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Abstract—In the domain of Spoken Language Understanding (SLU)
the primary objective is to extract important information from au-
dio commands, like the intent of what a user wants the system
to do and specific entities like locations or numbers. This paper
presents a simple method that integrates intents and entities into a
beam search algorithm, and, in combination with a general-purpose
Speech-to-Text model, enables the creation of customized SLU-decoders
without any additional training. Constructing such decoders is very
fast and only takes a few seconds. It is also completely language-
independent. In comparative assessments across multiple benchmarks,
this method demonstrates comparable performance to several other
SLU strategies, while significantly surpassing them in terms of compu-
tational speed.

Index Terms—spoken language understanding, speech to intent,
offline voice assistant, beam search, ngram and trie decoding

I. INTRODUCTION

When constructing models for Spoken Language Understand-
ing (SLU), there exist two primary approaches: one involves em-
ploying two separate stages, transcribing the spoken command to
text (Speech-to-Text, STT), followed by extracting useful informa-
tion from the transcribed sentence (Natural Language Understand-
ing, NLU). The alternative is using a direct SLU approach that
integrates both stages into a single model. The first approach offers
the advantage of independent training of the two models. The STT-
model can often be used across various domains, while the NLU-
model can be trained to the given task relatively quickly. On the
other hand, the second approach tends to yield higher accuracy,
as it circumvents the issue of errors from the STT transcription
propagating into the NLU module.

Recent NLU or SLU systems commonly rely on neural networks
to extract features. Although these networks achieve high recognition
accuracy, they come with the drawback that their training requires a
substantial amount of time. This work explores an entirely different
approach that eliminates the need for specialized training, enabling
the rapid development of customized SLU models.

It uses a customized beam-search decoding process instead of
neural networks for SLU parsing. The speech recognition part is still
based on a neural network, but this only has to be trained once per
language on general-purpose STT tasks. In this work Conformer [1]
models from NeMo [2] and Scribosermo [3] are used. Those models,
after conversion to tflite and additional quantization, are especially
suitable for running on a RaspberryPi4.

A comparison across various benchmarks demonstrates that this
approach performs competitively with other solutions, while being
significantly faster. The proposed concept is simple and allows the
construction of customized decoder models within a few seconds,
and can decode commands faster than real-time on a RaspberryPi4.

The source-code of the presented method for training-free SLU
parsing, named slungt, as well as the models from Scribosermo, can
be found at: https://gitlab.com/Jaco-Assistant

Some years ago it was common to use Finite State Transduc-
ers (FSTs) for speech recognition tasks [4], [5]. Some works already
explored the usage of FSTs as static language models for parsing
NLU information by adding semantic tags into the FSTs, either from
textual inputs [6], [7] or from speech transcription hypotheses of a
hidden Markov model [8]. In finstreder [9] an approach of embedding
semantic tags into the FSTs was presented, which allowed the usage
of modern speech-to-text neural networks and that outperformed
various other approaches in multiple SLU benchmarks. A different
approach to detect entities was presented by [10], in which weighted
trie structures were used to train classifiers to tag known and unknown
entities. If only a textual speech transcription is required, another
option, that uses the fact that the vocabulary is restricted and words
are normally not combined randomly, would be to use a language
model to score possible token combinations. Two common libraries
are ds-ctcdecoder [11] and pyctcdecode [12]. They both use a beam-
search approach in combination with a KenLM [13] language model.
This work follows some ideas from finstreder, mainly of using a static
SLU decoder instead of a learned one, but implements a beam-search
approach to significantly improve the decoding speed.

II. SENTENCE-PIECE VS CHAR-BASED INPUTS

One of the reasons for developing slungt was based on preceding
experiments with finstreder [9], which evaluated the impact of
different input types on the performance. In the last years most STT
model architectures started to use sentence-piece [14] labels instead
of character-based ones to improve their performance. Basically
sentence-piece labels are a combination of character and sub-word
tokens, like a, ing, tion, z. The tokens are generated by a special
algorithm that iteratively merges frequently occurring sub-word units.
In the end, the most common words are kept as single tokens, but
less common words are split into multiple parts.

The author of [15] found that the improved performance “can be
linked to its compression capacity, that is, the capacity of finding a
set of words such that they are able to cover the sequence with as
few words as possible”. The experiments with finstreder evaluated the
impact of a different word distribution, with the following assump-
tion: “If there are many unknown words, the model needs to combine
them from smaller tokens that weren’t used as much in training,
which should lead to more errors. Choosing the wrong subwords
might affect multiple characters at once, whereas a character-based
model might only switch a single one. For a later following language
model it should be easier to correct errors if the predicted word is
not completely wrong”.



The first experiment was run with the SmartSpeaker bench-
mark [16]. It has the difficulty of containing many artists or music
tracks with uncommon names in the commands, like “play music by
[a boogie wit da hoodie]” or “I’d like to listen to [Kinokoteikoku]”.
As shown in Table I, the character-based model significantly outper-
forms the sentence-piece one in this task. From the differences in the
greedy Word Error Rate (WER) it can be followed that an important
part of this improvement comes from the better correction by the
decoder’s language model. Regarding the SLU accuracy, a command
is considered as correct if the intent and all the slots can be retrieved.

TABLE I: Results on SmartSpeaker dataset.

sentence-piece char-based

Greedy WER 0.176 0.220
Finstreder SLU 0.811 0.879

The character-based Conformer model with 29 output tokens was
trained with Scribosermo, using the 128 token sentence-piece model’s
weights as initialization. An additional deconvolution layer was added
before the output, to reduce the time compression from 1/4 to 1/2,
to prevent information loss from having fewer timesteps than output
characters. Note that if only general-purpose STT tasks are of interest,
the sentence-piece model outperforms the character-based one (for
example: WER on CommonVoice [17]: 9.4% vs 17.7%).

A similar SLU impact was found using a subset of the Barista
benchmark [18], which consists of commands for coffee orders. An
example would be: “i’d like a [medium roast] [large] [mocha] with
[lots of cream] and [a little bit of brown sugar]”. In this case,
the words are rather common. The STT models use the Conformer
architecture again, but this time with the small instead of the large
variant. Two sentence-piece models, one with 128 and one with 1024
output tokens were evaluated. Table II shows that again the character-
based model performs better in this task. The sentence-piece model
with 1024 tokens performs worse than the one with 128 tokens, even
though it has a better general greedy decoding WER.

TABLE II: Accurracy on Barista dataset.

sp-128 sp-1024 cb-29

Finstreder SLU 0.95 0.92 0.98

While the character-based model showed a better performance
in those two benchmarks, this can not be generalized to all sce-
narios, as can be seen later in the Experiments section with the
SmartLights benchmark. In general, across all evaluated benchmarks,
the character-based model performed better in tasks with many rare
words, while the sentence-piece one was slightly better in tasks with
many common words (even though the improvement in this direction
was not as large).

Now the problem is that finstreder with the character-based
inputs is much slower (between 2× to 10×, depending on the task)
than with sentence-piece inputs. The main reason is that the number
of output timesteps of the character-based model is twice as large,
because it can not merge multiple characters into a single token. This
leads to a much larger number of possible paths in the Finite State
Transducer, which increases the decoding time (the search of the
shortest path in the FST graph). In fact, the decoding process was
sometimes so slow that real-time decoding was no longer possible
on a powerful desktop computer, let alone a RaspberryPi4.

III. SLUNGT’S APPROACH

The FST-based approach of finstreder basically builds a graph
of possible outputs and a second input graph of most probable
tokens, using the CTC-token probabilities as transition costs. Then it
combines the two graphs into a single very large graph and searches
for the shortest path in it. The resulting path contains the most
probable transcription of the input audio. While this approach showed
outstanding results in the benchmarks, and is faster than most other
alternative solutions, there is still potential for improvement.

Instead of creating a single large graph and searching for the
best path in it, slungt uses a beam-search approach to find the best
path step by step, separating the problem along the time axis. This
results in a much smaller number of possible paths which are checked,
because bad paths can be discarded earlier. The following sections
show how intent and entity information can be included directly into
the beam-search decoding process.

A. Preparing the inputs

The preparation phase is separated into two different steps. As
only input a json-file following the syntax of Jaco [19] is required:

{
"intents": {
"get-looks": [
"(is a|are) [---](animal) cute"

]
},
"lookups": {
"animal": [
"atlantic stargazer",
"aye aye",
"(hairy frogfish)->striated frogfish"

]
}

}

In the first step, a new text file for each intent is generated from
the json-file, containing all of the intent’s possible example sentences.
Afterward, an n-gram model is created for each intent file using the
KenLM [13] toolkit.

is a (animal) cute
are (animal) cute

In the second step, a vocabulary for each intent is generated,
containing all normal words from the intent sentences as well as the
lookup values. Note that the lookup values are not split into single
words and still contain their entity syntax.

is
a
cute
[atlantic stargazer](animal)
[aye aye](animal)
[hairy frogfish->striated frogfish](animal)

B. Word Trie

In the decoding process, a trie-based data structure is used to
check if a word suggested from the speech-to-text model is part of
the vocabulary. A trie is a tree-like data structure where each node
represents a single character. The root node is empty, and each node
can have multiple children. The children are the next characters of
the word. The last character of a word is marked as a leaf node. See
Figure 1 for an example. To check if a suggestion is valid, the trie
is traversed starting from the root node, following the characters of
the suggestion. If a leaf node is reached with the last character of the
suggestion, the word is valid and complete. If only a non-leaf node
was reached, the suggestion is not complete yet. If a node does not
have a child with the next character of the suggestion, the suggestion
is invalid. In difference to the standard procedure, a leaf node does



not return a single word, but instead a set of word options. These
can include normal words or lookup values or both, if the word is a
lookup value in only some of the intent’s examples.

Fig. 1: Example of a word trie with entities.

C. Decoding

The input of the decoding process is the CTC-token probability
for each timestep from the speech-to-text model. The process starts
with one empty beam per intent. Then for each timestep, the
following steps are executed:

1) For each token with a probability above a threshold, a new beam
is created from each of the previous beams.

2) For each new beam the new token is added to the beam’s
temporary text.

3) All beams with the same content are merged.
4) Each temporary text is evaluated with the word trie.
5) If a new word is found, it is scored with the intent’s n-gram

model and added to the beam’s transcription. Entity values are
scored as their entity type.

6) The number of beams is pruned to the maximum beam-size,
keeping only the best ones.

At the end of the decoding process, unfinished beams are penal-
ized. The beams are sorted again and then returned. The one with the
highest score is considered as the final result. The intent was already
stored as an attribute while creating the initial beams, and the slots
are extracted from the beam’s transcription.

In step (4) a beam’s temporary text is evaluated by the trie. If it is
not complete yet, nothing happens. If it is not valid, a penalty is added
to the beam’s score, and if it contains a space, the invalid word is
added to the beam’s transcription. If it is valid, a new beam is created
for each word option returned by the trie. If it also has children, the
current beam is kept as well, else it is dropped. Since this step can
duplicate beams that might get the same content in a following step,
a beam-id is added to each beam to prevent wrong score calculation
in the merging step. In the case sentence-piece tokens are used,
the trie evaluation process needs to include some extra steps, which
can be found in the source-code. This is because new tokens might
contain multiple spaces, similar to the vocabulary, and therefore new
suggested words can not simply be split by spaces, what would be
the approach with a standard word trie without tagging.

IV. EXPERIMENTS

The performance of slungt was evaluated in multiple benchmarks,
following the same procedure as in finstreder [9] and using the same
Conformer model as well. Some of the experiments with finstreder
were repeated with improved decoder parameters. A command is
considered as correct if the intent and all the slots can be retrieved.

A. Spoken Language Understanding
The Barista benchmark was published by Picovoice [18] and

consists of 620 commands of people ordering coffee in English. The
audio is mixed with different volume levels of background noise from
cafe and kitchen environments. The results in Figure 2 show that
slungt shows a slightly better performance than finstreder across all
noise levels. In both approaches, sentence-piece (sp) tokens resulted
in better accuracy at high noise levels, whereas character-based (cb)
ones were better at low noise levels.

Fig. 2: Coffee orders with noisy backgrounds. The results of Di-
alogFlow, Watson, Luis and Rhino have been taken from [18], the
results of Alexa and Jaco from [19], those of Finstreder from [9].

The SmartLights benchmark from Snips [16] tests the capability
of controlling lights in different rooms. It consists of 1660 requests
which are split into five partitions for a 5-fold evaluation. A sample
command could be: “please change the [bedroom] lights to [red]”
or “i’d like the [living room] lights to be at [twelve] percent”. The
benchmark results are presented in Table III. The performance of
slungt is again on par with finstreder, and outperforms all other
approaches. The Real Time Factor (decoding-time / audio-duration)
is measured on a desktop computer with an AMD-3700X CPU, no
GPU, in an end-to-end (audio-to-intent) manner. Due to the optimized
decoding approach slungt is multiple times faster than finstreder,
especially when comparing the character-based variants.

TABLE III: Results on SmartLights dataset.

Accuracy WER RTF

Snips [16] 0.842 − −
Alexa [19] 0.792 − −
Houndify [19] 0.545 0.108 −
Jaco [19] 0.854 0.108 −
AT-AT [20] 0.849 − −
Finstreder (Conformer sp) 0.902 0.075 0.283
Finstreder (Conformer cb) 0.899 0.062 0.597
Slungt (Conformer sp) 0.893 0.051 0.062
Slungt (Conformer cb) 0.880 0.062 0.063

The SmartSpeaker benchmark tests the performance of reacting
to music player commands in English as well as in French. The
benchmark is from Snips [16], too, and is the only one that could
be found that includes a language other than English. As found in
chapter II, the character-based model significantly outperforms the



sentence-piece one, with slungt as well. One reason why slungt does
not completely match finstreder, is that the latter is able to correct
errors early in the name, if the complete match gets better at the end,
whereas slungt might have already pruned such a beam.

TABLE IV: Accurracy on SmartSpeaker dataset.

English French

Snips [16] 0.687 0.751
Jaco [19] 0.627 0.480
Alexa [19] 0.455 0.889
Finstreder (sp / cb) 0.811 / 0.879 0.806 / 0.865
Slungt (sp / cb) 0.791 / 0.847 0.778 / 0.868

FluentSpeechCommands [21] is the most commonly used bench-
mark in this domain and tests simple voice assistant requests. It
includes commands like “turn up the [bathroom] temperature”,
“switch the lights on” or “go get me my [shoes]”. Table V shows
that slungt has a similar performance like other approaches, and
falls slightly behind finstreder here, as it can not force match the
input tokens to command options. But if using the more accurate
token probabilities from the AMT model ( [9], finetuned with training
audios, for around 3h on one Nvidia-1080Ti), the difference gets very
small.

TABLE V: Accuracy on FSC dataset.

Alexa [9] 0.987
Cao et al. [22], Radfar et al. [23], Benazir et al. [24] 0.990
Slungt (sp / cb) 0.983 / 0.992
Reptile [25], CMMC [26] 0.992
AT-AT [20] 0.995
Finstreder (sp / cb) [9] 0.995 / 0.994
Seo et al. [27], Qian et al. [28], Kim et al. [29] 0.997
Slungt (cb) + AMT 0.997
UniverSLU [30] 0.998
Finstreder (cb) + AMT [9] 0.998

B. Textual inputs

Similar to finstreder, the decoding approach of slungt can also be
used for NLU parsing of textual inputs. For this the textual input
is converted to CTC-labels, by assigning a very high probability
around 0.99 to the actual character and the other characters get a
very low probability around 0.001. Same as finstreder, it outperforms
traditional approaches on very simple datasets, but falls behind if the
datasets are more complex.

TABLE VI: NLU only, tested with textual inputs.

SmartSpeaker SmartLights
Accuracy WER Accuracy WER

Jaco (Rasa) [9] 0.977 − 0.960 −
Finstreder 0.991 0.133 0.909 0.051
Slungt 0.998 0.0 0.902 0.027

C. Standard textual beam-search

It is also possible to use slungt for plain text decoding, without
intent and entity tagging. In this experiment two language model
types are tested, one 5-gram model that is customized to the
SmartLights domain and only contains words from the benchmark
(created with tools from the first version of Jaco [19]), and the other
is a large 3-gram general model (from LibriSpeech [31], [32]). In
comparison to ds-ctcdecoder [11] the accuracy is similar, while slungt
is only a bit slower (RTF measured tokens-to-text only). One reason

is that ds-ctcdecoder does not support sentence-piece tokens and
can therefore include additional optimizations. Another is that slungt
needs more logic for intent and entity handling. The implementation
of pyctcdecode [12] is a bit faster, but also has more transcription
errors. As a baseline, the greedy WER of the STT-model on this
subset is 12.2%.

TABLE VII: STT only, using different language models.

SmartLights domain general
WER RTF WER RTF

ds-ctcdecoder 0.054 0.002 0.102 0.003
pyctcdecode 0.072 0.001 0.134 0.002
slungt 0.052 0.002 0.103 0.004

D. Limitations
The approach of slungt has similar limitations as finstreder, but

there exists a simpler workaround. In general, it does not work well
with open questions or commands and currently can only recognize
predefined lookup values. One option to improve this would be to add
a default fallback intent with a large vocabulary for general speech-
to-text tasks (like the 3-gram model from before), and then send the
textual transcriptions to an online service for further processing (if
self-hosting a Large Language Model is not possible), if no other
intent was matched. In this way a smart home assistant could, for
example, have some skills for controlling lights or music, and if the
user has a more complicated question like “where on earth has the
most volcanos?”, the assistant could catch the fallback intent and
ask a cloud service for the answer. This would still preserve most
of the user’s privacy since the audio recording is not sent to some
cloud provider. The second benefit of such an approach is that, for
the more important local skills, the assistant keeps its high accuracy
and low latency.

V. DISCUSSION AND CONCLUSION

In this paper, a simple, fast, and language-independent method for
direct Spoken Language Understanding without training is presented
under the name of slungt. For this, a beam-search concept is extended
to the task of intent and entity extraction. In multiple benchmarks a
performance on par with current state-of-the-art algorithms could be
achieved.

Similar to finstreder, the main advantage over other approaches
is that no extra training of the SLU model is required, with the
difference that the decoding process of slungt is much faster. For
the initialization of the decoder only text files describing possible
requests are needed, which are easy to create, adjust, and share. In
most voice assistants like Jaco, Alexa, or others, such text files (in
slightly differing formats) are already included in the skills.

The preprocessing step of slungt is very fast and takes only a few
seconds. The implementation is done in C++ which simplifies using
it on edge devices or smartphones. Using SWIG a Python wrapper was
created as well. In comparison to finstreder, the compilation process
is much faster and less resource-demanding, and now works directly
using the shared runners in the GitlabCI pipeline. Similar to fin-
streder, the decoding process of slungt runs faster than real-time on a
RaspberryPi4 (SmartLights results with tflite-sp: 0.882|0.066|0.460).
It now also supports a streamed input to reduce latency even further.

The proposed method is particularly suited for scenarios with
personalized domains, frequent skill changes, small datasets, or lim-
ited training options. For instance, it is useful in customizable smart
home assistants on edge devices or smartphones, where avoiding
cloud services is preferred because of unstable internet connections
or privacy reasons.
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