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ON THE ITERATIVE PROPORTIONAL FITTING PROCEDURE:

STRUCTURE OF ACCUMULATION POINTS

AND L1-ERROR ANALYSIS

Friedrich Pukelsheim and Bruno Simeone

Universität Augsburg and Sapienza Università di Roma

A new analysis of the Iterative Proportional Fitting procedure is presented. The input data
consist of a nonnegative matrix, and of row and column marginals. The output sought is a bipro-
portional fit, that is, a scaling of the input matrix by means of row and column divisors so that
the scaled matrix has row and column sums equal to the input marginals. The IPF procedure is
an algorithm alternating between the fitting of rows and columns. The structure of its accumula-
tion points is explored in detail. The progress of the algorithm is evaluated through an L1-error
function measuring the deviation of current row and column sums from target marginals. A
formula is obtained, of max-flow min-cut type, to calculate the minimum L1-error directly from
the input data. If the minimum L1-error is zero, the IPF procedure converges to the unique
biproportional fit. Otherwise, it eventually oscillates between various accumulation points.

1. Introduction. We present a novel, L1-based analysis of the Iterative Proportional
Fitting (IPF) procedure. The IPF procedure is an algorithm for scaling rows and columns
of a given k × ` weight matrix A = ((aij)) so that the resulting, row-wise and column-wise
scaled output matrix B = ((bij)) achieves row sums equal to a prespecified vector of row
marginals, r = (r1, . . . , rk), and column sums equal to a prespecified vector of column
marginals, s = (s1, . . . , s`). We assume all weights to be nonnegative, aij ≥ 0, and all
marginals to be positive, ri > 0 and sj > 0. No row nor column of A is allowed to vanish.

The problem has a continuous variant, the biproportional fitting problem, and a discrete
variant, the biproportional apportionment problem. In the continuous variant, the entries
of the matrix B sought are permitted to be any nonnegative real numbers, bij ≥ 0. The
output B is called a biproportional fit, of the weight matrix A to the row marginals r

and to the column marginals s. The IPF procedure iteratively calculates scaled matrices
A(t) =

((
aij(t)

))
, where for odd steps all row sums are matching, ai+(t) = ri for all i ≤ k,

while for even steps the column sums match, a+j(t) = sj for all j ≤ `. If a biproportional
fit B exists, the sequence of scaled matrices A(1), A(2), . . . converges to B.

AMS 2000 subject classification. 62H17; 62P25.
Key words and phrases. Biproportional fitting, biproportional apportionment, matrix scaling, RAS

method, entropy, alternating scaling algorithm.
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The discrete variant of the problem restricts the entries of B to be nonnegative in-
tegers, bij ∈ {0, 1, 2, . . .}. Row and column marginals must then be integers, of course.
Now the output matrix B is called a biproportional apportionment, according to the given
weight matrix A and the prespecified row marginals r and column marginals s. The anal-
ogous solution method for the discrete problem is the Alternating Scaling (AS) algorithm.
At step t it produces a matrix A(t) with entries aij(t) being scaled as well as rounded, in
order to comply with the pertinent integer restrictions. The AS algorithm aims to solve
the discrete problem variant. Due to the occurrence of ties there are (rare) instances,
however, where a biproportional apportionment B exists while the AS algorithm fails to
converge to it and stalls; see Example 8.1 in Gaffke and Pukelsheim (2008).

Our research arose from the desire to better understand the interplay between the
continuous IPF procedure, and the discrete AS algorithm. The present paper focuses on
the continuous fitting problem. However, our major tool, the L1-error function

f(t) =
1
2

∑

i≤k

∣∣∣ai+(t)− ri

∣∣∣ +
1
2

∑

j≤`

∣∣∣a+j(t)− sj

∣∣∣,

is borrowed from Balinski and Demange’s (1989) enquiry into the discrete apportionment
problem. In the discrete case the error function f(t) is quite suggestive, simply counting
along rows and columns how many units are wrongly allocated at step t. For the continuous
problem the L1-error f(t) is, at first glance, just one out of many ways to assess lack of
fit. At second glance it is a most appropriate way, as this paper shows.

1.1. The literature on biproportional fitting. The continuous biproportional fitting
problem is the senior member of the problem family. It has created an enormous body of
literature of which we review only the papers that influenced the present research. The
term IPF procedure prevails in Statistics, see Fienberg and Meyer (2006), or Speed (2005);
we follow those leads. Some Statisticians prefer matrix raking, such as Fagan and Green-
berg (1987). In Operations Research and Econometrics the label RAS method is popular,
pointing to a (diagonal) matrix R of row multipliers, the weight matrix A, and a (diag-
onal) matrix S of column multipliers, as mentioned already by Bacharach (1965, 1970).
Computer scientists prefer the term matrix scaling, as in Rote and Zachariasen (2007).

The IPF procedure was popularized by Deming and Stephan (1940), though there
are earlier papers where the idea was used, see Fienberg and Meyer (2006). Deming and
Stephan (page 440) recommend terminating iterations when the table reproduces itself, that
is, in our terminology, when the scaled matrices A(t) and A(t + 1) get close to each other.
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This distance is what is measured by the L1-error function f(t), see our Lemma 1. Deming
and Stephan successfully advocated the merits of the algorithm, but were somewhat led
astray in its analysis, as communicated by Stephan (1942).

Brown (1959) proposed a proof of convergence which Ireland and Kullback (1968)
found to lack rigor. The latter authors established convergence by relating the IPF pro-
cedure to the minimum entropy solution. Csiszár (1975, page 155) noted that their con-
vergence proof was incomplete, and that the generalization to measure spaces by Kullback
(1968) suffered from a similar flaw. Csiszár (1975) salvaged the entropy approach, and
Rüschendorf (1995) established its extension to general measure spaces.

Despite of all the emphasis on entropy, the ultimate arguments of Ireland and Kullback
(1968), equations (4·32) and (4·33) on page 185, substitute convergence of entropy by
convergence in L1, referring to a result of Kullback (1966). Also Bregman (1967) starts
out with entropy, and then uses the L1-error function. Here we dispose of the entropy
detour, and use L1 from start to finish. Ireland and Kullback (1968, page 184) prove that
the entropy criterion decreases monotonically, as does the likelihood function of Bishop,
Fienberg and Holland (1975, page 86), and our L1-error function (Lemma 1).

Over time authors replaced entropy by related criteria, see the list on page 376 of
Kalantari, Lari, Ricca and Simeone (2008). Marshall and Olkin (1968) and Macgill (1977)
minimized a quadratic objective function. Pretzel (1980) used a weighted geometric mean.
We find that Pretzel’s is perhaps the most elegant, and certainly one of the shortest proofs
of convergence of the IPF procedure. The only drawback is that Pretzel builds on a
necessary and sufficient condition for the existence of a solution that, in our exposition,
comes towards the end, as condition (2) in our Theorem 4.

The question when a biproportional fit exists generated a wealth of papers by itself,
such as Brualdi, Parter and Schneider (1966), and Schneider (1990). Many of them are
oriented towards network and graph theory; we make use of such arguments in Section 6.
Moreover, the formula for the minimum L1-error in Theorem 3 is so easy to evaluate,
prior to starting the IPF procedure, because it is akin to treating the issue as a trans-
portation problem. Rachev and Rüschendorf (1998) present an in-depth development of
measure-theoretic mass transportation problems, and we tend to believe that there are
more interrelations than we have been able to identify.

An entirely different route was opened by Fienberg (1970) who embedded the IPF pro-
cedure into the geometry of the manifold of constant interaction in a (k`− 1)-dimensional
simplex of reference. Fienberg worked under the assumption that all input weights are
positive, aij > 0. He pointed out (page 915) that the extension to problems involving
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zero weights is quite complex, which is attested to by much of the literature. Ireland and
Kullback’s (1968, page 182) plea to assume positive weights to simplify the argument is a
friendly understatement, unless it is meant to be the utter truth.

Another approach, keeping as close to calculus as possible, was championed early on
by Bacharach (1965, 1970), and by Sinkhorn (1964, 1966, 1967, 1972, 1974) and Sinkhorn
and Knopp (1967). Much of the present paper is owed to Bacharach. Michael Owen
Leslie Bacharach (b. 1936, d. 2002) was an Oxford econometrician of some renown. In
1965 he earned a PhD degree in Mathematics from Cambridge; his thesis was published as
Bacharach (1965), and became Section 4 of Bacharach (1970). Richard Dennis Sinkhorn
(b. 1934, d. 1995) received his Mathematics PhD in 1962 from the University of Wisconsin–
Madison, with a thesis entitled On Two Problems Concerning Doubly Stochastic Matrices.
Throughout his career he served as a Mathematics professor with the University of Hous-
ton. Though contemporaries, neither of the two ever quoted the other.

1.2. The literature on biproportional apportionment. The discrete biproportional
apportionment problem is the junior member of the problem family, first put forward by
Balinski and Demange (1989), see also Balinski and Rachev (1997). The operation of
rounding scaled quantities to integers sounds most attractive for the statistical analysis of
frequency tables, as remarked by Wainer (1998) and Pukelsheim (1998). It disposes of any
disclaimers that the adjusted figures are rounded off, hence when summed may occasionally
disagree a unit or so, as in Table I of Deming and Stephan (1940, page 433). When the task
is to apportion 100 percentage points, as in Table 3.6-4 of Bishop, Fienberg and Holland
(1975, page 99), the method would not stop short with 99 percent only. However, Balinski
was motivated not by discrete multivariate statistics, but by the perceived use of such
methods for parliamentary elections in proportional representation systems.

The task of allocating seats of a parliamentary body to political parties does not toler-
ate any disclaimers excusing residual rounding errors. Whatever apportionment method is
used, it must meticulously account for every single seat. This is achieved by biproportional
apportionment methods. In 2003, the Swiss Canton of Zurich amended their Electoral Law
to adopt the biproportional divisor method with standard rounding, see Pukelsheim and
Schuhmacher (2004), and Balinski and Pukelsheim (2006). The Canton of Schaffhausen
and the Canton of Aargau followed suit in 2007. The method is attractive also for other
countries, as worked out by Pennisi (2006) for Italy; Zachariassen and Zachariasen (2006)
for the Farœ Islands; and Ramı́rez, Pukelsheim, Palomares and Mart́ınez (2008) for Spain.
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One of the authors (FP) had the privilege of advising the Zurich Parliament on the
matter. He felt it inappropriate to persuade politicians that the new method is akin to min-
imizing entropy, or that it is justified through differential geometry of smooth manifolds in
high-dimensional simplexes. The procedure simply does what proportional apportionment
calls for: Scale and round! Scaling within electoral districts (rows) achieves proportionality
among the parties running in that district. Scaling within parties (columns) secures district
lists of any party to be handled proportionally. The final rounding step is felt inevitable,
as deputies come in whole numbers and not in fractions. In the end the biproportional
divisor method with standard rounding won overwhelming political support.

That it also won strong administrative support is a victory of the IPF procedure
and its discrete sibling, the AS algorithm, enabling the officials to easily calculate district
divisors and party divisors. Once suitable divisors are publicized all voters can double-
check the outcome. They only need to take the vote count of the party of their choice in
their district, divide it by the respective district and party divisors, and round the result
to the nearest seat number. A computer program for carrying out the apportionment is
provided at www.uni-augsburg.de/bazi, see Pukelsheim (2004), Joas (2005), Maier and
Pukelsheim (2007). The user may choose to run the AS algorithm, the Tie-and-Transfer
(TT) algorithm of Balinski and Demange (1989), or hybrid combinations of the two. The
performance of the algorithms is studied by Maier, Zachariassen and Zachariasen (2009).

In the electoral application the weight matrix A consists of vote counts, and the issue
of zero weights gains real import. All too often there exists a party j not campaigning in
some district i, and hence entering into the final results with aij = 0. The analysis may
no longer be simplified by assuming all weights to be positive. Zero weights must be dealt
with, even if the labor they entail becomes quite complex.

1.3. Section overview. We give a brief overview of the sections that follow. Section 2
introduces limit biproportional fits, and direct biproportional fits. If it exists, a limit
biproportional fit is unique (Theorem 1). If a limit fit is connected, it is direct (Theorem 2).
Direct biproportional fits are called ‘interior’ solutions by Bacharach (1970, page 45),
whereas limit fits that are not direct are termed ‘boundary’ solutions.

Section 3 describes the IPF procedure, with its sequence of scaled matrices A(t). Even
steps generate incremental row divisors ρi(t), odd steps create incremental column divisors
σj(t). They are likelihood ratios, of current sums relative to target marginals. Lemma 1
shows that the ensuing L1-error function f(t) is nonincreasing. Three examples illustrate
that the error may decrease exponentially, or just linearly.
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Section 4 scrutinizes the accumulation points of the sequence of scaled matrices A(t),
t ≥ 1. Lemma 2 establishes a chain of inequalities between minimum and maximum incre-
mental row and column divisors, implicit in the works of Bacharach, Sinkhorn, and Pretzel.
Minimum and maximum incremental divisors are found to move monotonically towards
each other. Without loss of generality we consider limit matrices along subsequences of
even steps, whence their columns are matching and all remaining errors originate from
their rows. Lemma 3 shows that the structure of an accumulation point B is contingent
on the decomposition into its connected components.

Section 5 investigates the L1-error function f(t). Being nonnegative, the error is
trivially bounded by zero. Lemma 4 exhibits lower bounds that are potentially tighter,
rI−sJA(I), where rI is the partial marginal sum over an arbitrary row subset I, and sJA(I)

is the partial marginal sum over the set JA(I) of columns connected in A to I. Our main
result, Theorem 3, states that one of these lower bounds is sharp,

lim
t→∞

f(t) = max
I⊆{1,...,k}

(
rI − sJA(I)

)
= rUB

− sJA(UB),

where the set UB designates the underweighted rows of an even-step accumulation point B.
Most of the proof is occupied by the case UB 6= ∅ when some rows of B do not match their
marginals, that is, when the minimum L1-error stays positive.

Section 6 exploits the formula for the minimum L1-error to re-derive the well-known
necessary and sufficient conditions for the convergence of the IPF procedure. Theorem 4
addresses the existence of a limit biproportional fit in general. Theorem 5 focuses on the
special instances when the limit matrix is disconnected. Theorem 6 considers the case when
the limit matrix is connected, and hence the fit is direct. The latter has an immediate
application to the very special case when all weights are positive; then the IPF procedures
always converges, and the biproportional fit is direct.

1.4. Notation. The following notation turns out to be convenient. For a vector
r = (r1, . . . , rk), the operators +, min, max indicate, respectively, the sum of its entries,
r+ =

∑
i≤k ri, a minimum entry, rmin = min{r1, . . . , rk}, and a maximum entry, rmax =

max{r1, . . . , rk}. The partial sum of the marginals ri over a row subset I is denoted by rI =∑
i∈I ri. For column subsets J the notation extends to the partial sum of column marginals,

sJ =
∑

j∈J sj , as well as to the sum of entries in the I × J block of a matrix A, such as
aI×J =

∑
i∈I

∑
j∈J aij . Sums over the empty set are taken to be zero, r∅ = s∅ = a∅ = 0.

The complement of any set I ⊆ {1, . . . , k} is indicated by a prime, I ′ = {1, . . . , k} \ I. The
set JA(I) of columns connected in A to I is defined in Section 5.
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2. Biproportional Fits. Let A be a k × ` matrix with nonnegative entries, aij ≥ 0,
called weights. No row nor column of A is allowed to vanish. We take k ≥ 2 and ` ≥ 2, so
as to deal with genuine matrices.

Let r = (r1, . . . , rk) and s = (s1, . . . , s`) be vectors with positive entries, ri > 0
and sj > 0, called row marginals and column marginals. Let h be the larger of the two
component sums, h = max{r+, s+}. In much of what follows they turn out to be the same,
in which case we simply have r+ = s+ = h.

A k×` matrix B = ((bij)) is called a limit biproportional fit (of the weight matrix A, to
the row marginals r and to the column marginals s) when there exist sequences of positive
row divisors xi(1), xi(2), . . . and of positive column divisors yj(1), yj(2), . . . so that the
elements of B are of the form

bij = lim
t→∞

aij

xi(t)yj(t)

and fit the marginals, bi+ = ri and b+j = sj , for all rows i ≤ k and for all columns j ≤ `.
Of course, a necessary condition for a limit biproportional fit to exist is that the marginals
have the same component sums.

Theorem 1 (Uniqueness). If a limit biproportional fit exists, then it is unique.

Proof. We assume that there are two distinct limit biproportional fits, B 6= C, with
divisor sequences xi(t) and yj(t) for B, and ui(t) and vj(t) for C. Since marginal sums
coincide, unequal entries in some cells must be evened out through other cells.

The starting point is a column j1 with bi1j1
> ci1j1

, for some row i1. Then ai1j1
is

positive, entailing xi1(t)yj1
(t) < ui1(t)vj1

(t) for eventually all t. Next we inspect row i1

which, being fitted, features an entry bi1j2
< ci1j2

in some column j2. This forces ai1j2
> 0,

and ui1(t)vj2
(t) < xi1(t)yj2

(t) for eventually all t. Now column j2 needs to be corrected,
followed by a correction in some row i2. The construction terminates in a column jq and
a row iq, say, with corresponding inequalities xiq (t)yjq (t) < uiq (t)vjq (t) and uiq (t)vj1

(t) <

xiq (t)yj1
(t). It is convenient to introduce jq+1 = j1. Picking every other inequality to form

products we obtain a contradiction, for eventually all t,

∏

p≤q

xip(t)yjp(t) <
∏

p≤q

uip(t)vjp(t) =
∏

p≤q

uip(t)vjp+1
(t) <

∏

p≤q

xip(t)yjp+1
(t) =

∏

p≤q

xip(t)yjp(t).

Therefore, if a first limit biproportional fit exists, there is no room for another one.
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A k × ` matrix B = ((bij)) is called a direct biproportional fit when there exist row
divisors ui > 0 and column divisors vj > 0 so that the elements of B are of the form

bij =
aij

uivj

and fit the marginals, bi+ = ri and b+j = sj , for all rows i ≤ k and for all columns j ≤ `.
Obviously there are fewer direct biproportional fits than there are limit biproportional fits.
The question of how to identify them is answered by the notion of connectedness. A matrix
C = ((cij)) is called connected when it is not disconnected.

A matrix D = ((dij)) is called disconnected when it admits a disconnectedness partition
into components P and Q,

D =

( J J ′

I P 0
I ′ 0 Q

)
,

where I and I ′ are complementary row subsets, J and J ′ are complementary column
subsets, and at least one of the index sets I×J ′ or I ′×J is nonempty,

(
I×J ′

)∪(
I ′×J

) 6= ∅.
In such a situation the entries dij vanish whenever (i, j) ∈ (

I × J ′
) ∪ (

I ′ × J
)
, while the

entries of the I × J matrix P and of the I ′ × J ′ matrix Q are nonnegative.

Theorem 2 (Connectedness). Suppose A is connected and a limit biproportional
fit B exists. Then B is a direct biproportional fit if and only if B is connected.

Proof. For the direct part, let B be a direct biproportional fit. Then the zero
patterns of A and B are the same. Since A is connected, so is B.

For the converse part, we apply a scanning process to consecutively identify divisors
ui for rows, and vj for columns. We use that positive entries in B require positive entries
in A. In step 1 we scan the first row by equipping it with divisor unity, u1 = 1. In step 2
we scan the columns j with b1j > 0, by defining vj = a1j/

(
u1b1j

)
. In step 3 we scan the

unscanned rows i where bij > 0 for some scanned column j, and set ui = aij/
(
bijvj

)
. In

step 4 we turn back to scanning those columns that are still unscanned. Continuing back
and forth, the process enlarges the scanned sets for at most k + ` steps. With I the set of
scanned rows and J the set of scanned columns, B acquires block structure,

B =

( J J ′

I P 0
I ′ 0 Q

)
.

Connectedness of B forces the sets I ′ and J ′ to be empty. That is, the process has scanned
all rows and all columns, I = {1, . . . , k} and J = {1, . . . , `}, and the fit B is direct.
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3. The IPF Procedure. The IPF procedure alternatingly scales rows and columns, to
fit the weight matrix A to the row marginals r and to the column marginals s, as follows.

• Step 1 rescales the weights to fit rows, aij(1) = aij/ρi(0), where the row divisors build
on the input weights, ρi(0) = ai+/ri.

• Step 2 rescales the weights to fit columns, aij(2) = aij(1)/σj(1), with column divisors
calculated from the weights in the first step, σj(1) = a+j(1)/sj .

• Odd steps t + 1 rescale the weights to fit rows, aij(t + 1) = aij(t)/ρi(t), with row
divisors calculated from the previous even step, ρi(t) = ai+(t)/ri.

• Even steps t + 2 rescale the weights to fit columns, aij(t + 2) = aij(t + 1)/σj(t + 1),
with column divisors calculated from the previous odd step, σj(t+1) = a+j(t+1)/sj .

Divisors such as ρi(t) = ai+(t)/ri are likelihood ratios, with the distribution to be
fitted in the numerator, ai+(t), and the target distribution in the denominator, ri. Of
course, we could also work with the inverse quantities, multipliers.

Since no row and no column of A is allowed to vanish, the divisors always stay pos-
itive. Each step of the IPF procedure generates incremental divisors, either row divisors
ρi(0), ρi(2), ρi(4), . . ., or else column divisors σj(1), σj(3), σj(5), . . .. Successive incremental
divisors give rise to cumulative divisors xi(t) and yj(t), defined through

ρi(0) ρi(2) ρi(4) · · · ρi(t− 2) = xi(t− 1) = xi(t),

σj(1)σj(3) σj(5) · · · σj(t− 1) = yj(t) = yj(t + 1),

for t = 2, 4, . . .. Adjoining yj(1) = 1, the cumulative divisors are defined for all steps t ≥ 1.
In terms of the cumulative divisors, the scaled weights take the form

aij(t) =
aij

xi(t)yj(t)
.

The IPF procedure is said to converge to B when the scaled weight matrices A(t) =((
aij(t)

))
, t ≥ 1, have B as their limit, limt→∞A(t) = B. The matrix B thus obtained

visibly is the limit biproportional fit, of A to r and to s.

In case of convergence, the marginals r and s must have the identical component sums,
namely the sum of all elements of B. By not assuming r+ = s+ in the present section
and the next, we acquire a more comprehensive view of what may happen in the case of
non-convergence.
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We measure the step-wise progress of the IPF procedure by how much current row
sums deviate from the prespecified row marginals, and by how much column sums deviate
from the column marginals. To this end we introduce the L1-error function

f(t) =
1
2

∑

i≤k

∣∣∣ai+(t)− ri

∣∣∣ +
1
2

∑

j≤`

∣∣∣a+j(t)− sj

∣∣∣.

For odd steps t, rows match their prespecified marginals and the row error sum vanishes.
In particular, f(1) ≤ 1

2

∑
j≤`

(
a+j(1) + sj

)
= 1

2 (r+ + s+) ≤ h. For even steps t the column
error sum is zero, as it is then the columns that attain their marginals. The factor 1/2
accounts for any error appearing twice, as an overweight and as an underweight, as soon
as we start assuming equal totals for the marginals, r+ = s+.

In terms of the L1-error function f(t), the scaled matrices A(t) that are produced by
the IPF procedure exhibit an increasingly better fit to the marginals r and s.

Lemma 1 (Monotonicity). The L1-error function is nonincreasing, f(t) ≥ f(t+1)
for every step t ≥ 1.

Proof. For even steps t, all columns are fitted, a+j(t) = sj . The next step is odd
and fits rows, ai+(t + 1) = ri. For the transition to step t + 1, consider some row i and its
upcoming divisor, ρi(t). If ρi(t) ≤ 1 then we have aij(t) ≤ aij(t)/ρi(t) = aij(t + 1), for all
j ≤ `. If ρi(t) ≥ 1 then aij(t) ≥ aij(t + 1). Either way every row i ≤ k is such that, for all
j ≤ `, the nonzero differences aij(t)− aij(t + 1) are of the same sign. This yields

f(t) =
1
2

∑

i≤k

∣∣∣∣∣∣
∑

j≤`

(
aij(t)− aij(t + 1)

)
∣∣∣∣∣∣

=
1
2

∑

i≤k

∑

j≤`

∣∣∣aij(t)− aij(t + 1)
∣∣∣ = d

(
A(t), A(t + 1)

)
,

say. The triangle inequality, applied within each column j ≤ `, establishes monotonicity,

d
(
A(t + 1), A(t)

)
=

1
2

∑

j≤`

∑

i≤k

∣∣∣aij(t + 1)− aij(t)
∣∣∣

≥ 1
2

∑

j≤`

∣∣∣∣∣∣
∑

i≤k

(
aij(t + 1)− aij(t)

)
∣∣∣∣∣∣
= f(t + 1).

For odd steps t, monotonicity follows analogously.
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We find it instructive to illustrate the IPF procedure by example. Example 1 has the
L1-error function tending to zero exponentially fast, in Example 2 the speed is linear. In
both examples the IPF procedure converges. In Example 3 the L1-error function has limit
two, and the IPF procedure fails to converge.

Example 1. Input and output are succinctly displayed through

A =

4 2

2
4

(
30 0
10 20

)
1
1
3

15 30

7→ B =
(

2 0
2 2

)
.

The 2×2 weight matrix A is bordered to the left by the prespecified row marginals, at the
top, by the column marginals. The resulting row divisors are bordering A at the right, the
column divisors, at the bottom. They yield the biproportional fit B shown.

The initial row divisors are ρ1(0) = 15 and ρ2(0) = 15/2, and make row sums match.
Thereafter, for t = 2, 4, . . ., we get

A(t− 1) =
(

2 0
2 2t−1

2t−1+1 22t−1+2
2t−1+1

)
,

σ1(t− 1) = 2t+1
2t+2 ,

σ2(t− 1) = 2t−1+2
2t−1+1 ;

A(t) =
(

2 2t+2
2t+1 0

2 2t

2t+1 2

)
,

ρ1(t) = 2t+2
2t+1 ,

ρ2(t) = 2t+1+1
2t+1+2 .

The L1-error function takes values f(t) = 2/(2t +1), converging to zero exponentially fast.
The IPF procedure evidently converges to the limit B displayed at the beginning.

Retrospectively we may calculate other, nicer divisors. With the first row divisor
standardized to be unity, u1 = 1, we obtain, one after another,

30
u1v1

= 2 ⇒ v1 = 15,
10

u2v1
= 2 ⇒ u2 =

1
3
,

20
u2v2

= 2 ⇒ v2 = 30.

Visibly, then, B is seen to be connected, and to be a direct biproportional fit.

Example 2. The input keeps the weights A, but rearranges the marginals:

A =

3 3

3
3

(
30 0
10 20

)
1
t

10 20
3 t−1

7→ B =
(

3 0
0 3

)
.
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The initial row divisors ρ1(0) = 10 = ρ2(0) secure matching row sums. Thereafter, for
t = 2, 4, . . ., we get

A(t− 1) =
(

3 0
3

t+1 3 t
t+1

)
,

σ1(t− 1) = t+2
t+1 ,

σ2(t− 1) = t
t+1 ;

A(t) =
(

3 t+1
t+2 0
3

t+2 3

)
,

ρ1(t) = t+1
t+2 ,

ρ2(t) = t+3
t+2 .

The L1-error tends to zero linearly, f(t) = 3/(t + 2). The IPF procedure converges to B.

The retrospective standardization of the cumulative divisors now fails to shortcut the
limit character of B. Again starting with row divisor u1 = 1, the identity 30/(u1v1) = 3
yields v1 = 10. But then we get

10
u2(t)v1

= 0 ⇒ u2(t) = t, say,
20

u2(t)v2(t)
= 3 ⇒ v2(t) =

20
3

t−1.

Example 3. Our third example uses yet other marginals:

A =

2 4

4
2

(
30 0
10 20

)
,

ρ1(0) = 15
2 ,

ρ2(0) = 15.

Again the initial row divisors adjust row marginals. Thereafter, for t = 2, 4, . . ., we get

A(t− 1) =
(

4 0
2

2t−1 2 2t−2
2t−1

)
,

σ1(t− 1) = 2t+1−1
2t−1 ,

σ2(t− 1) = 2t−1−1
2t−1 ;

A(t) =
(

2 2t+1−2
2t+1−1 0

2
2t+1−1 4

)
,

ρ1(t) = 2t−1
2t+1−1 ,

ρ2(t) = 2t+2−1
2t+1−1 .

The L1-error is f(t) = 2 1
1−2−(t+1) , and converges to the limit two exponentially fast. The

IPF procedure does not converge, but oscillates between two distinct accumulation points,

lim
t=1,3,...

A(t) =
(

4 0
0 2

)
, lim

t=2,4,...
A(t) =

(
2 0
0 4

)
.
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4. Accumulation points. Specifically, if for an even step t the IPF procedure comes
out with all row divisors equal to unity, the matrix A(t) is the limit sought. Columns match
their marginals because the step t is even, and rows need no further adjustment because
of unity divisors. The IPF procedure keeps reproducing A(t), the limit B is reached.

Generally, the IPF procedure moves the incremental divisors towards each other, the
smallest getting larger and the largest getting smaller, as detailed by the following inter-
lacing inequalities. The smallest and the largest of the incremental divisors are denoted
by ρmin(t) and ρmax(t), and by σmin(t + 1) and σmax(t + 1). We proceed in steps of two,
starting with t0 = 2 and hence with fitted columns. When A itself already comes with all
columns fitted, which we indicate by writing A(0) in place of A, we start from t0 = 0.

Lemma 2 (Inequalities). (i) For all even steps t ≥ t0 we have

ρmin(t)
(1)

≤ 1
σmax(t + 1)

(2)

≤ ρmin(t + 2) ≤ ρmax(t + 2)
(3)

≤ 1
σmin(t + 1)

(4)

≤ ρmax(t).

The four sequences of minimum and maximum incremental divisors of rows and of columns
are convergent, and fulfill

lim
t=0,2,...

ρmin(t) =
1

lim
t=1,3,...

σmax(t)
, lim

t=0,2,...
ρmax(t) =

1
lim

t=1,3,...
σmin(t)

.

(ii) If ρmin(t) < ρmax(t) and ρmin(t) = ρmin(t + 2k − 2), for some even step t ≥ t0,
then A is disconnected.

Proof. (i) Let t ≥ t0 be even. For all rows i ≤ k and all columns j ≤ ` we then have
a+j(t) = a+j(t + 2) = sj and ai+(t + 1) = ai+(t + 3) = ri. This yields

1 =
a+j(t + 2)

sj
=

1
sj

∑

p≤k

apj(t)
ρp(t)σj(t + 1)




≤ 1

ρmin(t)σj(t + 1) , (1j)

≥ 1
ρmax(t)σj(t + 1) ; (4j)

1 =
ai+(t + 3)

ri
=

1
ri

∑

q≤`

aiq(t + 1)
ρi(t + 2)σq(t + 1)




≤ 1

ρi(t + 2)σmin(t + 1) , (3i)

≥ 1
ρi(t + 2)σmax(t + 1) . (2i)

Inequalities (1)–(4) in part (i) follow by forming maxima or minima over j ≤ ` or i ≤ k,

ρmin(t)σmax(t + 1)
(1)

≤ 1
(4)

≤ ρmax(t)σmin(t + 1),

ρmax(t + 2)σmin(t + 1)
(3)

≤ 1
(2)

≤ ρmin(t + 2)σmax(t + 1).

The inequalities justify the statements on the four limits. All of them come to lie in the
interval [ρmin(t0), ρmax(t0)].
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(ii) Disconnected components are constructed by means of the row subsets I(τ) where
the divisor is minimum, and the column subsets J(τ + 1) where the divisor is maximum,

I(τ) =
{

i ≤ k
∣∣ ρi(τ) = ρmin(τ)

}
,

J(τ + 1) =
{

j ≤ `
∣∣ σj(τ + 1) = σmax(τ + 1)

}
,

whenever τ is even. The first assumption, ρmin(t) < ρmax(t), secures that the row subset
I(t) is proper, I(t)⊂6={1, . . . , k}.

The second assumption expands into an equality string, ρmin(t) = 1/σmax(t + 1) =
ρmin(t + 2) = · · · = ρmin(t + 2k− 4) = 1/σmax(t + 2k− 3) = ρmin(t + 2k− 2). We work our
way in sets of three,

ρmin(t + z) =
1

σmax(t + z + 1)
= ρmin(t + z + 2),

with z = 0, 2, . . . , 2k − 4. For i ∈ I(t + 2) equality holds in (2i), whence all q 6∈ J(t + 1)
come with aiq(t + 1) = 0 and hence aiq = 0. For j ∈ J(t + 1) equality obtains in (1j),
whence all p 6∈ I(t) fulfill apj(t) = 0 and hence apj = 0. Any row i ∈ I(t + 2) \ I(t) would
vanish, having aij = 0 for j 6∈ J(t + 1) as well as for j ∈ J(t + 1). But vanishing rows in
A are not allowed, and so I(t + 2) ⊆ I(t).

The argument carries forward to build the chain

{1, . . . , k} 6= I(t) ⊇ I(t + 2) ⊇ · · · ⊇ I(t + 2k − 4) ⊇ I(t + 2k − 2) 6= ∅.

As at most k− 2 inclusions can be strict, somewhere on the way from z = 0 to z = 2k− 4
the equality I(t + z) = I(t + z + 2) must emerge. Thus A is disconnected, of the form

A =

( J(t + z + 1) J(t + z + 1)′

I(t + z + 2) P 0
I(t + z)′ 0 Q

)
.

The scaled matrices A(t) have nonnegative entries bounded by h = max{r+, s+}, and
hence stay in the compact set [0, h]k×` for all steps t. This guarantees the existence of
accumulation points. The issue is what they look like.
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Lemma 3 (Accumulation Points). Suppose the limit B = limn→∞A(tn) along a
subsequence of even steps tn has connected components B(1), . . . , B(K):

B =




J1 J2 · · · JK

I1 B(1) 0 · · · 0
I2 0 B(2) · · · 0
...

...
...

. . .
...

IK 0 0 · · · B(K)




.

Then B has row sums bi+ =
sJm

rIm

ri, for i ∈ Im and m = 1, . . . , K.

When the IPF procedure is employed to fit B to the row marginals r and to the column
marginals s, the divisors generated are αi(0) = sJm

rIm
for the rows and βj(1) = rIm

sJm
for the

columns, for all i ∈ Im and j ∈ Jm and m = 1, . . . , K. The resulting sequence of scaled
matrices oscillates, B(0) = B(z) and B(1) = B(z + 1), for all even z.

Proof. I. The even steps tn pass on matching columns to B. No column vanishes,
since b+j = sj . Nor vanishes any row, bi+ = limn→∞ ai+(tn) = ri limn→∞ ρi(tn) ≥
riρmin(0) > 0. Therefore we may apply the IPF procedure to the input matrix B = B(0),
to fit it to the row marginals r and and to the column marginals s.

For steps z = 0, 2, . . ., the incremental divisors of B(z) are denoted by αi(z) and
βj(z + 1). They are linked to the incremental divisors of A(tn) through the limit relations

lim
n→∞

ρi(tn + z) = αi(z), lim
n→∞

σj(tn + z + 1) = βj(z + 1).

This follows from limn→∞ ρi(tn) = limn→∞ ai+(tn)/ri = bi+(0)/ri = αi(0). Similarly we
get limn→∞ σj(tn + 1) = βj(1). Induction on z = 0, 2, . . . completes the argument.

II. We choose a sub-subsequence zp = tnp , p ≥ 1, of the subsequence tn, n ≥ 1,
along which the scaled matrices B(zp) converge to a limit matrix C, say. Denoting the
cumulative divisors of B(zp) by ui(zp) and vj(zp), we have

bij = lim
n→∞

aij

xi(tn)yj(tn)
, cij = lim

p→∞
bij

ui(zp)vj(zp)
.

Now we fix a row i and a column j for which cij is positive; then bij is positive, too, as
is aij . Therefore the cumulative divisors converge to positive and finite limits,

lim
n→∞

xi(tn)yj(tn) =
aij

bij
∈ (0,∞), lim

p→∞
ui(zp)vj(zp) =

bij

cij
∈ (0,∞).
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To investigate the interplay of the limits, we introduce the partial products

Π(tn, zp) =
∏

z=0,2,...,zp−2

ρi(tn + z)σj(tn + z + 1),

extending from ρi(tn)σj(tn + 1) through to ρi(tn + zp − 2)σj(tn + zp − 1). We desig-
nate the limits with one argument tending to infinity and the other fixed by Π(tn,∞) =
limp→∞Π(tn, zp), and by Π(∞, zp) = limn→∞Π(tn, zp).

For fixed n, we get Π(tn,∞) = limN→∞ xi(tN )yj(tN )/Π(0, tn) = (aij/bij)/Π(0, tn) ∈
(0,∞). More than that, convergence transpires to be uniform in n,

lim
p→∞

(
sup
n≥1

∣∣∣∣Π(tn, zp)− aij/bij

Π(0, tn)

∣∣∣∣
)

=
(

sup
n≥1

1
Π(0, tn)

)
lim

p→∞

∣∣∣∣Π(0, zp)− aij

bij

∣∣∣∣ = 0.

The supremum is finite because the subsequence Π(0, tn) = xi(tn)yj(tn) is convergent to
aij/bij ∈ (0,∞), and the limit is zero because zp = tnp is a sub-subsequence of tn.

For fixed p, we have Π(∞, zp) =
∏

z=0,2,...,zp−2 αi(z)βj(z +1) = ui(zp)vj(zp). Because
of uniform convergence the two transitions to the limit may be interchanged,

1 =
aij/bij

limn→∞Π(0, tn)
= lim

n→∞
Π(tn,∞) = lim

p→∞
Π(∞, zp) = lim

p→∞
ui(zp)vj(zp) =

bij

cij
.

This establishes cij = bij whenever cij > 0. Since the column sums coincide, c+j = b+j =
sj for all j ≤ `, so do the matrices as a whole, C = B. In other words, in the limit the
scaled matrices B(zp) return to their starting point B(0).

III. The grand problem, of fitting B(0) to r and s, decomposes into the K smaller
problems, of fitting B(m)(0) to (ri)i∈Im and (sj)j∈Jm , with m = 1, . . . ,K fixed. We con-
sider the minimum row divisors for the m-th subproblem, α

(m)
min(z) = min

{
αi(z)

∣∣ i ∈ Im

}

for even steps z. They are nondecreasing in z, by Lemma 2(i). We have just seen, however,
that the subsequence B(zp) returns to the starting matrix B(0). Therefore α

(m)
min(zp), too,

returns to its starting value, α
(m)
min(0). In view of monotonicity this forces the sequence to

be constant, α
(m)
min(0) = α

(m)
min(z) for all even z.

Connectedness of B(m)(0) now implies α
(m)
min(0) = α

(m)
max(0), by Lemma 2(ii). Hence

there is a constant µ with αi(0) = µ for all rows i ∈ Im, giving row totals bi+(0) = µri.
Summing over all entries in B(m)(0) we end up with µrIm = sJm , and µ = sJm/rIm .

With the structure of B(0) being what it is, the sequence B(z) of scaled matrices
is seen to actually oscillate between B(0) and B(1). It is instantly verified that the IPF
procedure behaves as is claimed in the assertion.
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The proof goes a long way to show that the accumulation point B has a rather simple
structure. There is a shorter argument for the special case when the subsequence tnp is
arithmetic, tnp+1

= tnp
+ q, say. Along this subsequence we obtain

1 = lim
p→∞

xi(tnp+1
)yj(tnp+1

)
xi(tnp

)yj(tnp
)

= lim
p→∞

Π(tnp
, q) = ui(q)vj(q).

This yields bij(0) = bij(q), and B(0) = B(q). Thereafter the scaling process starts afresh,
and repeats itself until B(q) = B(2q). In the arithmetic case with increment q, the scaled
matrices B(z) return to their starting value B(0) after period q, and not only in the limit.

5. Investigation of the L1-Error. In the rest of the paper we assume equal component
sums of the marginals, r+ = s+ = h. Then, if some incremental divisors are larger than
unity, others must be smaller. Otherwise ρp(t) > 1 and ρq(t) ≥ 1 for all q 6= p entail a
contradiction, h =

∑
i≤k ai+(t + 1) =

∑
i≤k

∑
j≤` aij(t)/ρi(t) <

∑
j≤` a+j(t) = h.

The pattern of the positive entries in A now becomes essential. To monitor their
occurrence we associate with every row subset I the set of columns connected in A to I,
that is, the set of all columns containing a positive entry in some row of I,

JA(I) = { j ≤ `
∣∣ ∃i ∈ I: aij > 0 }.

The extreme settings provide simple examples. If I = ∅ then we obtain JA(I) = ∅. If
I = {1, . . . , k} then we get JA(I) = {1, . . . , `}, since no row nor column of A vanishes.
The complement JA(I)′ embraces the columns with entries aij = 0 for all i ∈ I, whence
we always have aI×JA(I)′ = 0.

We focus on steps t that are even, when current column sums attain the prespecified
column marginals. For even steps t we introduce the set U(t) of rows that are strictly
underweighted, and the set O(t) of rows that are strictly overweighted,

U(t) =
{

i ≤ k
∣∣ ai+(t) < ri

}
, O(t) =

{
i ≤ k

∣∣ ai+(t) > ri

}
.
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Lemma 4 (Bounds). For all even steps t, every row subset I ⊆ {1, . . . , k} with its
set JA(I) of columns connected in A to I bound the L1-error function from below via

f(t) ≥ rI − sJA(I).

Equality holds if and only if (i) the set I contains all currently underweighted rows and
no currently overweighted rows, U(t) ⊆ I ⊆ O(t)′, and (ii) the weight matrix A admits a
disconnectedness partition into

A =

( JA(I) JA(I)′

I P 0
I ′ 0 Q

)
.

Proof. Any two complementary row subsets I and I ′ satisfy
∑

i∈I

(
ai+(t)− ri

)
+

∑

i∈I′

(
ai+(t)− ri

)
=

∑

i≤k

(
ai+(t)− ri

)
= a++(t)− h = 0.

This gives rise to the identity
∑

i∈I′
(
ai+(t)− ri

)
=

∑
i∈I

(
ri − ai+(t)

)
.

Let step t be even, whence columns are fitted. The error function f(t) satisfies

f(t) =
1
2

(∑

i∈I

∣∣∣ai+(t)− ri

∣∣∣ +
∑

i∈I′

∣∣∣ai+(t)− ri

∣∣∣
)

≥ 1
2

(∑

i∈I

(
ri − ai+(t)

)
+

∑

i∈I′

(
ai+(t)− ri

))

=
∑

i∈I

(
ri − ai+(t)

)
.

Equality holds if and only if condition (i) applies.

We decompose the sum of weights,

∑

i∈I

(
ri − ai+(t)

)
= rI −


∑

i∈I

∑

j∈JA(I)

+
∑

i∈I

∑

j∈JA(I)′
+

∑

i∈I′

∑

j∈JA(I)

−
∑

i∈I′

∑

j∈JA(I)


 aij(t)

= rI − sJA(I) − aI×JA(I)′(t) + aI′×JA(I)(t)

≥ rI − sJA(I) − 0 + 0.

The last line uses aI×JA(I)′(t) = 0, induced by aI×JA(I)′ = 0. It also employs the estimate
aI′×JA(I)(t) ≥ 0, where equality holds if and only if condition (ii) applies.

We are now in a position to establish our main result, a formula for the minimum
L1-error. It relies on the marginal vectors r and s, and on the zero pattern of A.



On the Iterative Proportional Fitting procedure 19

Theorem 3 (Limit). The limit of the L1-error function is given by

lim
t→∞

f(t) = max
I⊆{1,...,k}

(
rI − sJA(I)

)
.

Proof. I. We set λ = limt→∞ f(t). Lemma 4 yields the inequality λ ≥ maxI⊆{1,...,k}(
rI−sJA(I)

)
. With the limit B = limn→∞A(tn) of some convergent subsequence along even

steps tn, we prove that its set of underweighted rows, UB =
{

i ≤ k
∣∣ bi+ < ri

}
, achieves

equality, λ = rUB
− sJA(UB). The case UB = ∅ is simple. Rows are matching, as are

columns. Hence B is a limit biproportional fit and the L1-error vanishes, λ = 0 = r∅ − s∅.

II. The case UB 6= ∅ is more complex. With all columns fitted, the L1-error in B origi-
nates exclusively from its rows and, by continuity, coincides with the minimum L1-error,

λ = lim
n→∞

f(tn) =
1
2

∑

i≤k

∣∣∣ lim
n→∞

ai+(tn)− ri

∣∣∣ =
1
2

∑

i≤k

∣∣∣bi+ − ri

∣∣∣ > 0.

As in Lemma 3 we decompose B into its connected components B(m), m = 1, . . . , K. We
have bi+ = sJm

rIm
ri < ri if and only if rIm > sJm . The underweighted rows are UB =⋃

m : rIm>sJm
Im. With L =

⋃
m : rIm>sJm

Jm the corresponding set of columns, we get

λ =
∑

i∈UB

(
ri − bi+

)
=

∑
m : rIm >sJm

∑

i∈Im

(
ri − sJm

rIm

ri

)
= rUB

− sL.

III. It remains to show that L coincides with the set JA(UB) of columns connected in
A to UB . The inclusion L ⊆ JA(UB) is immediate. All columns in L match their marginals
and contain a positive entry in some row of UB , as the rows not in UB cannot contribute.

The complementary inclusion L′ ⊆ JA(UB)′ needs proof. It means apq = 0, for every
p ∈ Im ⊆ UB and q ∈ JM ⊆ L′. By Lemma 3, the fitting of rows equips the columns in L

with divisors rIm/sIm > 1, whence they are overweighted in B(1). The complement L′

then comprises the columns that are matching or underweighted, rIM
≤ sJM

.

We claim that convergence of the incremental row divisors ρp(tn + z) to sJm

rIm
< 1 is

uniform over all future even steps z, as n tends to infinity. To this end we set r̃i = sJm

rIm
ri,

ρ̃i(t) = rIm

sJm
ρi(t), and σ̃j(t + 1) = sJm

rIm
σj(t + 1), for i ∈ Im and j ∈ Jm and m = 1, . . . , K.

Then ρ̃i(t) and σ̃j(t+1) are the incremental divisors for the fitting of A to r̃ = (r̃1, . . . , r̃k)
and to s. By Lemma 2(i), ρ̃min(t) and ρ̃max(t) are monotone. Now when ρ̃p(tn + z) ≥ 1,
then 0 ≤ ρ̃p(tn + z)− 1 ≤ ρ̃max(tn + z)− 1 ≤ ρ̃max(tn)− 1. Or when ρ̃p(tn + z) ≤ 1, then
0 ≤ 1− ρ̃p(tn + z) ≤ 1− ρ̃min(tn + z) ≤ 1− ρ̃min(tn). Together this yields

lim
n→∞

(
sup

z=0,2,4,...

∣∣∣ρ̃p(tn + z)− 1
∣∣∣
)
≤ lim

n→∞

(
ρ̃max(tn)− ρ̃min(tn)

)
= 1− 1 = 0.



20 Pukelsheim / Simeone

A similar uniformity statement holds for the convergence of the incremental column
divisors σq(tn+z+1) to rIM

sJM
≤ 1. For all ε > 0 with sJm

rIm
< 1−ε, there is thus some n0 such

that for all n ≥ n0 and for all even z we have ρp(tn + z) < 1− ε, and σq(tn + z +1) < 1+ ε.
From apq(tn) ≤ h and xp(tn)yq(tn) = xp(tn0

)yq(tn0
)
∏tn−tn0−2

z=0 ρp(tn0
+ z)σq(tn0

+ z + 1)
we finally get

apq ≤ h xp(tn0
)yq(tn0

) lim
n→∞

(
1− ε2

) tn−tn0
2 = 0.

This establishes L = JA(UB), and completes the proof.

6. Convergence of the IPF Procedure. We now exploit the formula for the mini-
mum L1-error to characterize convergence of the IPF procedure. Theorem 4 handles
general limit biproportional fits, Theorem 5 emphasizes those that are disconnected, and
Theorem 6 turns to limit biproportional fits that are connected and hence direct. As in
Section 5, we assume the components sums of the marginals to be the same, r+ = s+ = h.

Theorem 4 (Convergence). The following statements are equivalent:

(1) The IPF procedure converges.

(2) There exists a nonnegative k × ` matrix C = ((cij)) inheriting all zeros from A and
matching the prespecified marginals, that is, aij = 0 ⇒ cij = 0, and ci+ = ri and
c+j = sj, for all rows i ≤ k and for all columns j ≤ `.

(3) The partial sums of the marginals satisfy rI ≤ sJA(I) for all I ⊆ {1, . . . , k}.
(4) The L1-error function converges to zero.

Proof. (1) ⇒ (2). If the IPF procedure converges, then B = limt→∞A(t) clearly
qualifies for a matrix C as stipulated in (2).

(2) ⇒ (3). Since all zeros in A are forced upon C we have cI×JA(I)′ = 0, for all I ⊆
{1, . . . , k}. Nonnegativity of C then implies rI = cI×JA(I) ≤ cI×JA(I) + cI′×JA(I) = sJA(I).

(3) ⇒ (4). From (3) we get maxI⊆{1,...,k}
(
rI − sJA(I)

) ≤ 0, while for I = ∅ we have
r∅ − s∅ = 0. Hence Theorem 3 yields limt→∞ f(t) = 0.

(4) ⇒ (1). Let B be any accumulation point along a subsequence A(tn), n ≥ 1. The
L1-error of B is equal to limn→∞ f(tn) = 0. Hence, with rows and columns fitted, B is a
limit biproportional fit. Theorem 1 implies that the sequence A(t), t ≥ 1, has just a single
accumulation point, namely B, and hence converges to B.
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The theorem applies to the situation of Lemma 3, where an accumulation point B

is analyzed through its connected components B(m). Given this decomposition, let the
B-adjusted weight matrix Ã punch out the Im × Jm submatrices A(m) of A,

B =




J1 J2 · · · JK

I1 B(1) 0 · · · 0
I2 0 B(2) · · · 0
...

...
...

. . .
...

IK 0 0 · · · B(K)




, Ã =




J1 J2 · · · JK

I1 A(1) 0 · · · 0
I2 0 A(2) · · · 0
...

...
...

. . .
...

IK 0 0 · · · A(K)




.

We define the B-adjusted row marginals r̃ = (r̃1, . . . , r̃k) through r̃i = sJm

rIm
ri, for all i ∈ Im

and m = 1, . . . ,K. They have the same component sum as have the column marginals s.
Thus B is the limit biproportional fit, of the original weight matrix A to the B-adjusted
row marginals r̃ and to the original column marginals s. If the IPF procedure is run to
fit A to r̃ and to s, then it converges, by Theorem 4(2), and its limit is B, by Theorem 1.
Moreover, if the IPF procedure is employed to fit the B-adjusted weight matrix Ã to r̃ and
to s, then it also converges to B, by Theorem 4(2). Now B is the direct biproportional fit,
of Ã to r̃ and to s, by Theorem 2.*

In the present section we concentrate on the situations where a limit biproportional
fit B, of A to r and to s, exists. In these situations the limit B achieves the prespecified
marginals, and there is no need to consider any further adjustments of the row marginals.
However, the adjusted weight matrix Ã turns out to be quite helpful to understand the
disconnectness structure of B.

A cell (i, j) is called fading when aij > 0 and bij = 0. An off-diagonal block Im × Jp

is said to be fading when aIm×Jp > 0 and bIm×Jp = 0. Our next theorem states that, if B

is a limit biproportional fit of A and B is disconnected, then the positions of the fading
cells within the matrix A cannot be arbitrary, but satisfy certain specific restrictions. In
order to give a formal description of such restrictions, we introduce some graph-theoretical
definitions and notation.

Let us associate with the nonnegative matrix A the positive graph GA whose vertices
are the positive entries of A and where two positive entries are joined by a horizontal edge
when they belong to the same row, while they are joined by a vertical edge when they
belong to the same column. Notice that A is connected if and only if its positive graph

* The first IPF procedure generates the scaled matrices A(t), with Im × Jm submatrices (A(t))(m).
The second IPF procedure generates the scaled matrices (A(m))(t). These are two distinct entities, for
which Bacharach (1970, page 53) uses the same notation A2t

kk rather than distinguishing between (A2t)kk

and (Akk)2t. Bacharach’s “proof by notation” is inconclusive, or so it would seem to us.
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GA is connected, that is, if any two of its vertices are connected by a path. Such paths
can be always assumed to be alternating, that is, horizontal and vertical edges alternate
along it. The length of a path is the number of edges along it. A path or a cycle is said to
be even when its length is even. A nasty cycle is defined to be any even alternating cycle
of GA whose fading cells are at even distance from each other along the cycle.

Let us further associate with A and B the directed graph GAB whose vertices are
the connected components of B and where there is an arc from B(p) to B(m) when the
off-diagonal block Im× Jp is fading, aIm×Jp

> 0 and bIm×Jp
= 0. The directed graph GAB

is called the fade digraph associated with A and B. Notice that the two blocks B(p) and
B(m) are uniquely associated with the off-diagonal block Im × Jp. When B is connected,
GAB is the trivial graph with one vertex.

Finally, let π be a permutation of the rows of B, and τ be a permutation of the columns.
The pair (π, τ) is called diagonal provided there exists a permutation γ of {1, . . . , K} such
that π(Im) = Iγ(m) and τ(Jm) = Jγ(m), for all m = 1, . . . , K.

Theorem 5 (Fading Blocks). The following statements are equivalent:

(1) B is a limit biproportional fit of A.

(2) In the positive graph GA there is no nasty cycle.

(3) The fade digraph GAB has no circuit.

(4) There is a diagonal pair of row and column permutations that makes the matrix A

lower block-diagonal.

Proof. Let us firstly dispose of the case when B is connected. Then from Theorem 2
we know that B is a direct biproportional fit, so (1) holds true. On the other hand, for
K = 1 the conditions (2) and (3) trivially hold. So, in the sequel of the proof we may
focus on the case when B is disconnected, that is, K ≥ 2.

(1) ⇒ (2). Let B be a limit biproportional fit. Suppose that a nasty cycle (i1, j1),
(i2, j1), (i2, j2), . . . , (iq, jq), (i1, jq) exists in GA, with a fading initial cell (i1, j1). We get

∏
p≤q aipjp+1∏
p≤q aipjp

=

∏
p≤q aipjp+1

(t)∏
p≤q aipjp(t)

=

∏
p≤q bipjp+1∏
p≤q bipjp

, (∗)

(where we have set jq+1 = j1), since the IPF procedure preserves the initial ratio along all
steps t through to the limit. Fading cells contribute zeros only to the numerators. But (∗)
is a contradiction, as the initial ratio is positive while the limiting ratio is zero.
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(2) ⇒ (3). Within any connected component B(m), given any row i and any column j,
there is always an even alternating path in GA connecting some entry in row i with some
entry in column j. We may then do surgery on the cycle to bypass unwanted portions.
Thus we may assume that if the cycle enters and exits some block, it does so just once.
Along the cycle, since all fading cells are at even distance from each other, the subpath
connecting two consecutive diagonal blocks B(p) and B(m) must consist of a single entry,
which necessarily belongs to the off-diagonal block Im × Jp. Then each fading cell of the
cycle gives rise to an arc in GAB . Hence the nasty cycle in GA induces a circuit in GAB .

(3) ⇒ (4). Let the diagonal blocks of B be numbered according to a topological
sorting of GAB (a numbering of the vertices such that each arc is directed from a lower-
numbered vertex to a higher-numbered vertex)—always existing in an acyclic digraph.
Then all arcs go from some component B(p) to some B(m) with m > p. This implies that
the connecting off-diagonal fading block Im × Jp is located below the diagonal.

(4) ⇒ (1). Each component B(m), being the direct biproportional fit of A(m), comes
with appropriate divisors ui and vj . They give rise to cumulative divisors for the grand
problem, xi(t) = uit

−m and yj(t) = vjt
p, for all i ∈ Im and j ∈ Jp and m, p = 1, . . . , K.

We now get aij(t) = bij if (i, j) belongs to a connected component (m = p). If (i, j) belongs
to an off-diagonal block Im × Jp with m > p, we obtain aij(t) = bijt

−(m−p) → 0.

Theorem 6 (Directness). Suppose A is connected and a limit biproportional fit B

exists. Then the following statements are equivalent:

(1) B is a direct biproportional fit.

(2) There exists a nonnegative k × ` matrix C = ((cij)) having the same zeros as A and
matching the prespecified marginals, that is, aij = 0 ⇔ cij = 0, and ci+ = ri and
c+j = sj, for all rows i ≤ k and for all columns j ≤ `.

(3) The partial sums of the marginals satisfy rI < sJA(I) for all row subsets I that are
nonempty and proper, ∅⊂6=I ⊂6={1, . . . , k}.

Proof. (1) ⇒ (2). If B is a direct biproportional fit, then it clearly qualifies for a
matrix C as stipulated in (2).

(2) ⇒ (3). Let I be a nonempty and proper row subset. The definition of JA(I)
means aI×JA(I)′ = 0 which, in turn, forces cI×JA(I)′ = 0. This implies cI′×JA(I) > 0, as
otherwise C would be disconnected and so would be A, contrary to assumption. We get
rI = cI×JA(I) < cI×JA(I) + cI′×JA(I) = sJA(I).
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(3) ⇒ (1). I. We first observe that if the strict inequalities in (3) are satisfied, then
so are the inequalities in Theorem 4(3), since the cases I = ∅ and I = {1, . . . , k} hold with
equality. By Theorem 4, B is a limit biproportional fit. The proof goes on by contra-
position, assuming the limit biproportional fit B not to be direct. Since A is connected,
Theorem 2 says that B is disconnected. Hence B has K ≥ 2 connected components.

II. We next assume that for every m ∈ {1, . . . , K} there is a p(m) 6= m such that the
block Im × Jp(m) is fading. Under this assumption we carry out a scanning process, as
follows. We set m1 = 1 and declare block Im1

× Jm1
scanned. With successor m2 = p(m1)

we pass the fading block Im1
× Jm2

and scan block Im2
× Jm2

. Setting m3 = p(m2)
we transit Im2

× Jm3
to scan Im3

× Jm3
, etc. The scanning process terminates with mF

as soon as its successor, mS = p(mF ) say, is found scanned already. There are just K

components, whence F ≤ K. Discarding the initial section m1, . . . , mS−1 we retain the
subsequent path, from starting index mS up to finishing index mF . The path consists of
q = F − S + 1 ∈ {2, . . . , K} vertices, which we re-label m1, . . . , mq.

The path gives rise to a circuit with 2q vertices in the fade digraph GAB , alternating
between on-diagonal blocks Imp × Jmp and fading blocks Imp × Jmp+1

, for p = 1, . . . , q

(setting mq+1 = m1). By Theorem 5, the existence of such circuit contradicts the fact
that B is a limit biproportional fit. Hence the assumption that every m ∈ {1, . . . , K}
comes with a fading block Im × Jp(m) leads to a contradiction and cannot materialize.

III. The complementary assumption says that for some m ∈ {1, . . . , K} we have
aIm×Jm

′ = 0. Then Jm are the columns connected in A to Im, Jm = JA(Im). But B fits
its marginals, whence rIm = sJm . We get rIm = sJA(Im), an identity negating (3).

In the case when all weights in the matrix A are positive, every nonempty and proper
row subset I has JA(I) = {1, . . . , `} and rI − sJA(I) = rI − h < 0. Theorem 4(3) states
that the IPF procedure converges to the limit biproportional fit. Theorem 6(3) adds that
the fit is direct, in this case.
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