
Universität Augsburg

Synchronous Parallelism in the Asbru

Language

S. Bäumler, M. Balser, W. Reif, J. Schmitt

Report 2008-11 December 2008

Institut für Informatik

D-86135 Augsburg

Copyright c© S. Bäumler, M. Balser, W. Reif, J. Schmitt
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

1 INTRODUCTION

Abstract

In this paper we present a flexible mechanism for symbolic execution of syn-
chronous parallel programs. The synchronous parallel operator we use allows
for techniques like modular reasoning and abstraction of single components.
Furthermore, symbolic execution provides intuitive proofs. The operator is in-
cluded into the interactive higher order theorem prover KIV. We show how to
apply our approach using the Asbru medical planning language as an example.
This language decomposes medical treatments into many components, which
are then executed synchronous parallel.

This work is a joint work that has been partially funded by the DFG program
INOPSYS II, under contract number Re 828/6-3 and the European Commis-
sion’s IST program Protocure II, under contract number IST-FP6-508794.

1 Introduction

Medical guidelines provide the clinical staff with health care recommendations
that are based on valid and actual empirical evidence. They are given in form of
“systematically developed statements to assists practitioners and patient deci-
sions about appropriate health care for specific circumstances” [1]. In [2] it has
been shown that the adherence to guidelines in clinical practice may increase
the quality of health care significantly. [3] shows a reduction in treatment costs
by using guidelines.

Recent research efforts have applied software verification methods on medical
guidelines, in order to increase their quality [4, 5]. These methods help to find
ambiguous, incomplete or even inconsistent passages in the natural language
guideline documents by stepwise modelling it into a representation with a for-
mal semantics. One of these approaches to apply software verification methods
to clinical guidelines was devised in the Protocure project [6]. The underlying
idea of this approach is that clinical guidelines can be interpreted as parallel
programs. To represent guidelines in a program-like notation we have chosen
the language Asbru [7]. So far we have successfully applied the classical verifica-
tion methods for parallel programs, interactive theorem proving [8] and model
checking [9], on Asbru case studies. So far we have dealt with the following
case studies: Diabetes mellitus type 2 [10], Jaundice in otherwise healthy new-
borns [11] and the treatment of breast cancer [12]. All these case studies were
initially supplied as natural language texts, then formalized to Asbru models.
Formal verification has been applied to these models.

One particular difficulty when dealing with Asbru plans is that typically there
are many components which are executed synchronous parallel. For example,
in our breast cancer case study we had to deal with up to 49 sub-plans running
in parallel and each of these sub-plans increases the complexity of verification.

A common technique for verification of parallel systems is the rely-guarantee

1 of 16

2 ASBRU CASE STUDY

paradigm. It was introduced by Misra & Chandi [13] and by Jones [14]. The
underlying idea of this paradigm is that each parallel component guarantees a
certain behavior, if its assumptions (the rely) are met by its environment. The
key advantage of this technique is, that most of the reasoning is made on single
components, not on the complete system and thereby the complexity of the
overall proof can be reduced significantly.

In [15] an ITL-based logic with calculus is presented that allows symbolic execu-
tion. This calculus was integrated into the interactive theorem prover KIV [16].

Achievements of this Paper are as follows: I: We present a flexible synchronous

parallel operator, which is capable of dealing with clashes and also is composi-

tional. II: We present a modularity theorem which exploits the compositionality

of this operator and allows to use the rely-guarantee proof technique. III: We

apply this proof technique to the verification of the medical planning language

Asbru.

The paper is structured as follows. We first give an introduction of Asbru, the
language we use for describing clinical guidelines in Section 2. In Sect. 3 we give
an overview of the temporal logic framework we use while Sect. 4 describes the
semantics of the parallel operator. Section 5 describes the modularization theo-
rem we used to apply the rely-guarantee reasoning and we show its application
in Section 6. The paper concludes with Sect. 7 where we also discuss related
work.

2 Asbru Case Study

Asbru is a hierarchical planning language, especially suited for modeling medical
treatments [17]. To model medical treatments Asbru uses the concept of a plans.
These plans are organized in a hierarchy where sub-plans represent details of
the medical intervention the super-plan describes.

In this paper the breast cancer case study [12] serves as an example. To demon-
strate our technique, we take a small excerpt of this case study, concerned with
the treatment of a certain stage of the disease called DCIS. Part of the treat-
ment of this disease is the treatment of axilla lymph nodes, which is modeled
as a hierarchy of Asbru plans.

The top level plan is named dwa. The treatment consists in one of four possible
sub-treatments, which are the so called sentinel node procedure, represented by
plan asbSN, a complete removal of all axilla nodes, represented by plan cand,
the option to leave the patient untreated, which is represented by plan gppse

and finally a more sophisticated treatment including not only surgical removal
of the lymph nodes but also radiotherapy. This is represented by plan toan.
This hierarchy is presented in Figure 1.

A super-plan controls the execution of the sub-plans by sending signals. This
communication as well as the semantics of the execution have been defined

2 of 16

2.1 Verification of Asbru 2 ASBRU CASE STUDY

dwa

cand gppseasbSN toan

SNpi praoa and

andp epanpfpc irt

Figure 1: Relevant hierarchy for property 20

Inactive

S : satisfied(setup) and Activated(parent)

RS : not satisfiable(setup) or Terminated(parent)

RF : not satisfiable(filter) or Terminated(parent)

Su : satisfied(suspend)

Re : satisfied(resume)

C : satisfied(complete)

A : satisfied(abort) or Terminated(parent)

F : satisfied(filter) and Activated(parent)

Completed AbortedRejected

RS
Possible

S E
Ready

F
Considered

Selection

RF

SC

Plan_Control

Suspended
Execution

Su Re

Activated

..._Control
<Plan Body>

RA

Terminated

C AR

Figure 2: Schematics of parallel execution

in [18]. Core element of this definition is the specification of the dynamic
behavior of Asbru using statecharts [19]. The main statechart is depicted in
Figure 2.

In this statechart it can be seen that the execution of an Asbru-plan is divided
in four different state-groups. Initially the plan is inactive. Upon receiving a
signal SC sent from the super-plan the plan enters the selection phase. There
the applicability of the plan is determined by conditions named filter- and setup-
condition (F and S). These conditions describe circumstances that have to be
valid for a plan to proceed in its execution. For example, a plan may only be
applicable if the patient is male or has had high blood pressure for at least four
hours. If the conditions are satisfied, the guards F and S become true and the
plan advances to state ready. If either of the conditions is not satisfiable, the
plan changes its state to rejected via the RF or RS transitions. In state ready a
plan expects the signal E sent by its super plan. If this signal is received, control
advances to the execution phase, where the sub-plans of the plan are started.
Execution in the execution phase is also controlled by conditions, which control
the guards Su, Re, C and A.

2.1 Verification of Asbru

With the specification of the semantics of the Asbru plan state transition model,
the most important step towards formal verification of Asbru has been taken.
For tool supported verification, it is necessary to embed Asbru into a specifica-
tion language understood by a verification tool. We opted to embed Asbru in

3 of 16

3 SEMANTICS OF ITL+

satisfied(F)

not satisfied(F)

rejected

considered possible

not satisfiable(F)

satisfiable(F) and

(a) Asbru semantics

considered#(plan; var AS)
begin

if plan-not-filter(plan, AS) then

AS[plan] := rejected

else if plan-filter(plan, AS) then

AS[plan] := possible;
possible#(plan; AS)

else

AS[plan] := considered;
considered#(plan; AS)

end

(b) KIV implementation

Figure 3: Dynamic behavior of Asbru

the interactive theorem prover KIV using parallel programs.

The statechart semantics definition serves as a foundation for this implemen-
tation, and it is possible to keep the implementation very close to these state
charts. An example for this is Figure 3(b), where the implementation of part of
the semantics shown in Fig. 3(a) is given. The variable AS is of type asbru-store.
asbru-store variables save the plan-states of all plans in one dynamic function.
Hence the term AS[plan] selects the plan-state of the plan plan.

Semantics specify, that once a plan reaches the state of considered, a case dis-
tinction is made, where the three possible cases are, that the filter condition of
the plan is currently satisfied, it is not satisfied right now, but could be satisfied
in the future and lastly, the filter condition is not satisfied and also can not be
satisfied in the future. Dependent on this decision, control either advances to
state possible, remains in state considered or aborts the execution by changing
the state to rejected. This is followed by the program given in Figure 3(b). There
the predicate plan-not-filter corresponds to the fact, that the filter condition is
not satisfied and will stay so forever. The predicate plan-filter expresses the
fact, that the filter condition is satisfied right now. In this paper we concentrate
on showing how our synchronous parallel mechanism works and how the rely
guarantee technique can be applied. Details of the Asbru verification in KIV in
general are shown in [20].

3 Semantics of ITL+

In this section we give an informal overview over the temporal logic calculus we
use. The calculus is integrated into KIV. The logical formalism is described in
detail by Balser [15]. The temporal logic framework is a variant of ITL [21, 22]
that is extended by explicitly including the behavior of the environment into
each step. The basis for ITL are finite or infinite sequences π of valuations, which

4 of 16

3 SEMANTICS OF ITL+

X’’X’X’’X’X

System System

ITL+−Step

Environment Environment

Figure 4: Interleaving of system and environment steps

are called intervals. Valuations in π are called states. Each state is described
by a first-order predicate logic formula over dynamic variables V , which also
can be primed V ′ or double primed V ′′. The relation between V and V ′ is
called system transition, whereas the relation between V ′ and V ′′ environment

transition. The value of V ′′ in a state must be equal to the value of V in the
next successive state. Thereby system and environment transitions alternate
(see Fig. 4). Constant variables are written in small letters. A small selection
of temporal operators supported by KIV are:

2ϕ ϕ holds always from now on in every state
ϕunlessψ either ϕ holds always from now on in every state

or ψ holds in any state and ϕ holds in every state before
X := t assignment
ϕ1;ϕ2 sequential composition

ifψthenϕ1elseϕ2 case distinction
whileψ doϕ loop

As shown, our ITL variant supports classic temporal logic operators as well
as program operators. This allows us to mix programs with temporal logic
formulas. Program operators describe only system steps that alternate with
arbitrary environment steps.

A typical sequent in proofs about programs has the form P,A,Γ ⊢ ∆. P is
the interleaved program that executes the system steps, A contains a temporal
formula that describes behavior of the environment and Γ is a first order formula
for the current variable assignment, while ∆ contains the property which has
to be shown. To verify that ∆ holds in this sequent it must be shown that the
current state Γ does not violate ∆ and that the rest of the program run of P
does not violate ∆ either. To show the second part, symbolic execution is used.

For example, a sequent of the form mentioned above might look like this:

M := M + 1;P ′, 2 M ′ = M ′′,M = 2 ⊢ 2 M > 0

The program executed is M := M + 1;P ′ (here, P ′ is a placeholder for the
remaining SPL program) and the environment is assumed not to change M
(formula 2 M ′ = M ′′). As the current state M = 2 does not violate 2 M > 0,
a symbolic execution step is used to show that the rest of the program does not
violate that formula too. The intuitive idea of a symbolic execution step is to

5 of 16

4 SYNCHRONOUS PARALLEL EXECUTION

I
′

1
‖sI

′

2
I1‖sI2

σ, σ
′

σ2, σ
′

2
I
′

2
I2

σ1 = σ σ
′

1

?
⇒ σ

′

I
′

1I1

σ1, σ
′

1

σ
′

2

?
⇒ σ

′
σ2 = σ

Figure 5: Schematics of parallel execution

execute the first program statement, i.e. applying the changes on the current
state and to discard the first statement. So for the example above, a symbolic
execution step would lead to the following formula:

P ′, 2 M ′ = M ′′,M = 3 ⊢ 2 M > 0

Of course, the environment assumption has to be considered too, but it simply
leavesM unchanged in this example. To show that the sequent is valid, symbolic
execution of the remaining program P ′ must be continued until P ′ terminates or
induction can be applied. More complex formulas in the succedent might change
during the step too (e.g. if the formula in the succedent is a program too, it has
to be symbolically executed like the example program in the antecedent).

The basic idea to prove safety properties is to advance in the interval until a
valuation that was considered earlier in the interval is reached. In this case a
loop was executed. If we can prove that the property is true before and during
the loop so it is invariant, then the proof can be finished with an inductive
argument.

4 Synchronous Parallel Execution

The semantics of Asbru is defined as the synchronous parallel execution of all
running plans. One task implementing Asbru in ITL+ was therefore defining a
synchronous parallel execution mechanism to be embedded in ITL+.

The main issue for the definition of synchronous parallel execution is how to deal
with multiple updates to the same variable. In Fig. 5 this has been visualized.
Assuming the initial state is designated σ and the system description is I1‖sI2,
it has to be defined what the resulting state of the execution of this system,
σ′, is. With the principle of recursion and the definition of the execution of
sequential programs, the state changes caused by the individual I1 and I2 can
be assumed to be given.

In the case where two processes assign values to different variables, synchronous
execution simply executes both assignments. E.g. for the following program

M := 1;α‖sN := 2;β

the resulting state for the variables should be M’ = 1 and N’ = 2.

6 of 16

4.1 Properties of the Synchronous Parallel Operator4 SYNCHRONOUS PARALLEL EXECUTION

However, symbolic execution of a synchronous system gets more difficult when
clashes occur, i.e. different processes write to the same variable within the same
step. A mechanism has to be found how to solve these conflicts and how to
describe the resulting state. To complicate matters, different behaviors might be
relevant in different case studies. Certain case studies might require such parallel
assignments to lead to indeterministic results. Other case studies might require
the result to be indeterministically chosen from the two assignments made. And
again, other case studies might require a completely different behavior.

To accommodate all these different requirements, it is impossible to specify
the resolution of clashes on the level of the implementation of the synchronous
parallel execution operator. Instead, the handling of clashes in KIV can be
specified on case study level. For this, a predicate sync is used for every data
type type in the implementation with the following syntax:

sync : type × type × type × type 7→ bool

This predicate is left unspecified at the implementation level but has to be
specified at a case study level. This way, it is possible to formulate all of the
above mentioned ways of dealing with concurrent assignments, even different
ways for different data types in the same case study.

So e.g. the sequent

N := 1;α‖sN := 2;β, N = 0, 2 N ′′ = N ′, Γ ⊢ ∆

where both processes write on variable N leads to the following sequent after a
symbolic execution step

α‖sβ, sync(0, 1, 2, n), N = n,2 N ′′ = N ′, Γ ⊢ ∆

The value of N after this clash depends entirely on the definition of the sync-
predicate. The first parameter of the sync-predicate contains the value before
the step, while the second and third parameter represent the values assigned
by the left and right process. The forth parameter contains the value to N be
assigned to the variable after execution.

4.1 Properties of the Synchronous Parallel Operator

Commutativity and associativity of the ‖s operator depend on the definition
of the sync-predicate. Two properties may be used to test, whether the sync-
predicate is associative and commutative:

sync(a, b, c, d) ∧ sync(a, c, b, e) → d = e
sync(a, b, c, e) ∧ sync(a, e, d, f) ∧ sync(a, b, g, h) ∧ sync(a, c, d, g) → h = f

If the first property holds for sync, the ‖s operator is commutative, while the
second property must hold for associativity. All sync-predicates we use in this
paper satisfy both properties, therefore we can use associativity and commuta-
tivity for the ‖s operator.

7 of 16

4.2 Dealing with Clashes in Asbru 5 MODULARIZATION THEOREM

Furthermore, the synchronous parallel operator we use is compositional, i.e. the
following rule can be used

⊢ ϕ1 → ϕ2 ϕ2‖sψ, Γ ⊢ ∆

ϕ1‖sψ, Γ ⊢ ∆
(comp)

With this rule we are able to replace a component ϕ1 with a more abstract
component ϕ2, if ϕ1 → ϕ2 holds. A similar rule can be constructed for replacing
the sub-formula ψ. We use this rule for abstraction of subcomponents as well
as for applying the modularization theorem.

4.2 Dealing with Clashes in Asbru

The most important data structure in the Asbru case study is a dynamic func-
tion, mapping plan-names to plan-states. Every Asbru plan, which is active,
updates this function every step with its current plan-state. These updates con-
stitute concurrent write access to this dynamic function. As every place of the
dynamic function is only updated once every step, the clashes can be resolved.

The dynamic function is defined as follows:

asbru-state : plan-name 7→ plan-state

For this data-structure, the syntax and semantics of the sync-predicate have to
be defined. The syntax is given by the following definition:

sync : asbru-state ×asbru-state ×asbru-state ×asbru-state 7→bool

The semantics is defined by the following equation, assuming that as, as0, as1,
as2 are all of type asbru-state:

sync(as, as1, as2, as0) ↔ ∀ a. as[a] = as1[a] ∧ as2[a] = as0[a]
∨as0[a] = as1[a] ∧ as2[a] = as[a]
∨as1[a] = as2[a] ∧ as2[a] = as0[a];

The first conjunct of the right hand side handles the case where first process
did not change the value of as[a], therefore the value as2[a], assigned by the
second process, is used as the value of the resulting as0[a]. The second conjunct
is analogous, only with both processes swapped. The last conjunct handles the
case if both processes assign the same value, which is taken as new value then.
All other possibilities of assignment are considered invalid and lead to a clash.

5 Modularization Theorem

A popular technique for verification of parallel components is the rely-guarantee
(R/G) paradigm.

To show that a system fulfills a global guarantee the parallel system is de-
composed into its components. For each of these component a suitable local

8 of 16

5 MODULARIZATION THEOREM

R holds R violated

X’’X’X’’X’X

R

GG

¬ R

Figure 6: Example for Rely/Guarantees

guarantee and a rely must be specified. The component is obliged not to violate
this guarantee as long as the environment, which is generally made of the other
components, does not violate the rely. Finally, it must be shown that the global
guarantee follows from the local guarantees and that no local guarantee violates
the rely of any other component. Usually it is very difficult to come up with
the exact proof obligations to show all these properties, therefore often a mod-
ularization theorem is used, that gives all proof obligations needed to establish
the global guarantee and all local assumptions.

One of the difficulties of modularization is to avoid circularity. For this, Lamport
[23] has proposed the

+

→ operator. The informal semantics of a formula R
+

→ G

is, that a guarantee G has to hold one step longer then the rely R.

We specify assumptions and guarantees with predicates. These define a relation
between primed and unprimed versions of the variables. This approach is similar
to e.g. the formalization of rely/guarantees in [24]. This allows us to use the

ITL unless operator as substitution for the
+

→ operator, i.e.

R(V ′, V ′′)
+

→ G(V, V ′) := G(V, V ′) unless (G(V, V ′) ∧ ¬ R(V ′, V ′′))

This formula states that G must hold in all steps before R is violated for the
first time. The occurrence of G on the right hand of the unless operator is
necessary, as system steps come before environment steps (see Fig. 5).

This operator allows us to construct the following modularization rule:

sync(n, n1, n2, n3), G1(n, n1), G2(n, n2) ⊢ G(n, n3) (1)
sync(n, n1, n2, n3), R(n3, n4), G1(n, n1), G2(n, n2)

⊢ R1(n1, n4) ∧ R2(n2, n4) (2)
G1(n, n1) ∨ G2(n, n1) ⊢ G(n, n1) (3)

R1(N
′, N ′′)

+

→ G1(N,N
′) ||S R2(N

′, N ′′)
+

→ G2(N,N
′)

⊢ R(N ′, N ′′)
+

→ G(N,N ′)

In the first premise, it is shown that both guarantees G1 and G2 preserve the
overall guarantee G. The second premise shows, that R1 and R2 are preserved
by both guarantees. The last premise is necessary for the case when one process
terminates. Here it is shown that both single premises preserve G.

This theorem was proven in KIV by symbolic executing of the conclusion, while
the three premises were assumed as lemmas. After the first step, three cases

9 of 16

6 APPLICATION

occur. In the first two cases, either the left or the right component has termi-
nated. Both cases could be resolved by using the third premise and induction
after an additional step. In the third case, both components are still running.
Premise (1) and (2) of the theorem can be used to show that G, R1 and R2 still
hold and the branch can be close by induction.

6 Application

In the Asbru case study we are using the techniques described above for the
verification of medical guidelines. The breast cancer case study consists of
almost 50 plans, which is a size, which cannot be handled with simple symbolic
execution alone. The solution is to use rely guarantee properties for some of
the plans to contain the indeterminism of these plans. With the composition
theorem it is then possible to combine these abstractions. In this section we
will illustrate our approach on an example from the breast cancer guideline.

For this we are looking at a medically relevant property, designated as prop-
erty 20. This property states, that a radiotherapy to the chest wall is unwanted
in breast cancer patients which had their axilla nodes removed surgically. To
formalize this property, it has to be linked to the breast-cancer case-study first.
Examination of the case-study reveals that both the radiotherapy to the chest
wall and the removal of the axilla nodes can be located in a subsection of the
case-study. This subsection has already been presented in Figure 1 and ex-
plained in Section 2. The Asbru-plan designated cand in the figure corresponds
to a removal of the axilla nodes. The second interesting plan is designated
praoa in the figure. This plan describes the administration of radiotherapy to
the axilla.

The medical property can be formalized, such that plan praoa must not be
started once the plan cand has been started. Next, it is necessary to find
abstractions for all plans in that hierarchy, such that the overall properties can
be verified using these abstractions. In this paper we will present ideas for all
the sub-properties required for the verification, however, we will only describe
the most important sub-property and its verification obligations in detail.

The top-level plan of this subsection of the guideline is specified such that only
one of its sub-plans is activated at a time. The plan to be activated is chosen
in an arbitrary order. Therefore, it is impossible, that plan cand and plan toan

are activated at the same time. With plan toan being the super-plan of plan
praoa it follows, that plan cand and plan praoa cannot be activated at the same
time. This result is independent of all the other plans in the hierarchy.

In a next step, it has to be evaluated if both plans can be activated one after the
other. This is also impossible. Plan dwa activates its sub-plans one after another
until one of the sub-plans reaches the completed state. With one completed
sub-plan, plan dwa terminates itself. The structure of the plan cand implies,
that this plan will eventually complete, once it has been activated. Similarly

10 of 16

6 APPLICATION

the toan plan can only complete once it is activated. Therefore if one of the
relevant plans is activated, it follows, that the other plan will not be activated
subsequently.

This implies that the behavior of all the other plans of this hierarchy is com-
pletely unimportant with respect to the correctness of the property 20. However
this is only partially true. Although the sub-plans of the top-level plan dwa are
activated sequentially, the representing plan procedures are still all executed in
parallel. If their behavior is abstracted to be completely arbitrary it cannot be
ruled out that their updates to the global state results in clashes, as described
in Section 4. For all these plans it has to be verified that their updates to the
global state are non-conflicting with the updates of other plans.

Next is the formulation of the properties for the plans cand and toan (as the
super-plan of praoa). The relevant behavior of the cand plan is that it gets
activated only when the super-plan dwa sends the activation signal. Apart from
that the plan will always complete and may not be aborted or rejected. An
exception here is the case, when the super-plan dwa itself terminates, in which
case cand might also get rejected or aborted. Also it is necessary to formalize
that the plan will not leave the completed state once it completes.

Gcand ≡
(AS[‘cand’] 6=aborted ∧ AS[‘cand’] 6=rejected ∧ ¬ terminatedP(AS[dwa])
→ AS’[‘cand’] 6=aborted ∧ AS’[‘cand’] 6=rejected)

∧ (AS[‘cand’] = completed → AS’[‘cand’] = completed)
∧ (evaluatedP(AS[‘cand’]) ∧ ¬ PC[‘cand’] → evaluatedP(AS’[‘cand’]))

This has been formalized as in the formula above. This formula describes the
guarantee of the cand plan. The dynamic function storing the plan-states of all
asbru-plans is designated as AS. The selector AS[‘cand’] selects the plan-status
of the cand plan.

First part of this formula states that cand will not change its state to aborted or
rejected as long as plan-state of the super-plan dwa is not terminated. Second
part of the conjunction of this property requires the plan not to change its
plan-state once the completed state has been reached.

The activation signals of the asbru-plans, which are designated as E in Figure 2,
is stored in a dynamic function PC mapping plan-names to boolean variables.
The third and final part of the conjunction of the guarantee requires the plan
to stay in the evaluation phase until the activation signal is received.

For this guarantee to hold, the plan relies on certain behavior of the environ-
ment. For one, the environment is not allowed to change the status of the plan.
As every plan updates its own state this should always be true. The second part
of the rely is, that the super-plan never enters the suspended state. Therefore
the rely is formulated as follows:

Rcand ≡ AS’[‘cand’] = AS”[‘cand’] ∧ AS”[dwa] 6=suspended

11 of 16

6 APPLICATION

With similar reasoning, a property for the toan plan can be found. This is
necessary as the dwa plan has no possibility of directly interacting with the
praoa plan. Instead, dwa influences the execution of the toan plan, which in
turn controls the execution of praoa. Therefore, the guarantee for the toan

plan is formulated as follows:

Gtoan ≡
(AS[‘toan’] 6=rejected ∧ ¬ terminatedP(AS[‘dwa’]) → AS’[‘toan’] 6=rejected)

∧ (AS[‘toan’] 6=aborted ∧ ¬ terminatedP(AS[‘dwa’]) → AS’[‘toan’] 6=aborted)
∧ (AS[‘toan’] = completed → AS’[‘toan’] = completed)
∧ (evaluatedP(AS[‘toan’]) ∧ ¬ PC[‘toan’] → evaluatedP(AS’[‘toan’]))
∧ (evaluatedP(AS[‘toan’]) ∧ AS[‘praoa’] 6=activated → AS’[‘praoa’] 6=activated)

This property mainly consists of the same components as the guarantee of the
cand plan, with the only real difference, that the control of the activation of
praoa is more complex. To cope with this it is simply stated that the plan
praoa may not be activated as long as plan toan is evaluated. The rely of toan,
Rtoan is defined analogous to Rcand

To lift the guarantees from cand and toan the guarantees of both components
have to be strengthened first

G′

cand := Gcand ∧ frame(AS,AS′, subplans(cand))

G′

toan := Gtoan ∧ frame(AS,AS′, subplans(toan))

This strengthening requires cand and toan to restrict their behavior, such that
the plans (and their respective sub-plans) do not change plan-status entries
in the AS variable other than their own, which is formalized with the frame

predicate.

As first step to lift the R/G properties from cand and toan components the
following two properties are shown for these plans

inactive#(‘cand’) ⊢ Rcand

+

→ Gcand (1)

inactive#(‘toan’) ⊢ Rtoan

+

→ Gtoan (2)

For both proofs only a small set of plans have to be considered, which makes it
feasible to do them by symbolic execution. In the next step the modularization
theorem is used to show that the R/G properties of both components can be
combined, i.e.

Rcand

+

→ Gcand ‖s Rtoan

+

→ Gtoan ⊢ Rcand ∧ Rtoan

+

→ G′

cand+toan (3)

where

G′

cand+toan := Gcand ∧ Gtoan ∧ frame(AS,AS′, subplans(cand)+subplans(cand))

The verification of the three predicate proof obligations given by the theorem is
straight forward. As final step we show the overall R/G property for both plans

inactive#(‘cand’) ‖s inactive#(‘toan’) ⊢ Rcand ∧ Rtoan

+

→ G′

cand+toan

12 of 16

7 CONCLUSION AND RELATED WORK

To show this property, compositionality is applied with formulas (1) and (2).
This leads to the same sequent as (3) which was already shown.

This strategy can be applied for all other components up to the top level plan.
By using this strategy the complexity and indeterminism of all sub-plans of toan
and cand plans can be contained in a separate proof. The remaining sub-plans of
the dwa plan can be dealt with using standard abstractions, which are already
predefined. The verification of twelve plans can therefore be reduced to the
verification of one plan and one tl-formula in parallel plus a number of smaller,
much more manageable separate proofs. As the complexity of these proofs
is exponentially in the number of parallel plans, the effort spent verifying all
auxiliary proofs does not add up to the complexity of direct symbolic execution.

7 Conclusion and Related Work

In this paper we suggest a generic solution how to deal with synchronous par-
allel write access to variables which enables the use of dynamic functions as a
common store for several process for data exchange. This is implemented in the
fully compositional ITL+ temporal logic. Compositionality of the synchronous
parallel operator together with a modularization theorem allows us to use of
the well known rely guarantee approach to abstract complex procedures to rel-
atively simple temporal logic formulas. This enables us to deal with hierarchies
up to 50 processes. To show that our approach allows to work with real-world
medical properties and guidelines. we applied this methodology to verify the
correctness of medical guidelines relative to medical properties.

The rely guarantee technique was first introduced in [13] and [14]. An important
work about compositionality is Abadi and Lamport [23]. There, assumptions
and guarantees can be specified as temporal logic formulas. For composition
of components they use the conjunction operator, which allows synchronous as
well as asynchronous execution. One major difference in their work is, that
all formulas have to be specified in a special normal form, while our formalism
allows the direct inclusion of various specification languages, which we use e.g. to
formalize the asbru case-study. Another work about compositionality is by Cau
et al [24]. They use a generic modularization theorem, that can be instantiated
for arbitrary parallel operators fulfilling certain conditions. We believe that
defining a synchronous parallel operator similar to ours in their framework might
lead to a similar theorem. A work that applies compositionality and ITL on real
world applications is Solanki et al [25]. However, their application (semantic web
service descriptions) is quite different to ours, so they are difficult to compare.
There are many other approaches that use the rely guarantee technique. An
overview can be found in e.g. in [26]. To our knowledge this is the first approach
that combines the rely guarantee paradigm with symbolic execution, which is
considered as an intuitive proof method for interactive verification.

There are different approaches which try to apply formal methods to medical

13 of 16

REFERENCES REFERENCES

guidelines. Scope of the group of John Fox is a simpler, more intuitive but also
less expressive [27] language for guideline formalization called PROforma [28].
The group around Paolo Terenziani follows the same idea as the protocure
projects, namely a stepwise formalization of medical guidelines and finally a
formal verification of the derived model. Currently this group [4] concentrates
on the use of automatic model checking done with the SPIN1 modelchecker. The
work presented here is the first, that uses rely guarantee reasoning on medical
guidelines.

References

[1] : Clinical Practice Guidelines: Directions for a New Program. National
Academy Press (1992)

[2] : Implementing clinical practise guidelines. Effective Health Care Bulletin
(1994) York: University of York.

[3] Clayton, P., Hripcsak, G.: Decision support in healthcare. International
Journal of Bio-Medical Computing 39 (4 1995) 59–66

[4] Giordano, L., Terenziani, P., Bottrighi, A., Montani, S., Donzella, L.:
Model Checking for Clinical Guidelines: an Agent-based Approach. In:
AMIA Annu Symp Proc. (2006) 289–293

[5] Lucas, P.: Quality Checking of Medical Guidelines through Logical Ab-
duction. In: Proc. of AI-2003, volume XX, Springer (2003) 309–321

[6] ten Teije, A., Marcos, M., Balser, M., van Croonenborg, J., Duelli, C., van
Harmelen, F., Lucas, P., Miksch, S., Reif, W., Rosenbrand, K., Seyfang,
A.: Improving medical protocols by formal methods. Artificial Intelligence
in Medicine 36(3) (3 2006) 193–209

[7] Seyfang, A., Kosara, R., Miksch, S.: Asbru 7.3 reference manual. Technical
report, Vienna University of Technology (2002)

[8] Schmitt, J., Hoffmann, A., Balser, M., Reif, W., Marcos, M.: Interactive
verification of medical guidelines. In Misra, J., Nipkow, T., Sekerinski, E.,
eds.: Formal Methods 2006, Proceedings. Volume 4085 of LNCS., Springer
(2006) 32–47

[9] Bäumler, S., Balser, M., Dunets, A., Reif, W., Schmitt, J.: Verification of
medical guidelines by model checking: a case study. In: Proc. of the 13th
International SPIN Workshop on Model Checking of Software. Number
3925 in LNCS, Springer-Verlag (2006) 219–233

[10] Marcos, M., Roomans, H., ten Teije, A., van Harmelen, F.: Improving
medical protocols through formalisation: a case study (2002)

1www.spinroot.com

14 of 16

REFERENCES REFERENCES

[11] Marcos, M., Balser, M., ten Teije, A., Harmelen, F.V.: From informal
knowledge to formal logic: a realistic case study in medical protocols

[12] Polo-Conde, C., Marcos, M., Seyfang, A., Wittenberg, J., Miksch, S.,
Rosenbrand, K.: Assessment of mhb: an intermediate language for the
representation of medical guidelines. In: Proc. of the 10th Conference of
the Spanish Association for Artificial Intelligence (CAEPIA-05). (2005) I–
19 – I–28

[13] Misra, J., Chandi, K.: Proofs of networks of processes. IEEE Transactions
of Software Engineering (1981)

[14] Jones, C.B.: Tentative steps toward a development method for interfering
programs. ACM Trans. Program. Lang. Syst. 5(4) (1983) 596–619

[15] Balser, M.: Verifying Concurrent System with Symbolic Execution – Tem-
poral Reasoning is Symbolic Execution with a Little Induction. PhD thesis,
University of Augsburg, Augsburg, Germany (2005)

[16] Balser, M., Reif, W., Schellhorn, G., Stenzel, K.: KIV 3.0 for Provably
Correct Systems. In Hutter, D., Stephan, W., Traverso, P., Ullmann, M.,
eds.: Proc. Int. Wsh. Applied Formal Methods. Volume 1641 of LNCS.,
Springer (1999) 330–337

[17] Miksch, S., Shahar, Y., Johnson, P.: Medizinische Leitlinien und Pro-
tokolle: das Asgaard/Asbru Projekt. KI-Journal (1997) 34–37 Themenheft
Medizin.

[18] Balser, M., Duelli, C., Reif, W.: Formal semantics of Asbru – An Overview.
In: Proceedings of IDPT 2002, Society for Design and Process Science
(2002)

[19] Pnueli, A., Shalev, M.: What is in a step: On the semantics of statecharts.
In: Symposium on Theoretical Aspects of Computer Software. Volume 526
of LNCS., Springer (1991) 244–264

[20] Schmitt, J., Balser, M., Reif, W.: Interactive verification of Asbru -
a tutorial. Technical Report 2006-3, University of Augsburg (February
2006) URL: http://www.informatik.uni-augsburg.de/lehrstuehle/

swt/se/publications/.

[21] Moszkowski, B.: Executing Temporal Logic Programs. Cambridge Univer-
sity Press, Cambridge (1986)

[22] Cau, A., Moszkowski, B., Zedan, H.: ITL – Interval Tempo-
ral Logic. Software Technology Research Laboratory, SERCentre, De
Montfort University, The Gateway, Leicester LE1 9BH, UK. (2002)
http://www.cse.dmu.ac.uk/STRL/ITL/.

15 of 16

REFERENCES REFERENCES

[23] Abadi, M., Lamport, L.: Conjoining specifications. ACM Transactions on
Programming Languages and Systems (1995)

[24] Cau, A., Collette, P.: Parallel composition of assumption-commitment
specifications: A unifying approach for shared variable and distributed
message passing concurrency. Acta Inf. 33(2) (1996) 153–176

[25] Solanki, M., Cau, A., Zedan, H.: Augmenting semantic web service de-
scriptions with compositional specification. In Feldman, S.I., Uretsky, M.,
Najork, M., Wills, C.E., eds.: Proc. of 13th int. conference on World Wide
Web, ACM (2004) 544–552

[26] de Roever, W.P., et al.: Concurrency Verification: Introduction to Com-
positional and Noncompositional Methods. Cambridge University Press
(2001)

[27] Peleg, M., Tu, S., Bury, J., Ciccarese, P., Fox, J., Greenes, R., Hall, R.,
Johnson, P., Jones, N., Kumar, A., Miksch, S., Quaglini, S., Seyfang, A.,
Shortliffe, E., Stefanelli, M.: Comparing computer-interpretable guideline
models: A case-study approach. JAMIA 10(1) (2003)

[28] Fox, J., Patkar, V., Thomson, R.: Decision support for health care: the
proforma evidence base. Inform Prim Care 14(1) (2006) 49–54

16 of 16

