlap in the coding 
of behaviors. 

Tables 1 and 2 provide a summary of the detailed annotation 
scheme used by expert annotators. Table 1 outlines the behavioral 
categories for infants, detailing the specifc actions and expressions 
considered during the coding. Table 2 presents the corresponding 
behavioral categories for caregivers, focusing on their interactions 
and responses to the infants and their surroundings. Both tables 
highlight the mutually exclusive nature of the codes and the speci-
fcity required in the annotation process. Additionally, Fig. 2 visually 

431



Towards Automated Annotation of Infant-Caregiver Engagement Phases with Multimodal Foundation Models ICMI ’24, November 04–08, 2024, San Jose, Costa Rica 

Still face context Temporal axis

Caretaker video
Infant video

Session audio

Wav2Vec_B2
embeddings 
(1st value out
 of 1024 features)

DinoV2 
embeddings
(1st patch value 
out of 256 X 4)

Caretaker 
engagement 
annotations

Infant 
engagement 
annotations

Figure 2: Overview of Infant-Caregiver FFSF on NOVA [2, 19] 

Table 2: Overview of Caregiver Engagement Phases 

Phases Modality Explanation 

Negative Engagement Further divided into Cwit + Cint + 
(Cneg) Chos 
Withdrawn (Cwit) Visual + Audio Minimally engaged, withdrawn; 

sad, fat, expressionless face; silent, 
speaks in monotone. 

Intrusive (Cint) Visual + Audio Intrusive behavior; tense, stressed 
expressions; does not wait for infant 
reactions, interrupts infant. 

Hostile (Chos) Visual + Audio Hostile afect; stressed, aggressive 
expressions; high-pitched vocaliza-
tions; curt with baby. 

Non-Infant Focused Visual + Audio Not attending to baby; involved in 
Engagement (Cnon) other activities like fxing clothing 

or talking to others. 
Social Monitor/No Visual + Audio Watches baby, neutral expressions; 
Vocs or Neutral Vocs may touch baby; vocalizations are 
(Cneu) neutral if present. 
Social Moni- Visual + Audio Focused on infant; neutral, inter-
tor/Positive Vocs ested expressions; positive vocaliza-
(Cpvc) tions, including motherese. 
Social Positive En- Visual + Audio Expresses positive afect; smiles, 
gagement (Cpos) laughter; playful interactions; uses 

motherese or sings. 
Unscorable (Cusc) Visual + Audio Cannot score due to obscured view; 

unclear vocalizations; face partially 
or completely hidden. 

illustrates these annotations completed for a session, aiding in the 
understanding of the coding scheme. 

4 Method 

Figure 3: Left: Detection of face and body keypoints under 
occlusion (marked by distinct nodes and connections). Right: 
Visualization of the frst four principal components (difer-
ent regions) of DinoV2 attention map, represented in a CMYK 
color space. 

Our primary objective is to develop predictive models to predict 
infant and caregiver ICEP-R annotations, as illustrated in Fig. 4, 
from multimodal audio-video data. The problem can be formulated 
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Figure 4: An overview of infant-caregiver label distribution 
for all sessions 

as follows: given a sequence of features from audio and/or video 
data, the model should predict the behavioral annotation class to 
which these feature frames belong. 

Initially, we extracted facial and body landmarks with Mediapipe 
holistic [24] and face-alignment [7], illustrated in Fig. 3 (left), which 
can be misidentifed, especially when occlusions occur in video 
images. Additionally, audio data often includes background noise, 
complicating the identifcation of key behavioral indicators and 
impeding accurate classifcation of ICEP-R annotations. To address 
these issues, we propose a feature extraction process using self-
supervised foundational models for both audio and video. These 
feature embeddings provide richer representations and are invariant 
to background noise. For example, in the same video shown in Fig. 3, 
caregiver occlusions are mostly present during the play and reunions 
phases and less so during the still-face phase. Vision self-supervised 
learning methods, particularly those using attention mechanisms, 
can focus on regions of interest without altering model parameters 
during these behavioral changes, as illustrated in Fig. 3 (right). 

4.1 Feature Extraction 
We have integrated our feature extraction pipeline into NOVA, 
an open-source toolkit for annotating and analyzing behaviors in 
social interactions [2, 36]. NOVA enables visualization of multi-

ple synchronized media tracks, including video and audio, along 
with discrete and continuous annotation tracks, as shown in Fig. 2. 
It allows for the integration of custom Python-based addons. We 
developed modules for foundational model-based feature extrac-
tion using DinoV2 for the video and Wav2Vec2-BERT (W2V2B) 
embeddings for the audio. We plan to integrate trained automated 
annotation of ICEP-R annotation into NOVA, enabling non-experts 
to use it with a user-friendly graphical user interface. 

Our DinoV2 feature extractor module in NOVA:. The vision 
foundational model DinoV2 processes an image by producing a 
class token and patch tokens, with an optional inclusion of four 
register tokens. The embedding dimensions for this model are 384 
for ViT-S, 768 for ViT-B, 1024 for ViT-L, and 1536 for ViT-g. DinoV2 
employs a Transformer architecture with a patch size of 14. For 
a 224 × 224 image, this confguration yields one class token, 256 
patch tokens, and optionally, four register tokens. The model can 
accommodate larger images, provided the image dimensions are 

multiples of the patch size (14); otherwise, it crops the image to the 
closest smaller multiple of the patch size [30]. 

We utilized the large model (ViT-L) due to its better quality in 
generating attention maps for our video data, resulting in a fea-
ture embedding size of 1024 dimensions per patch. As per Eq. 1, 
ViT-L outputs ������� 2 features for a video session with � frames. 
These features, extracted from video frames, are exponentially large 
and not directly interpretable when visualized as 16 by 16 by 1024 
inferno-map images. Therefore, we applied Principal Component 
Analysis (PCA) to select the most prominent components, aligning 
the feature dimensions between audio and video embeddings. The 
number of PCA components selected, as indicated by Eq. 2, en-
sures a balanced early fusion of embeddings from both modalities. 
Visualization of these PCA feature embeddings, shown in Fig. 3, 
depicts the frst four PCA components plotted in CMYK color space. 
Additionally, the frst three PCA components can be plotted in RGB 
color space for further analysis. 

������� 2 = (� × 256) × 1024 
After applying PCA, the reduced feature dimensions are: 

(1) 

������� 2��� = (� × 256) × �_��������� (2) 

We selected the frst four PCA components to align the dimen-

sions with the audio features and then reshaped the data to provide 
a per-video-frame feature vector. The dimensions of these feature 
embeddings are given by Eq. 3: 

������� 2���
4 
= � × (256 × 4) = � × (16 × 16 × 4) = � × 1024 (3) 

Given 92 video sessions, the size of the DinoV2 extracted feature 
embeddings is represented as ������ 2���

4 
= 92×������� 2���

4 
. The 

dimensionally reduced features are stored in a NOVA-compatible 
continuous annotation stream, enabling users to visualize these 
features alongside annotations and video and audio streams, as 
illustrated in Fig. 2. 

Furthermore, we observed emerging patterns in the DinoV2 
features that align with the play, still-face, and reunion (FFSF) phases. 
Figure 5 illustrates the computed mean values using the frst four 
PCA features, revealing distinct patterns across multiple sessions. 
These patterns highlight transitions between the free-play (0-2 min), 
still-face (2-4 min), and reunion (4-6 min) phases. Notably, these 
patterns are inversely refected in the feature streams for both the 
caregiver and infant. The implications of these observations are 
further discussed in Section 6. 

Our W2V2B audio feature extractor module in NOVA:. The 
audio foundational model W2V2B process any length of audio by 
transforming it into a series of frame-level embeddings. This model 
operates with a fxed sampling rate of 16 kHz, ensuring consistent 
input across various audio sources. The embedding dimensions for 
W2V2B are confgurable based on the specifc model variant used, 
with typical values being 768 for base models and 1024 for large 
models [11]. 

In our audio feature extractor, a sliding window mechanism with 
adjustable stride left context (�� ), and right context (�� ) divides 
the continuous audio signal into frames. This fexibility allows for 
precise synchronization with video frames by incorporating rel-
evant past and future contexts. For a given session audio signal 
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Figure 5: Emerging correlations between DinoV2 vs FFSF. 

��� 2� 2� (�), the window at the �th 
video frame ��� 2� 2�� (�� ) cap-

tures acoustic features essential for unifed audio-visual alignment, 
which is crucial for our predictive task. 

��� 2� 2�� (�� ) = ��� 2� 2� (� + � · Δ� − �� , � + � · Δ� + �� ) (4) 

For synchronization with video frames, in Eq 4, we set �� = 50 
ms and �� = 50 ms, while the video is sampled at 25 fps, resulting 
in Δ� = 40 ms. These embeddings are then averaged over time to 
produce a 1024-dimensional vector per frame, representing cor-
responding audio features. The number of video samples in the 
session � matches between audio ��� 2� 2� = � × 1024 and video 
(Eq 3), ensuring synchronized multimodal analysis. Similar to the 
DinoV2 module, these saved embeddings can be visualized in NOVA 
for further inspection, as shown in Fig. 2. 

4.2 Model Training 
Once the feature embedding datasets for video and audio were cre-
ated, we prepared the annotations as prediction labels by assigning 
each feature embedding group with the corresponding coding. As 
shown in Fig. 2, these annotations are discrete labels that span 
specifc time segments. To address the imbalance and scarcity of 
certain annotations, we combined similar categories: Ipro and Iwit 
were grouped as Ineg, and Cwit, Cint, and Chos were grouped as 
Cneg. The distribution of these annotation labels is illustrated in Fig. 
4. The NoAnno category represents segments that do not belong to 
any annotatable category. For classifcation tasks, we excluded the 
NoAnno category and defned a 4-class classifcation problem for 
infants and a 3-class classifcation problem for caregivers, excluding 
Cnon due to its minimal representation with only 36 labels. To pre-
vent data leakage, we ensured that the data splits for training and 
testing were based on session names. This approach guaranteed 
that feature embeddings from the same video and audio sessions 
were not mixed between the training and testing sets. To evalu-
ate the performance of predictive tasks using the aligned feature 
embeddings, we employed a dual approach. Initially, we explored 
the capabilities of a linear classifcation model. Subsequently, we 
extended our analysis by incorporating a more advanced Bi-LSTM 
model. 

Initially, we wanted to determine the efectiveness of a linear 
classifer in capturing the intricacies of this predictive task. We de-
veloped and trained a linear classifer and evaluated using a single-
run train-test split approach, allowing us to establish a baseline 
performance for the linear method across diferent modalities and 
for both infants and caregivers. For a more nuanced understanding 
of the temporal dependencies inherent in sequential data, we im-

plemented a bi-LSTM classifer. This architecture was specifcally 
chosen to leverage the LSTM’s ability to model both forward and 
backward temporal dependencies, thereby capturing the dynamics 
of behavioral cues present in caregiver-infant interactions. Further 
details about linear classifer and bi-LSTM model hyperparameter 
tuning and the algorithm can be found in Appendix A. 

5 Results 

Table 3: Caregiver (3 class): Performance metrics using bi-
LSTM (K-fold cross-validation) and linear classifcation (sin-
gle run) across diferent modalities. W indicates weighted 
and UW for unweighted. 

Feature Type Model Accuracy (%) Precision (%) Recall (%) F1 (UW) (%) F1 (W) (%) 

bi-LSTM 72 87 72 62 76

Multimodal 
Linear 71 74 71 53 72 
bi-LSTM 80 87 80 68 82

DinoV2 
Linear 68 68 68 49 66 
bi-LSTM 63 84 63 51 69

W2V2B 
Linear 81 81 81 56 81 

Table 4: Infant (4 class): Performance metrics using bi-LSTM 
(K-fold cross-validation) and linear classifcation (single run) 
across diferent modalities. W indicates weighted and UW 
for unweighted. 

Feature Type Model Accuracy (%) Precision (%) Recall (%) F1 (UW) (%) F1 (W) (%) 

bi-LSTM 68 72 68 60 68
Multimodal 

Linear 54 50 54 40 51 
bi-LSTM 66 72 66 57 66

DinoV2 
Linear 47 41 47 26 43 
bi-LSTM 55 56 55 43 50

W2V2B 
Linear 56 50 56 41 51 

We analyzed the performance of bi-LSTM (using K-fold cross-
validation) and linear classifcation (single run) models on the ICEP-
R annotation task for caregiver and infant data across various fea-
ture modalities: multimodal, DinoV2, and W2V2B. 

The results for the caregiver dataset, as presented in Table 3, 
indicate that the bi-LSTM model marginally outperformed the linear 
model when utilizing multimodal features, with a weighted F1 
score of 76% compared to 72% for the linear model. Notably, when 
employing DinoV2 features, the bi-LSTM model demonstrated a 
signifcant performance advantage, achieving a weighted F1 score of 
82%, underscoring its efcacy in capturing temporal information. In 
contrast, the linear model excelled with W2V2B features, attaining 
a weighted F1 score of 81%, thereby outperforming the bi-LSTM 
model. 

Similarly, for the infant dataset, as shown in Table 4, the bi-LSTM 
model outperformed the linear model when using both multimodal 
and DinoV2 features, although the performance gap was narrower 
compared to the caregiver data. However, with W2V2B features, 
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the linear model’s performance was comparable to that of the bi-
LSTM model, suggesting that the linear model may be more suited 
to W2V2B features, which inherently contain temporal informa-

tion within the embeddings. This contrasts with DinoV2 features, 
which, being extracted at the image level, do not inherently capture 
temporal information, thus favoring the bi-LSTM model. Further 
information of the K-fold cross-validation results can be found in 
Appendix B. 

6 Discussion 
These fndings highlight several key insights. First, the bi-LSTM 
model generally demonstrates overall superiority in handling com-

plex features, particularly in multimodal and DinoV2 datasets across 
both roles. In contrast, the linear classifcation model shows com-

petitive or even superior performance when using W2V2B features, 
suggesting that simpler, linear methods may be more efective in 
certain feature spaces. Additionally, the performance of both mod-

els varied signifcantly between the caregiver and infant roles, with 
the bi-LSTM model showing more consistent performance across 
diferent roles and features. 

This variability in model performance across diferent modal-

ities can be partially attributed to our primary data source, the 
Face-to-Face Still-Face (FFSF) sessions, which provided a unique 
audio-visual perspective on caregiver-infant interactions. During 
these sessions, caregivers dominated the verbal exchanges, while 
infants, aged 3-5 years, primarily produced non-verbal sounds like 
crying, giggling, and occasional utterances. As the audio was cap-
tured on a single channel, both infant sounds and caregiver speech 
contributed to the W2V2B features. The linguistic content was atyp-
ical, consisting of repetitive phrases and playful sounds, often in 
multiple languages such as German and French. These factors likely 
infuenced the distinct performance of the models across diferent 
feature types and roles. 

Improving prediction accuracies may require addressing the 
challenges posed by the distinct characteristics of the audio data in 
this study. Models that rely exclusively on W2V2B features, which 
are primarily optimized for spoken word recognition, may not 
fully capture the diverse audio content typical of caregiver-infant 
interactions. This limitation likely contributed to the observed lower 
performance when using audio embeddings between infant and 
caregiver, which in turn afected the overall performance of the 
multimodal classifcation. To mitigate this issue, fne-tuning W2V2B 
with FFSF-specifc data could enhance the model’s ability to process 
the unique audio features present in these sessions, potentially 
leading to higher accurate predictions. 

In addition to improving prediction accuracy through fne-tuning 
W2V2B, the integration of DinoV2 features ofers distinct advan-
tages in infant ICEP-R classifcation. Visual inspection of several 
DinoV2 PCA components revealed their efectiveness in capturing 
detailed movement patterns, including the infant’s upper and lower 
motor activities and the caregiver’s presence or absence during 
the still-face phase, as illustrated in 5. Unlike previous studies that 
relied on manual measurements or costly setups like Microsoft 
Kinect [21] to assess distances and correlate them with behavioral 
annotations, DinoV2 inherently encoded these features while also 

preserving the broader context of interactions. This led to an unde-
manding and accessible representation for analyzing and predicting 
caregiver-infant behaviors. 

Furthermore, we explored emerging patterns from the FFSF ses-
sions (Fig 5) by averaging the mean values across four DinoV2 
PCA components. The resulting graph showed higher mean values 
during the mother’s presence, with a notable peak during the 
reunion phase, representing the mother-infant interaction. Con-
versely, the still-face phase exhibited a dip when the mother left 
the scene, capturing mainly the infant’s movement and surround-
ing context. This phenomenon closely resembles Motion Energy 
Analysis (MEA) [33], a tool used for synchrony evaluation that eval-
uates pixel-level movement to understand interaction dynamics 
and synchrony. However, DinoV2 exceeds MEA by ofering more 
contextual data, like capturing the interaction scene’s surroundings 
and handling occlusions more skillfully. The results in the care-
giver ICEP-R prediction tasks further demonstrated how complete 
DinoV2’s feature representation was, which further enhanced our 
predictive modeling. 

The multimodal strategy showed higher performance in the 
infant categorization task, likely due to the dynamic nature of in-
fant behavior. Infants frequently shift between engagement phases, 
making visual signals alone insufcient for accurate classifcation. 
The inclusion of the caregiver’s verbal input provided important 
context, enabling the model to detect patterns that might other-
wise be missed. Additionally, the frequent occlusion of infants by 
caregivers made auditory cues critical for identifying behavioral 
patterns, complementing the visual data, and enhancing classifca-
tion accuracy. 

However, there are notable limitations to this approach. The 
dataset’s uneven distribution of annotations could introduce biases, 
particularly in underrepresented behaviors. Moreover, the distinc-
tiveness and linguistic variation of the audio data, along with lower 
audio quality and the lack of separate channels for infants and care-
givers, may constrain the model’s generalizability across diferent 
behavioral classes. Addressing these challenges will require further 
research and refnement of the data. 

7 Conclusion and Future Work 
In this study, we introduced a novel multimodal approach that in-
tegrates auditory and visual cues to automate the annotation of 
ICEP-R, focusing on capturing the diverse and subtle behaviors 
between infants and caregivers. By leveraging bi-LSTM temporal 
modeling alongside advanced self-supervised foundational models, 
we moved beyond simple binary classifcations to provide a more 
nuanced analysis of these interactions. The use of DinoV2 features 
ofered detailed insights, and our multimodal strategy improved 
classifcation accuracy, particularly in handling the dynamic nature 
of infant behaviors. Despite challenges such as audio quality, lin-
guistic diversity, and data imbalance, our fndings demonstrate that 
this approach is efective in predicting ICEP-R annotations. 

For future work, we plan to fne-tune audio foundational models 
specifcally for infant-caregiver sessions and work towards separat-
ing audio activities for each role. Given our observation that feature 
embeddings with temporal information tend to perform better with 
simpler linear classifers, we aim to incorporate state-of-the-art 
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video foundational models, such as V-JEPA, instead of image-based 
models, to extract feature embeddings from the sessions. 
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A Appendix: Evaluation Method 
To evaluate the performance of predictive models on the ICEP-R an-
notation task, we employed a two-pronged approach, starting with 
the exploration of a linear classifcation model and subsequently 
extending our analysis to a more complex bi-LSTM model. 

A.1 Linear Classifcation Model 
The architecture of the model comprises several fully connected 
layers: an initial layer with 512 units, followed by layers with 256 
and 128 units, respectively. Each layer is followed by a GELU acti-
vation function and dropout regularization to prevent overftting. 
The fnal output layer maps the 128-dimensional feature space to 
the number of target classes. 

(a) Caregiver with (b) Caregiver with Di- (c) Caregiver with 
Both Features noV2 Features W2VB2 Features 

Figure 6: Evaluation of recall, precision, accuracy, and F1 
(weighted and unweighted) for diferent feature sets. 

A.2 bidirectional LSTM Architecture 
The bi-LSTM classifer was trained and evaluated using a nested 
cross-validation approach combined with hyperparameter optimiza-

tion. In this methodology, the dataset was frst split into outer folds 
used for training and fnal evaluation, ensuring that the model’s 
generalization capabilities were assessed across diferent subsets 
of the data. Within each outer fold, further cross-validation was 
performed on inner folds to fne-tune hyperparameters. This inner 
loop was critical for optimizing parameters such as window size, 
stride size, batch size, and the choice of optimizer, which included 
Adam and SGD, as well as learning rates. 

The window size and stride size were particularly important, 
as they controlled the length of the input feature sequences and 
the degree of overlap between consecutive windows, respectively. 
These parameters directly infuenced the model’s ability to capture 
temporal context while balancing computational load. Batch size 
was another crucial factor, afecting both memory usage during 
training and the stability of gradient estimation. Finally, the choice 
of optimizer and learning rate signifcantly impacted the model’s 
convergence and overall performance. 

The outer folds were used to assess the model’s generalization 
across various data subsets, ensuring that the model was not overft-
ting to any particular portion of the dataset. This rigorous approach 
provided a comprehensive evaluation of the model’s performance. 

A.3 Hyperparameter tuning for bi-LSTM 
We employed a nested cross-validation strategy to evaluate the per-
formance of diferent machine learning models for infant and care-
giver mico-behavior, considering models with video-only, audio-
only, and combined modalities. The outer cross-validation loop 
partitioned the dataset into training and testing subsets to ensure 
unbiased performance estimation. An inner cross-validation loop 
within each training subset optimized key hyperparameters such 
as window size, stride size, batch size, and optimizers. 

During the hyperparameter tuning phase, smaller window sizes 
of 25 or 50 frames and strides of 25 or 50 were found to be more 
efective than larger sizes of 200 frames (∼8 seconds long discreet 
annotation sampled at 25 fps). The smaller windows, each repre-
senting one second of data at a sampling rate of 25 frames per 
second, provided discrete, non-overlapping segments of data. This 
setup allowed the model to leverage its LSTM architecture to focus 
solely on immediate temporal features without redundancy from 
extensive historical data. 

Moreover, optimal performance was observed with learning rates 
between 0.0001 and 0.00001, in conjunction with the SGD optimizer 
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Algorithm 1 Training and Evaluating the bi-LSTM Classifer 
1: Defne Hyperparameters 
2: WINDOW ← Set of window sizes (e.g., [25, 50, 400]) 
3: STRIDE ← Set of stride sizes (e.g., [25, 50, 400]) 
4: BATCH_SIZES ← Set of batch sizes (e.g., [64, 128, 512]) 
5: OPTIMIZERS ← List of optimizers (e.g., ["Adam", "SGD"]) 
6: HIDDEN_SIZE ← set of lstm hidden layers (e.g., [128, 256, 512]) 
7: LEARNING_RATE ← Set of learning rates (e.g., [0.1e-4, 0.1e-

10]) 
8: K_OUTER ← Number of folds (e.g., [10,20]) 
9: K_INNER ← List of optimizers (e.g., [5,10]) 
10: procedure SeqenceData(Data, Window, Stride) 
11: Load and preprocess data 
12: Apply Sliding Window: 
13: Divide data into sequences using specifed Window size 
14: Move the window over data with specifed Stride 
15: Return grouped sequences with session names 
16: end procedure 
17: procedure NestedCrossValidation(Data, K_OUTER, 

K_INNER) 
18: for each outer fold do 
19: Split Data into TrainOuter and Test 
20: for each inner fold do 
21: Split TrainOuter into TrainInner and Validate 
22: Optimize hyperparameters on Validate 
23: end for 
24: Train model on TrainOuter 
25: Evaluate on Test 
26: Record performance metrics 
27: end for 
28: end procedure 

employing a momentum of 0.9. This learning rate range proved 
stable, aiding in consistent learning without fuctuations in loss. 

Additionally, a weight decay (L1 regularization) of 0.1 efectively 
prevented early overftting, thus maintaining model generalization 
and allowing the early stopping mechanism to activate under ap-
propriate conditions. This confguration not only enhanced model 
performance but also optimized the learning process by balancing 
the exploration of temporal dynamics against the risk of overftting 
on training data. 

B Appendix: Results 
B.1 bidirectional LSTM K-fold Results Box Plots 
The infant multimodal model demonstrated consistent performance 
across all test folds, with a low standard deviation over 20 folds, 
achieving an average F1 score and accuracy of 68% with a 7 standard 
deviation in a 4-class prediction problem. Meanwhile, the caregiver 
dinov2 model achieved an average accuracy of 80% and a precision 
of 87% in a 3-class prediction task. We could observe a higher 
standard deviation due to the unbalance nature of the data. 

(a) Infant with Both Features 

(b) Infant with DinoV2 Features 

(c) Infant with W2VB2 Features 

Figure 7: Evaluation of recall, precision, accuracy, and F1 
(weighted and unweighted) for diferent infant feature sets. 
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