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LOCAL MULTILEVEL METHODS FOR ADAPTIVE
NONCONFORMING FINITE ELEMENT METHODS

XUEJUN XU, HUANGXIN CHEN, AND RONALD H.W. HOPPE

Abstract. In this paper, we propose a local multilevel product algorithm
and its additive version for linear systems arising from adaptive nonconforming
finite element approximations of second order elliptic boundary value problems.
The abstract Schwarz theory is applied to analyze the multilevel methods with
Jacobi or Gauss-Seidel smoothers performed on local nodes on coarse meshes
and global nodes on the finest mesh. It is shown that the local multilevel
methods are optimal, i.e., the convergence rate of the multilevel methods is
independent of the mesh sizes and mesh levels. Numerical experiments are
given to confirm the theoretical results.

.

Introduction

Multigrid methods and other multilevel preconditioning methods for noncon-
forming finite elements have been studied by many researchers (cf. [4], [5], [6], [7],
[14], [18], [19], [20], [21], [23], [26], [27], [28],[32], [34]). The BPX framework devel-
oped in [4] provides a unified convergence analysis for nonnested multigrid methods.
Duan et al. [14] extended the result to general V-cycle nonnested multigrid meth-
ods, but only the case of full elliptic regularity was considered. Besides, Brenner [7]
established a framework for the nonconforming V-cycle multigrid method under less
restrictive regularity assumptions. For multilevel preconditioning methods, Oswald
developed a hierarchical basis multilevel method [19] and a BPX-type multilevel
preconditioner [20] for nonconforming finite elements. Vassilevski and Wang [26]
presented some multilevel algorithms for nonconforming finite element methods
and obtained a uniform convergence result without additional regularity beyond
H1. Furthermore, Hoppe and Wohlmuth [15] considered multilevel preconditioned
conjugate gradient methods for nonconforming P1 finite element approximations
with respect to adaptively generated hierarchies of nonuniform meshes based on
residual type a posteriori error estimators.

Recent studies (cf., e.g., [2], [10], [11], [17], [24]) indicate optimal convergence
properties of adaptive conforming and nonconforming finite element methods. There-
fore, in order to achieve an optimal numerical solution, it is imperative to study
efficient iterative algorithms for the solution of linear systems arising from adaptive
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finite element methods (AFEM). Since the number of degrees of freedom N per
level may not grow exponentially with mesh levels, as Mitchell has pointed out in
[16] for adaptive conforming finite element methods, the number of operations used
for multigrid methods with smoothers performed on all nodes can be as bad as
O(N2), and a similar situation may also occur in the nonconforming case.

For adaptive conforming finite element methods, Wu and Chen [29] have ob-
tained uniform convergence for the multigrid V-cycle algorithm which performs
Gauss-Seidel smoothing on newly generated nodes and those old nodes where the
support of the associated nodal basis function has changed. To our knowledge, so
far there does not exist an optimal multilevel method for nonconforming finite ele-
ment methods on locally refined meshes. The reason is that the theoretical analysis
for the local multilevel methods is rather difficult. Indeed, there are two difficulties
which need to be overcome. First, the Xu and Zikatanov identity [31], on which the
proof in [29] depends, can not be applied directly, because the multilevel spaces are
nonnested in this situation. The second difficulty is how to establish the strength-
ened Cauchy-Schwarz inequality on nonnested multilevel spaces. In this paper, we
will construct a special prolongation operator from the coarse space to the finest
space, and obtain the key global strengthened Cauchy-Schwarz inequality. Two
multilevel methods, the product and additive version, are proposed. Applying the
well-known Schwarz theory (cf. [25]), we show that local multilevel methods for
adaptive nonconforming finite element methods are optimal, i.e., the convergence
rate of the multilevel algorithms is independent of mesh sizes and mesh levels.

The remainder of this paper is organized as follows: In section 2, we introduce
some notations and briefly review nonconforming P1 finite element methods. Sec-
tion 3 is concerned with the study of condition number estimates of linear systems
arising from adaptive nonconforming finite element methods by applying the tech-
niques presented by Bank and Scott in [1]. The following section 4 is devoted to
the derivation of a local multilevel product algorithm and its additive version. In
section 5, we develop an abstract Schwarz theory based on three assumptions whose
verification is carried out for local Jacobi and local Gauss-Seidel smoothers, respec-
tively. Finally, in the last section we give some numerical experiments to confirm
the theoretical analysis.

1. Notations and Preliminaries

Throughout this paper, we adopt standard notation from Lebesgue and Sobolev
space theory (cf., e.g., [13]). In particular, we refer to (·, ·) as the inner product
in L2(Ω) and to ‖ · ‖1,Ω as the norm in the Sobolev space H1(Ω). We further
use A . B, if A ≤ CB with a positive constant C depending only on the shape
regularity of the meshes. A ≈ B stands for A . B . A. We consider elliptic
boundary value problems in polyhedral domains Ω ⊂ Rn, n ≥ 2. However, for the
sake of simplicity the analysis of local multilevel methods will be restricted to the
2D case.

Given a bounded, polygonal domain Ω ⊂ R2, we consider the following second
order elliptic boundary value problem

Lu := −div(a(x)∇u) = f in Ω,(1.1)

u = 0 on ∂Ω.(1.2)
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The choice of a homogeneous Dirichlet boundary condition is made for ease of
presentation only. Similar results are valid for other types of boundary conditions
and equation (1.1) with a lower order term as well. We further assume that the
coefficient functions in (1.1) satisfy the following properties:
(a) a(·) is a measurable function and there exist constants β1 ≥ β0 > 0 such that

β0 ≤ a(x) ≤ β1 f.a.a. x ∈ Ω;(1.3)

(b) f ∈ L2(Ω).

The weak formulation of (1.1) and (1.2) is to find u ∈ V := H1
0 (Ω) such that

a(u, v) = (f, v) , v ∈ V,(1.4)

where the bilinear form a : V × V → R is given by

a(u, v) = (a∇u,∇v) , u, v ∈ V.(1.5)

Since the bilinear form (1.5) is bounded and V -elliptic, the existence and unique-
ness of the solution of (1.4) follows from the Lax-Milgram theorem.

Throughout this paper, we work with families of shape regular meshes {Ti, i =
0, 1, ..., J}, where T0 is an intentionally chosen coarse initial triangulation, the oth-
ers are obtained by adaptive procedures, refined by the newest vertex bisection
algorithm. It has been proved that there exists a constant θ > 0 such that

θT ≥ θ , T ∈ Ti, i = 1, 2, ...,(1.6)

where θT is the minimum angle of the element T . The set of edges on Ti is denoted
by Ei, and the set of interior and boundary edges by E0

i and E∂Ω
i , respectively.

Correspondingly, let Mi denote all the middle points of Ei and M0
i be the middle

points of E0
i . We refer to Ni as the set of interior nodes of Ti. For any E ∈ Ei, hi,E

and mi,E denote the length and the midpoint of E. The patch ωi,E , E ∈ E0
i , is the

union of two elements in Ti sharing E. For any T ∈ Ti, hi,T and xT stand for the
diameter and the barycenter of T .

We denote by VJ the lowest order nonconforming Crouzeix-Raviart finite element
space with respect to TJ , i.e.,

VJ = {vJ ∈ L2(Ω) | vJ |T ∈ P1(T ), T ∈ TJ ,

∫

E

[vJ ]ds = 0, E ∈ EJ}.

Here, [vJ ]|E refers to the jump of vJ across E ∈ E0
J and is set to zero for E ∈ E∂Ω

J .
Moreover, we define the conforming P1 finite element space by

V c
J = {vc

J ∈ V | vc
J |T ∈ P1(T ), T ∈ TJ}.

The nonconforming finite element approximation of (1.4) is to find uJ ∈ VJ such
that

aJ(uJ , vJ ) = (f, vJ) , vJ ∈ VJ ,(1.7)

where aJ (·, ·) stands for the mesh-dependent bilinear form

aJ(uJ , vJ) =
∑

T∈TJ

(a∇uJ ,∇vJ )0,T .(1.8)
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Existence and uniqueness of the solution uJ again follows from the Lax-Milgram
theorem. In the sequel, we refer to ‖ · ‖1,J as the mesh-dependent energy norm

‖vJ‖21,J =
∑

T∈TJ

‖vJ‖21,T .

For brevity, we will drop the subscript J from some of the above quantities, if
no confusion is possible, e.g., we will write hT instead of hJ,T and a(·, ·) instead of
aJ(·, ·).

2. Condition number estimate

The computation of the solution uJ of (1.7) always requires to solve a matrix
equation using a particular basis for VJ . Suppose that {φi, i = 1, ..., N} is a given
basis for VJ , where N is the dimension of VJ , and define the matrix A and the
vector F according to

Aij := a(φi, φj) and Fi := (f, φi) , i, j = 1, ..., N.

Then, equation (1.7) is equivalent to the linear algebraic system

AX = F,(2.1)

where uJ =
∑N

i=1 uiφi and X = (ui).
In this section, we will not restrict ourselves to the two-dimensional case, but

consider domains Ω ⊂ Rn, n ≥ 2. We will specify conditions on VJ and the basis
{φi, i = 1, ..., N} that will allow us to establish upper bounds for the condition
number of A.

We assume that TJ contains at most α
n/2
1 N elements, with α1 denoting a fixed

constant. The following estimates hold true (cf., e.g., [13]):

‖v‖21,T . hn−2
T ‖v‖2L∞(T ) . ‖v‖2L2n/(n−2)(T ) , T ∈ TJ , v ∈ VJ , n ≥ 3.(2.2)

In the special case of two dimensions (n = 2), we supplement the following inequal-
ity to the latter one in (2.2),

‖v‖L∞(T ) . h
−2/p
T ‖v‖Lp(T ) , T ∈ TJ , v ∈ VJ , 1 ≤ p ≤ ∞.(2.3)

Under the assumptions on the domain Ω, there exists a continuous embedding
H1(Ω) ↪→ Lp(Ω). For n ≥ 3, Sobolev’s inequality

‖v‖L2n/(n−2)(Ω) ≤ C‖v‖1,Ω , v ∈ H1(Ω).(2.4)

holds true. In two dimensions, we have a more explicit estimate (cf., e.g., [1])

‖v‖Lp(Ω) ≤ C
√

p‖v‖1,Ω , v ∈ H1(Ω) , p < ∞.(2.5)

As far as the basis {φi, i = 1, ..., N} of VJ is concerned, we assume that it is a local
basis:

max
1≤i≤N

cardinality{T ∈ TJ : supp(φi) ∩ T 6= ∅} ≤ α2.(2.6)

Finally, we impose a more important assumption with regard to the scaling of the
basis:

hn−2
T ‖v‖2L∞(T ) .

∑

supp(φi)∩T 6=∅
v2

i . hn−2
T ‖v‖2L∞(T ) , T ∈ TJ ,(2.7)
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where v =
∑N

i=1 viφi and (vi) is arbitrary. For instance, if {ψi, i = 1, ..., N} denote
the Crouzeix-Raviart P1 nonconforming basis functions, we define a new scaled
basis {φi, i = 1, ..., N} by

φi := h
(2−n)/2
i ψi,

where hi is the diameter of the support of ψi. Then, the new basis satisfies as-
sumption (2.7). We also impose the same assumption (2.7) for the conforming
finite element basis, when utilized in the sequel.

For the analysis of the condition number, we propose a prolongation operator
from VJ to Ṽ c

J+1, where Ṽ c
J+1 is the conforming finite element space based on T̃J+1.

T̃J+1 is an auxiliary triangulation, only used in the analysis, which is obtained from
TJ by subdividing each T ∈ TJ into 2n simplices by joining the midpoints of the
edges. We refer to T as an element in TJ with vertices xk, k = 1, ..., n + 1, and
denote the midpoints of its edges by m1, ..., ms, where s is the number of edges of
T , e.g., s = 3 if n = 2.

In case n = 2, the prolongation operator IJ+1
J : VJ → Ṽ c

J+1 is defined by

IJ+1
J v(ml) = v(ml) , l = 1, ..., 3 , IJ+1

J v(xk) = βk , k = 1, ..., 3,

where βk is the average of v in xk. Moreover, IJ+1
J (xk) = 0, if xk is located on

the Dirichlet boundary. The stability analysis of IJ+1
J has been derived when T̃J+1

is obtained from TJ by the above bisection algorithm. In the AFEM procedures
we use the newest vertex bisection algorithm. The associated stability analysis of
Ii
i−1, i = 1, ..., J , will be given in the appendix of this paper.

As in the case n ≥ 3, we define IJ+1
J : VJ → Ṽ c

J+1 according to

IJ+1
J v(ml) = αl , l = 1, ..., s , IJ+1

J v(xk) = βk , k = 1, ..., n + 1,

where αl and βk are the averages of v at ml and xk respectively. IJ+1
J (xk) = 0 or

IJ+1
J (ml) = 0, if xk or ml is situated on the Dirichlet boundary. The associated

stability analysis of IJ+1
J can be obtained analogously.

We now give bounds on the condition number of the matrix A := (a(φi, φj)),
where {φi, i = 1, ..., N} is the scaled basis for VJ satisfying the above assumptions.

In the general case n ≥ 3, we have the following result.

Theorem 2.1. Suppose that the nonconforming finite element space VJ satisfies
(2.2) and the basis {φi, i = 1, ..., N} satisfies (2.6) and (2.7). Then, the `2-condition
number K2(A) of A is bounded by

K2(A) . N2/n.(2.8)

Proof. We set v =
∑N

i=1 viφi, then

a(v, v) = XtAX,

where X = (vi). By a similar technique as in the proof of Theorem 4.1 in [1], we
have

a(v, v) . XtX.

On the other hand, we apply the prolongation operator IJ+1
J to v, and set

IJ+1
J v =

∑

xi∈NJ+1(T̃J+1)

IJ+1
J v(xi)φ̃i,J+1,
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where {φ̃i,J+1} is the conforming finite element basis of Ṽ c
J+1. By Hölder’s in-

equality, Sobolev’s inequality, and the stability of IJ+1
J , we derive a complementary

inequality according to

XtX ≤
∑

T∈T̃J+1

∑

supp(φi,J+1)∩T 6=∅
IJ+1
J v2(xi) .

∑

T∈T̃J+1

hn−2
T ‖IJ+1

J v‖2L∞(T )

.
∑

T∈T̃J+1

‖IJ+1
J v‖2L2n/(n−2)(T ) . N2/n‖IJ+1

J v‖2L2n/(n−2)(Ω)

. N2/n‖IJ+1
J v‖21,Ω . N2/n‖v‖21,J . N2/na(v, v).

Using the above estimates, we obtain

N−2/nXtX . XtAX . XtX,

which implies that

N−2/n . λmin(A) and λmax(A) . 1.

Recalling
K2(A) = λmax(A)/λmin(A),

the above two estimates yield (2.8). ¤

In the special case n = 2, a similar result can be deduced as follows.

Theorem 2.2. Suppose that the nonconforming finite element space VJ satisfies
(2.2) and (2.3), and that the basis {φi, i = 1, ..., N} satisfies (2.6) and (2.7). Then,
the `2-condition number K2(A) of A is bounded by

K2(A) . N(1 + |log(Nh2
min(EJ))|).(2.9)

Proof. As in the proof of the above theorem, it suffices to show that

N(1 + |log(Nh2
min(EJ))|)−1XtX . XtAX . XtX.(2.10)

We set v =
∑N

i=1 viφi, X = (vi) and a(v, v) = XtAX. Then, a(v, v) . XtX holds
true as in Theorem 5.1 in [1].

As far as the lower bound in (2.10) is concerned, as in the proof of Theorem 2.1
we have (p > 2)

XtX ≤
∑

T∈T̃J+1

∑

supp(φi,J+1)∩T 6=∅
IJ+1
J v2(xi) .

∑

T∈T̃J+1

‖IJ+1
J v‖2L∞(T )

.
∑

T∈T̃J+1

h
−4/p
T ‖IJ+1

J v‖2Lp(T ) . (
∑

T∈T̃J+1

h
−4/(p−2)
T )(p−2)/p‖IJ+1

J v‖2Lp(T )

. (
∑

T∈T̃J+1

h
−4/(p−2)
T )(p−2)/pp ‖IJ+1

J v‖21,T . (
∑

T∈T̃J+1

h
−4/(p−2)
T )(p−2)/pp a(v, v)

. N(Nh2
min(EJ))−2/pp a(v, v).

The special choice p = max{2, |log(Nh2
min(EJ))|} allows to conclude. ¤

For a fixed triangulation, the conforming P1 finite element space is contained in
the nonconforming P1 finite element space. Hence, the sharpness of the bounds in
Theorem 2.2 can be verified by the same example as in [1].
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3. Local multilevel methods

The above section clearly shows that for the solution of a large scale problem
the convergence of standard iterations such as Gauss-Seidel or CG will become
very slow. This motivates the construction of more efficient iterative algorithms
for those algebraic systems resulting from adaptive nonconforming finite element
approximations.

We will derive our local multilevel methods for adaptive nonconforming finite
element discretizations based on the Crouzeix-Raviart elements. As a prerequisite,
we again use the prolongation operator Ii

i−1 : Vi−1 → Vi defined as in section 2.
Now, Ti represents a refinement of Ti−1 by the newest vertex bisection algorithm,
Ii
i−1 defines the values of Ii

i−1v at the vertices of elements of level i, yielding a
continuous piecewise linear function on Ti. Ii

i−1v being a function in Vi, it naturally
represents a function in the finest space VJ . Hence, the operator Ii−1 given by

Ii−1v := Ii
i−1v , v ∈ Vi−1,

defines an intergrid operator from Vi−1 to VJ .
For 0 ≤ i ≤ J , we define Ai : Vi → Vi by means of

(Aiv, w) = ai(v, w) , w ∈ Vi.

We also define projections Pi, P 0
i : VJ → Vi according to

ai(Piv, w) = a(v, Iiw) , (P 0
i v, w) = (v, Iiw) , v ∈ VJ , w ∈ Vi.

For any node z ∈ Ni, we use the notation ϕz
i to represent the associated nodal

conforming basis function of V c
i . Let Ñ c

i be the set of new nodes and those old
nodes where the support of the associated basis function has changed, i.e.,

Ñ c
i = {z ∈ Ni : z ∈ Ni \ Ni−1 or z ∈ Ni−1 but ϕz

i 6= ϕz
i−1}.

Let M̃i represent the set of midpoints on which local smoothers are performed:

M̃i := {mi,E ∈Mi : mi,E ∈M0
i (T̂i)},

where T̂i =
⋃

xz
i∈Ñ c

i
{supp(ϕz

i )}.
For convenience, we set M̃i = {mk

i , k = 1, ..., ñi} ,where ñi is the cardinality of

M̃i, and refer to φk
i = φ

mk
i

i as the Crouzeix-Raviart nonconforming finite element
basis function associated with mk

i . Then, for k = 1, ..., ñi let P k
i , Qk

i : Vi → V k
i =

span{φk
i } be defined by

ai(P k
i v, φk

i ) = ai(v, φk
i ) , (Qk

i v, φk
i ) = (v, φk

i ) , v ∈ Vi ,

and let Ak
i : V k

i → V k
i be defined by

(Ak
i v, φk

i ) = ai(v, φk
i ) , v ∈ V k

i .

It is easy to see that the following relationship holds true:

Ak
i P k

i = Qk
i Ai.(3.1)

We assume that the local smoothing operator Ri : Vi → Vi is nonnegative,
symmetric or nonsymmetric with respect to the inner product (·, ·). It will be
precisely defined and further studied in section 4. For i = 1, ..., J − 1, Ri is only
performed on local midpoints M̃i (we refer to Figure 1 for an illustration). R0

is solved directly, i.e., R0 = A−1
0 . On the finest level, RJ is carried out on all
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Figure 1. Coarse mesh (left), fine mesh (right) and illustration of

M̃i: the big nodes on the right refer to Ñi, the small nodes refer to
M̃i, i = 1, ..., J − 1.

midpoints M0
J , i.e., ñJ = #M0

J . For simplicity, we set A = AJ and denote by IJ

and PJ the identity operator on the finest space VJ . We set

Si := IiRiAiPi , i = 0, 1, ..., J.

Now, we scale Si as follows:

Ti := µJ,iSi , i = 0, 1, ..., J.(3.2)

where µJ,i > 0 is a parameter, independent of mesh sizes and mesh levels, chosen
to satisfy

a(Tiv, Tiv) ≤ ωi a(Tiv, v) , v ∈ VJ , wi < 2.

We will also drop the subscript J from µJ,i since no confusion is possible in the
convergence analysis.

With the sequences of operators {Ti, i = 0, 1, ..., J}, we can now state the local
multilevel algorithm for adaptive nonconforming finite element methods as follows.

Algorithm 3.1. Local multilevel product algorithm (LMPA)

Given an arbitrarily chosen initial iterate u0 ∈ VJ , we seek un ∈ VJ as follows:
(i) Let v0 = un−1. For i = 0, 1, ..., J , compute vi+1 by

vi+1 = vi + Ti(uJ − vi).(3.3)

(ii) Set un = vJ+1.

Algorithm 3.2. Local multilevel additive algorithm (LMAA)

Let T =
∑J

i=0 Ti and let uJ be the exact solution of (1.7). Find ũJ ∈ VJ such that

T ũJ = f̃ ,(3.4)

where f̃ =
∑J

i=0 TiuJ .
In view of the operator equation

AiPi = P 0
i A,

the function f̃ in (3.4) is formally defined by the exact finite element solution uJ

which can be computed directly, and so does the iteration (3.3).
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Obviously, there exists a unique solution ũJ of (3.4) coinciding with uJ for (1.7).
The conjugate-gradient method can be used to solve the new problem, if T is
symmetric. We can also apply the conjugate-gradient method to the symmetric
version of LMAA (SLMAA) by solving

(T + T ∗)
2

ũJ = f̂

instead of (3.4), where f̂ =
∑J

i=0
(Ti+T∗i )

2 uJ and T ∗ denotes the adjoint operator
of T with respect to the inner product a(·, ·).

4. Convergence theory

In this section, we provide an abstract theory concerned with the convergence
of local multilevel methods for linear systems arising from adaptive nonconforming
finite element methods. We will use the well-known Schwarz theory developed in
[25], [30] and [35] to analyze the algorithms.

Let {Ti, i = 0, 1, ..., J} be a sequence of operators from the finest space VJ to
itself. The abstract theory provides an estimate for the norm of the error operator

E = (I − TJ ) · · · (I − T1)(I − T0) =
J∏

i=0

(I − Ti),

where I is the identity operator in VJ . The convergence estimate for the algorithm
LMPA is then obtained by the norm estimate for E. The abstract theory can be
invoked due to the following assumptions.
(A1). Each operator Ti is nonnegative with respect to the inner product a(·, ·),
and there exists a positive constant ωi < 2, which depends on µi, such that

a(Tiv, Tiv) ≤ ωi a(Tiv, v) , v ∈ VJ .

(A2). Stability: There exists a constant K0 such that

a(v, v) ≤ K0

µ
a(Tv, v) , v ∈ VJ ,

where µ = min0≤i≤J{µi}.
(A3). Global strengthened Cauchy-Schwarz inequality: There exists a con-
stant K1 such that

J∑

i=0

i−1∑

j=0

a(Tiv, Tju) ≤ K1(
J∑

i=0

a(Tiv, v))1/2(
J∑

j=0

a(Tju, u))1/2 , v, u ∈ VJ .

As in the proof of (4.1) in [33], it is easy to show that the following inequality
holds true for the algorithms LMPA and LMAA with local smoothers chosen as
Jacobi or Gauss-Seidel iterations (especially K2 = 1 in the Jacobi case):

J∑

i=0

a(Tiv, u) ≤ K2(
J∑

i=0

a(Tiv, v))1/2(
J∑

i=0

a(Tiu, u))1/2 , v, u ∈ VJ .(4.1)

Theorem 4.1. Let the assumptions A1-A3 be satisfied. Then, for the algorithm
3.1 the norm of the error operator E can be bounded as follows (cf. [25], [30], [35])

a(Ev,Ev) ≤ δ a(v, v) , v ∈ VJ ,

where δ = 1− µ(2−ω)
K0(K1+K2)2

, ω = max0≤i≤J{ωi}.
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For the additive multilevel algorithm 3.2, the following theorem provides a spec-
tral estimate for the operator T =

∑J
i=0 Ti when T is symmetric with respect to

the inner product a(·, ·).
Theorem 4.2. If T is symmetric with respect to a(·, ·) and assumptions A1-A3 hold
true, then we have (cf. [25], [30], [35])

µ

K0
a(v, v) ≤ a(Tv, v) ≤ (2K1 + ω) a(v, v) , v ∈ VJ .

When T is nonsymmetric with respect to a(·, ·), similar analysis can be done for
the spectral estimate of the symmetric part T+T∗

2 .
Remark 5.1. It should be pointed out that the convergence result for LMPA

or for the preconditioned conjugate gradient method by LMAA depends on the
parameter µ, which will be observed in our numerical experiments. The convergence
rate deteriorates for decreasing µ.

Next, we will apply the above convergence theory to LMPA and LMAA by ver-
ifying assumptions A1-A3 for the adaptive nonconforming finite element method.
There are two classes of smoothers Ri, Jacobi and Gauss-Seidel iterations, which
will be considered separately.

4.1. Local Jacobi smoother. First, for v ∈ VJ we consider the decomposition

v =
J∑

i=0

vi , vJ = v − ṽ , vi = (Πi −Πi−1)ṽ , i = 0, 1, ..., J − 1,(4.2)

where ṽ = Π̃J−1v and Π̃J−1v represents a local regularization of v in V c
J−1 (c.f. [9]),

e.g., by a Clément-type interpolation. Πi : V c
J−1 → V c

i stands for the Scott-Zhang
interpolation operator [22].

The local Jacobi smoother is defined as an additive smoother (cf. [3]):

Ri := γ

ñi∑

k=1

(Ak
i )−1Qk

i ,(4.3)

where γ is a suitably chosen positive scaling factor. Due to (3.1), we have

T0 = µ0I0P0 , Ti = µiIiRiAiPi = µiγIi

ñi∑

k=1

P k
i Pi , i = 1, ..., J.(4.4)

4.1.1. Verification of assumption A1.

Lemma 4.1. Let Ti, i ≥ 0, be defined by (4.4). Then, we have

a(Tiv, Tiv) ≤ ωi a(Tiv, v) , v ∈ VJ , ωi < 2.

Moreover, Ti is symmetric and nonnegative in VJ . Therefore, assumption A1 is
satisfied.

Proof. Following (4.4), for v, w ∈ VJ we deduce

a(Tiv, w) = a(µiIiRiAiPiv, w) = ai(µiRiAiPiv, Piw) = (µiRiAiPiv, AiPiw).

In view of the definition of Ri in (4.3), we can easily see that Ri is symmetric and
nonnegative in Vi. Hence, Ti is symmetric and nonnegative in VJ .

It is easy to show that the stated result holds true for T0. Actually, we have

a(T0v, T0v) ≤ µ2
0C0a0(P0v, P0v) = µ0C0a(T0v, v).
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Let ω0 = µ0C0. We choose µ0 < 2/C0 such that ω0 < 2.
For Ti, i ≥ 1, we set

Kk
i = {Pm

i : supp(IiP
k
i v) ∩ supp(IiP

m
i v) 6= ∅ , v ∈ Vi}

and

γk,m =

{
1 if supp(IiP

k
i v) ∩ supp(IiP

m
i v) 6= ∅ ,

0 otherwise .

The cardinality of Kk
i is bounded by a constant depending only on the minimum

angle θ in (1.6). For v ∈ Vi, i = 1, . . . , J , Hölder’s inequality implies

ñi∑

k,m=1

|a(IiP
k
i v, IiP

m
i v)| =

ñi∑

k,m=1

γk,m|a(IiP
k
i v, IiP

m
i v)|(4.5)

≤
ñi∑

k,m=1

γk,m|a(IiP
k
i v, IiP

k
i v)| ≤ Ci

ñi∑

k=1

a(IiP
k
i v, IiP

k
i v).

Taking advantage of the definition of Ti in (4.4), (4.5), and the stability of Ii,
for v ∈ VJ we have

a(Tiv, Tiv) = µ2
i γ

2a(
ñi∑

k=1

IiP
k
i Piv,

ñi∑

k=1

IiP
k
i Piv)

≤ µ2
i γ

2
ñi∑

k,m=1

|a(IiP
k
i Piv, IiP

m
i Piv)|

≤ µ2
i γ

2Ci

ñi∑

k=1

a(IiP
k
i Piv, IiP

k
i Piv)

≤ µ2
i γ

2C0Ci

ñi∑

k=1

ai(P k
i Piv, P k

i Piv)

= µ2
i γ

2C0Ci

ñi∑

k=1

a(IiP
k
i Piv, v) = µiγC0Cia(Tiv, v).

The proof is completed by setting ωi = µiγC0Ci and choosing

0 < γ < 1 and 0 < µi <
2

γC0Ci
(4.6)

such that ωi < 2.
We remark that due to the fact that IJ is the identity we may choose µJ = 1

and 0 < γ < 1 such that ωJ = γCJ < 2. ¤

4.1.2. Verification of assumption A2.

Lemma 4.2. Let {Ti, i = 0, 1, ..., J} be defined by (4.4). Then, there exists a
constant K0 such that

a(v, v) ≤ K0

µ
a(Tv, v) , v ∈ VJ , µ = min0≤i≤J{µi}.
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Proof. Due to the decomposition of v in (4.2) and Iivi = vi, i = 0, 1, ..., J , where
vi is defined by (4.2), there holds

a(v, v) =
J∑

i=0

a(vi, v) =
J∑

i=0

a(Iivi, v) =
J∑

i=0

ai(vi, Piv).(4.7)

For i = 1, ..., J , we have

ai(vi, Piv) =
ñi∑

k=1

ai(vi(mk
i )φk

i , Piv) =
ñi∑

k=1

ai(vi(mk
i )φk

i , P k
i Piv)(4.8)

≤
ñi∑

k=1

a
1/2
i (vi(mk

i )φk
i , vi(mk

i )φk
i v) · a1/2

i (P k
i Piv, P k

i Piv)

≤ (
ñi∑

k=1

ai(vi(mk
i )φk

i , vi(mk
i )φk

i v))1/2(
ñi∑

k=1

a(IiP
k
i Piv, v))1/2.

Following (4.7), we deduce

a(v, v) =
J∑

i=0

ai(vi, Piv)(4.9)

≤ (a0(v0, v0) +
J∑

i=1

ñi∑

k=1

ai(vi(mk
i )φk

i , vi(mk
i )φk

i ))1/2

· (a(I0P0v, v) +
J∑

i=1

ñi∑

k=1

a(IiP
k
i Piv, v))1/2.

Since ai(φk
i , φk

i ) ≈ 1, we have

ai(vi(mk
i )φk

i , vi(mk
i )φk

i ) ≈ v2
i (mk

i ).

We note that the following inequality can be derived similarly as Lemma 3.3 in [29]

J−1∑

i=1

ñi∑

k=1

v2
i (mk

i ) . a(ṽ, ṽ) = a(Π̃J−1v, Π̃J−1v) . a(v, v).

For the initial level, we have

a0(v0, v0) = a0(Π0ṽ, Π0ṽ) . a(ṽ, ṽ) . a(v, v).

For the finest level, there holds

ñJ∑

k=1

v2
J (mk

J ) .
ñJ∑

k=1

(hk
J)−2‖v − Π̃J−1v‖2L2(ωk

J ) . a(v, v),

where hk
J = hJ,E ,mk

J ∈ E,E ∈ E0
J . Hence, we have

a0(v0, v0) +
J∑

i=1

ñi∑

k=1

v2
i (mk

i ) . a(v, v).(4.10)
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Combining the above inequalities, we conclude that there exists a constant K̃0

independent of mesh sizes and mesh levels such that

a(v, v) ≤ K̃0

min0≤i≤J{µi} (µ0a(I0P0v, v) +
J∑

i=1

ñi∑

k=1

a(µiIiP
k
i Piv, v))

≤ K̃0

µγ

J∑

i=0

a(Tiv, v) =
K̃0

µγ
a(Tv, v).

We thus obtain the stated result by setting K0 = K̃0/γ. ¤
4.1.3. Verification of assumption A3. As a prerequisite to verify assumption A3,
we provide the following key lemma which will be proved in the appendix.

Lemma 4.3. For i = 1, ..., J , let Ti be a refinement of Ti−1 by the newest vertex
bisection algorithm and denote by Ω̃k

j the support of Ijφ
k
j . Then, for mk

j ∈ M̃j we
have

J∑

i=j+1

∑

ml
i∈M̃i,

Iiφ
l
i 6≡0 on Ek

j+1

(
hl

i

hk
j

)3/2 . 1 ,

J∑

i=j+1

∑

ml
i∈M̃i,

Iiφ
l
i 6≡0 on Ω̃k

j

(
hl

i

hk
j

)3 . 1,(4.11)

where Ek
j+1 = Ej+1(Ω̃k

j ). Likewise, for ml
i ∈ M̃i,

i−1∑

j=1

∑

mk
j∈M̃j ,

Iiφ
l
i 6≡0 on Ek

j+1

(
hl

i

hk
j

)1/2 . 1 ,

i−1∑

j=1

∑

mk
j∈M̃j ,

Iiφ
l
i 6≡0 on Ω̃k

j

(
hl

i

hk
j

)1/2 . 1.(4.12)

We are now in a position to verify assumption A3.

Lemma 4.4. There exists a constant K1 independent of mesh sizes and mesh levels
such that assumption A3 holds true.

Proof. In view of (4.4), we have
J∑

i=1

i−1∑

j=1

a(Tiv, Tju) = γ2
J∑

j=1

J∑

i=j+1

ñj∑

k=1

a(µjIjP
k
j Pju,

ñi∑

l=1

µiIiP
l
i Piv)

= γ2
J∑

j=1

ñj∑

k=1

a(µjIjP
k
j Pju,

J∑

i=j+1

ñi∑

l=1

µiIiP
l
i Piv).

Setting ω =
∑J

i=j+1

∑ñi

l=1 µiIiP
l
i Piv, we have

a(µjIjP
k
j Pju, ω) = aj(µjP

k
j Pju, P k

j Pjω)

≤ a
1/2
j (µjP

k
j Pju, µjP

k
j Pju)a1/2

j (P k
j Pjω, P k

j Pjω),

whence
J∑

i=1

i−1∑

j=1

a(Tiv, Tju) ≤ γ2(
J∑

j=1

ñj∑

k=1

aj(µjP
k
j Pju, µjP

k
j Pju))1/2(4.13)

· (
J∑

j=1

ñj∑

k=1

aj(P k
j Pjω, P k

j Pjω))1/2.
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In view of (4.6), it is obvious that

γµj <
2

C0Cj
. 1 , 1 ≤ j ≤ J,(4.14)

and there also holds γµJ = γ < 2
CJ

. 1. If we choose µJ = 1, then

γ

J∑

j=1

ñj∑

k=1

aj(µjP
k
j Pju, µjP

k
j Pju)(4.15)

=
J∑

j=1

ñj∑

k=1

γµja(µjIjP
k
j Pju, u) .

J∑

j=1

a(Tju, u).

Next, it suffices to show that

γ

J∑

j=1

ñj∑

k=1

aj(P k
j Pjω, P k

j Pjω) .
J∑

i=2

a(Tiv, v).(4.16)

Clearly, aj(φk
j , φk

j ) ≈ 1. We note that

P k
j PjIiP

l
i Piv =

aj(PjIiP
l
i Piv, φk

j )
aj(φk

j , φk
j )

φk
j ≈ aj(PjIiP

l
i Piv, φk

j )φk
j ,

which leads us to

aj(P k
j Pjω, P k

j Pjω) ≈ (
J∑

i=j+1

ñi∑

l=1

aj(PjµiIiP
l
i Piv, φk

j ))2.

Similarly, P l
i Piv ≈ ai(Piv, φl

i)φ
l
i. It follows that

aj(PjµiIiP
l
i Piv, φk

j ) = a(µiIiP
l
i Piv, Ijφ

k
j ) = ai(µiP

l
i Piv, PiIjφ

k
j )

≈ ai(ai(µiPiv, φl
i)φ

l
i, PiIjφ

k
j ) = a(Iiφ

l
i, Ijφ

k
j )ai(µiPiv, φl

i).

Since Ijφ
k
j is conforming and piecewise linear on Tj+1|Ω̃k

j
, we obtain

a(Iiφ
l
i, Ijφ

k
j ) =

∑

T⊂Ω̃k
j ,

T∈Tj+1

∫

T

a(x)∇Iiφ
l
i · ∇Ijφ

k
j

=
∑

T⊂Ω̃k
j ,

T∈Tj+1

∫

∂T

a(x)
∂Ijφ

k
j

∂n
Iiφ

l
i −

∑

T⊂Ω̃k
j ,

T∈Tj+1

∫

T

(∇a(x) · ∇Ijφ
k
j )Iiφ

l
i.

We set dk
j = max{hj+1,T : T ∈ Ω̃k

j , T ∈ Tj+1}. By the minimum angle property

in (1.6) we have dk
j ≈ hk

j . Similarly, dl
i ≈ hl

i. Observing (1.3), |∂Ijφk
j

∂n | . (dk
j )−1 ≈

(hk
j )−1 and

ai(µiPiv, φl
i) = ai(µiP

l
i Piv, φl

i)(4.17)

≤ a
1/2
i (µiP

l
i Piv, µiP

l
i Piv)a1/2

i (φl
i, φ

l
i) . a1/2(µ2

i IiP
l
i Piv, v),
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we deduce

∑

ml
i∈M̃i,

Iiφ
l
i 6≡0 on Ω̃k

j

a(Iiφ
l
i, Ijφ

k
j )ai(µiPiv, φl

i)(4.18)

.
∑

ml
i∈M̃i,

Iiφ
l
i 6≡0 on Ek

j+1

hl
i

hk
j

a1/2(µ2
i IiP

l
i Piv, v)

+
∑

ml
i∈M̃i,

Iiφ
l
i 6≡0 on Ω̃k

j

(hl
i)

2

hk
j

a1/2(µ2
i IiP

l
i Piv, v).

Hence, combining (4.11), (4.17) and (4.18), we have

aj(P k
j Pjω, P k

j Pjω) . (
J∑

i=j+1

∑

ml
i∈M̃i,

Iiφ
l
i 6≡0 on Ek

j+1

hl
i

hk
j

a1/2(µ2
i IiP

l
i Piv, v))2(4.19)

+ (
J∑

i=j+1

∑

ml
i∈M̃i,

Iiφ
l
i 6≡0 on Ω̃k

j

(hl
i)

2

hk
j

a1/2(µ2
i IiP

l
i Piv, v))2

. (
J∑

i=j+1

∑

ml
i∈M̃i,

Iiφ
l
i 6≡0 on Ek

j+1

(
hl

i

hk
j

)1/2a(µ2
i IiP

l
i Piv, v))(

J∑

i=j+1

∑

ml
i∈M̃i,

Iiφ
l
i 6≡0 on Ek

j+1

(
hl

i

hk
j

)3/2)

+ (
J∑

i=j+1

∑

ml
i∈M̃i,

Iiφ
l
i 6≡0 on Ω̃k

j

hl
i√
hk

j

a(µ2
i IiP

l
i Piv, v))(

J∑

i=j+1

∑

ml
i∈M̃i,

Iiφ
l
i 6≡0 on Ω̃k

j

(
hl

i√
hk

j

)3)

.
J∑

i=j+1

∑

ml
i∈M̃i,

Iiφ
l
i 6≡0 on Ek

j+1

(
hl

i

hk
j

)1/2a(µ2
i IiP

l
i Piv, v)

+
J∑

i=j+1

∑

ml
i∈M̃i,

Iiφ
l
i 6≡0 on Ω̃k

j

hl
i√
hk

j

a(µ2
i IiP

l
i Piv, v).
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We set δ(ml
i,m

k
j ) = 1, if Iiφ

l
i 6≡ 0 on Ek

j+1, and δ(ml
i,m

k
j ) = 0, otherwise, δ̃(ml

i,m
k
j ) =

1, if Iiφ
l
i 6≡ 0 on Ω̃k

j , and δ̃(ml
i,m

k
j ) = 0, otherwise. By (4.12) and (4.14), we obtain

γ

J∑

j=1

ñj∑

k=1

aj(P k
j Pjω, P k

j Pjω)(4.20)

. γ

J∑

j=1

ñj∑

k=1

J∑

i=j+1

∑

ml
i∈M̃i,

Iiφ
l
i 6≡0 on Ek

j+1

(
hl

i

hk
j

)1/2a(µ2
i IiP

l
i Piv, v)

+ γ

J∑

j=1

ñj∑

k=1

J∑

i=j+1

∑

ml
i∈M̃i,

Iiφ
l
i 6≡0 on Ω̃k

j

hl
i√
hk

j

a(µ2
i IiP

l
i Piv, v)

= γ

J∑

i=2

∑

ml
i∈M̃i

(
i−1∑

j=1

∑

mk
j∈M̃j

(
hl

i

hk
j

)1/2δ(ml
i,m

k
j ))a(µ2

i IiP
l
i Piv, v)

+ γ

J∑

i=2

∑

ml
i∈M̃i

(
i−1∑

j=1

∑

mk
j∈M̃j

hl
i√
hk

j

δ̃(ml
i, m

k
j ))a(µ2

i IiP
l
i Piv, v)

.
J∑

i=2

∑

ml
i∈M̃i

γµia(µiIiP
l
i Piv, v)(1 +

√
hl

i)

.
J∑

i=2

∑

ml
i∈M̃i

a(µiIiP
l
i Piv, v).

Hence, (4.16) is verified. Combining (4.13-4.16), we obtain

J∑

i=1

i−1∑

j=1

a(Tiv, Tju) . (
J∑

i=2

a(Tiv, v))1/2(
J∑

j=1

a(Tju, u))1/2.(4.21)

A similar analysis can be used to derive

J∑

i=1

a(Tiv, T0u) . (
J∑

i=1

a(Tiv, v))1/2a(T0u, u)1/2,(4.22)

which, together with (4.21), completes the proof of the lemma. ¤

4.2. Local Gauss-Seidel smoother. In this subsection, we will verify assump-
tions A1-A3 for the multilevel methods with a local Gauss-Seidel smoother Ri

which is defined by
Ri := (I − Eñi

i )A−1
i ,

where Eñi
i = (I−P ñi

i ) · · · (I−P 1
i ) =

∏ñi

k=1(I−P k
i ). For brevity, we set Ei := Eñi

i ,
since no confusion is possible. We have

T0 = µ0I0P0 , Ti = µiIiRiAiPi = µiIi(I − Ei)Pi , i = 1, ..., J.(4.23)

The decomposition of v is the same as (4.2).
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For i = 1, ..., J , let E0
i = I, Ek−1

i := (I − P k−1
i ) · · · (I − P 1

i ), k = 2, . . . , ñi. It is
easy to see that

I − Ei =
ñi∑

k=1

P k
i Ek−1

i .(4.24)

As in Lemma 4.5 in [33], there also holds

ai(Piv, Piu)− ai(EiPiv,EiPiu)(4.25)

=
ñi∑

k=1

ai(P k
i Ek−1

i Piv, Ek−1
i Piu) , v, u ∈ VJ .

4.2.1. Verification of assumption A1. We consider the case i ≥ 1, since for T0

assumption A1 has been verified in Lemma 4.1.

Lemma 4.5. Let Ti, i ≥ 1, be defined by (4.23). Then, Ti is nonnegative in VJ and
there holds

a(Tiv, Tiv) ≤ ωi a(Tiv, v) , v ∈ VJ , ωi < 2.

Proof. Due to (4.23) and (4.24) we have

a(Tiv, Tiv) = µ2
i a(Ii(I − Ei)Piv, Ii(I − Ei)Piv)

= µ2
i

ñi∑

k,m=1

a(IiP
k
i Ek−1

i Piv, IiP
m
i Em−1

i Piv).

Using (4.25), the same techniques as in (4.5), and the stability of Ii, we obtain

a(Tiv, Tiv) ≤µ2
i Ci

ñi∑

k=1

a(IiP
k
i Ek−1

i Piv, IiP
k
i Ek−1

i Piv)

(4.26)

≤µ2
i C0Ci

ñi∑

k=1

ai(P k
i Ek−1

i Piv, P k
i Ek−1

i Piv)

=µ2
i C0Ci(ai(Piv, Piv)− ai(EiPiv, EiPiv))

=µ2
i C0Ci(ai(Piv, Piv)− ai((I − (I − Ei))Piv, (I − (I − Ei))Piv))

=µ2
i C0Ci(2ai((I − Ei)Piv, Piv)− ai((I − Ei)Piv, (I − Ei)Piv))

≤µ2
i C0Ci(2ai((I − Ei)Piv, Piv)− 1

C0
a(Ii(I − Ei)Piv, Ii(I − Ei)Piv))

=2µiC0Cia(Tiv, v)− Cia(Tiv, Tiv),

whence

a(Tiv, Tiv) ≤ 2µiC0Ci

1 + Ci
a(Tiv, v).

Obviously, the nonnegativeness of Ti follows from the above inequality. Setting
ωi = 2µiCiC0

1+Ci
, and choosing 0 < µi < 1+Ci

2C0Ci
such that ωi < 2, the lemma is proved.

We remark that we can choose µJ = 1, since IJ is the identity. ¤
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4.2.2. Verification of assumption A2.

Lemma 4.6. Let {Ti, i = 0, 1, ..., J} be defined as in (4.23). There exists a constant
K0 such that

a(v, v) ≤ K0

µ
a(Tv, v) , v ∈ VJ , µ = min0≤i≤J{µi}.

Proof. In view of the decomposition of v in (4.2), we have a(v, v) =
∑J

i=0 ai(vi, Piv).
For i = 1, ..., J , we also have (cf. (4.8))

ai(vi, Piv) ≤ (
ñi∑

k=1

ai(vi(mk
i )φk

i , vi(mk
i )φk

i ))1/2 · (
ñi∑

k=1

ai(P k
i Piv, P k

i Piv))1/2.

Since I − Ek−1
i =

∑k−1
m=1 Pm

i Em−1
i , we deduce

ñi∑

k=1

ai(P k
i Piv, P k

i Piv)

=
ñi∑

k=1

ai(P k
i Piv, P k

i Ek−1
i Piv) +

ñi∑

k=1

k−1∑
m=1

ai(P k
i Piv, P k

i Pm
i Em−1

i Piv)

≤ (
ñi∑

k=1

ai(P k
i Piv, P k

i Piv))1/2(
ñi∑

k=1

ai(P k
i Ek−1

i Piv, Ek−1
i Piv))1/2

+
ñi∑

k,m=1

|ai(P k
i Piv, Pm

i Em−1
i Piv)|.

Furthermore, using the same technique as in (4.5), we have
ñi∑

k,m=1

|ai(P k
i Piv, Pm

i Em−1
i Piv)|

. (
ñi∑

k=1

ai(P k
i Piv, P k

i Piv))1/2(
ñi∑

k=1

ai(P k
i Ek−1

i Piv,Ek−1
i Piv))1/2,

Then, it follows from (4.26) that
ñi∑

k=1

ai(P k
i Piv, P k

i Piv) .
ñi∑

k=1

ai(P k
i Ek−1

i Piv,Ek−1
i Piv) . 1

µi
a(Tiv, v).

Hence,

a0(P0v, P0v) +
ñi∑

k=1

ai(P k
i Piv, P k

i Piv) .
J∑

i=0

1
µi

a(Tiv, v).

Finally, similar to the analysis of (4.9) and (4.10), we deduce that assumption A2
holds true. ¤

4.2.3. Verification of assumption A3.

Lemma 4.7. There exists a constant K1 independent of mesh sizes and mesh levels
such that assumption A3 holds true for {Ti, i = 0, 1, ..., J} defined by (4.23).
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Proof. We set ξi = Tiv. It follows from (4.23) that

J∑

i=1

i−1∑

j=1

a(Tiv, Tju) =
J∑

j=1

J∑

i=j+1

a(ξi, µjIj(I − Ej)Pju)

=
J∑

j=1

J∑

i=j+1

µjaj(Pjξi, (I − Ej)Pju) =
J∑

j=1

J∑

i=j+1

µj

ñj∑

k=1

aj(Pjξi, P
k
j Ek−1

j Pju)

=
J∑

j=1

ñj∑

k=1

µjaj(P k
j Pj

J∑

i=j+1

ξi, P
k
j Ek−1

j Pju).

Further, Hölder’s inequality yields

J∑

i=1

i−1∑

j=1

a(Tiv, Tju) ≤(
J∑

j=1

ñj∑

k=1

µ2
jaj(P k

j Ek−1
j Pju,Ek−1

j Pju))1/2(4.27)

· (
J∑

j=1

ñj∑

k=1

aj(
J∑

i=j+1

P k
j Pjξi,

J∑

i=j+1

P k
j Pjξi))1/2.

In view of the estimate of (4.26) in Lemma 4.5 and µj <
1+Cj

2C0Cj
. 1, for j = 1, . . . , J ,

we find

ñj∑

k=1

µ2
jaj(P k

j Ek−1
j Pju,Ek−1

j Pju) ≤ (2µja(Tju, u)− 1
C0

a(Tju, Tju))(4.28)

≤ 2
J∑

j=1

µja(Tju, u) . a(Tju, u),

whence

J∑

j=1

ñj∑

k=1

µ2
jaj(P k

j Ek−1
j Pju,Ek−1

j Pju) .
J∑

j=1

a(Tju, u).

Next, we show that

J∑

j=1

ñj∑

k=1

aj(
J∑

i=j+1

P k
j Pjξi,

J∑

i=j+1

P k
j Pjξi) .

J∑

i=2

a(Tiv, v).(4.29)

We note that P k
j Pjξi = aj(Pjξi,φ

k
j )

aj(φk
j ,φk

j )
φk

j ≈ aj(Pjξi, φ
k
j )φk

j , and similarly P l
i E

l−1
i Piv ≈

ai(El−1
i Piv, φl

i)φ
l
i. Then, there holds

aj(
J∑

i=j+1

P k
j Pjξi,

J∑

i=j+1

P k
j Pjξi) . (

J∑

i=j+1

aj(Pjξi, φ
k
j ))2.
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Moreover,

aj(Pjξi, φ
k
j ) = aj(PjµiIi(I − Ei)Piv, φk

j ) = µia(Ii(I − Ei)Piv, Ijφ
k
j )

= µi

ñi∑

l=1

ai(P l
i E

l−1
i Piv, PiIjφ

k
j ) ≈ µi

ñi∑

l=1

ai(φl
i, PiIjφ

k
j )ai(El−1

i Piv, φl
i)

= µi

ñi∑

l=1

a(Iiφ
l
i, Ijφ

k
j )ai(El−1

i Piv, φl
i).

Similar to the analysis of (4.20) in Lemma 4.4 in the Jacobi case, and due to Lemma
4.3, we have

J∑

j=1

ñj∑

k=1

(
J∑

i=j+1

aj(ξ, φk
j ))2

.
J∑

j=1

ñj∑

k=1

J∑

i=j+1

∑

ml
i∈M̃i,

Iiφ
l
i 6≡0 on Ek

j+1

(
hl

i

hk
j

)1/2µ2
i ai(P l

i E
l−1
i Piv,El−1

i Piv)

+
J∑

j=1

ñj∑

k=1

J∑

i=j+1

∑

ml
i∈M̃i,

Iiφ
l
i 6≡0 on Ω̃k

j

hl
i√
hk

j

µ2
i ai(P l

i E
l−1
i Piv, El−1

i Piv)

.
J∑

i=2

∑

ml
i∈M̃i

µ2
i ai(P l

i E
l−1
i Piv, El−1

i Piv)
i−1∑

j=1

∑

mk
j∈M̃j

(
hl

i

hk
j

)1/2δ(ml
i,m

k
j )

+
J∑

i=2

∑

ml
i∈M̃i

µ2
i ai(P l

i E
l−1
i Piv, El−1

i Piv)
i−1∑

j=1

∑

mk
j∈M̃j

hl
i√
hk

j

δ̃(ml
i,m

k
j )

.
J∑

i=2

∑

ml
i∈M̃i

µ2
i ai(P l

i E
l−1
i Piv, El−1

i Piv)(1 +
√

hl
i) .

J∑

i=2

a(Tiv, v).

Hence, (4.29) is verified. In view of (4.26), (4.27) and (4.29), it follows that
J∑

i=1

i−1∑

j=1

a(Tiv, Tju) . (
J∑

i=2

a(Tiv, v))1/2(
J∑

j=1

a(Tju, u))1/2.(4.30)

We further deduce
J∑

i=1

a(Tiv, T0u) . (
J∑

i=1

a(Tiv, v))1/2a(T0u, u)1/2,

which, together with (4.30), implies Lemma 4.7. ¤

Numerical results

In this section, for selected test examples we present numerical results that il-
lustrate the optimality of algorithm 4.1 and algorithm 4.2. The implementation
is based on the FFW toolbox [8]. The local error estimators and the strategy
MARK for the selection of elements and edges for refinement have been realized
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as in the algorithm ANFEM II in [12]. In the following examples, both LMPA and
LMAA are considered as preconditioners for the conjugate gradient method, i.e., a
symmetric version of LMPA (SLMPA) has been used in the computations. Like-
wise, a symmetric version of LMAA (SLMAA) is employed when the smoother
is nonsymmetric, otherwise, LMAA is directly applied. The algorithms LMPA
and LMAA require O(N logN) and O(N) operations respectively, where N is the
number of degrees of freedom (DOFs) (cf. [26]).

The estimate (A.1) in the appendix indicates that the prolongation operator Ii

from Vi to VJ would increase the energy by a constant C0 at worst, which is essen-
tial in the convergence analysis of the local multilevel methods. We can weaken the
influence by a well chosen scaling number µJ,i in (3.2). As seen from Theorem 4.1
and Theorem 4.2, the uniform convergence rate of LMPA or the preconditioned
conjugate gradient method by LMAA will deteriorate for decreasing scaling num-
ber µ = min0≤i≤J{µJ,i}. This property will be observed in the following Example
6.1. We always choose µJ,J = 1 in the computations.

For the preconditioned conjugate gradient method, the iteration stops when it
satisfies

‖r0
i −Air

n
i ‖0,Ω ≤ ε‖r0

i ‖0,Ω , ε = 10−6,

where {rk
i : k = 1, 2, ...} stands for the set of iterative solutions of the residual

equation Aix = r0
i .
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Figure 2. Locally refined mesh at the 13-th refinement level (Example 6.1).

At the i-th level, let u0
i = ui−1, r

n
i = fi −Aiu

n
i , and set

ε0 = (r0
i )tBir

0
i , εn = (rn

i )tBir
n
i ,

where Bi is the local multilevel iteration. The number of iteration steps required
to achieve the desired accuracy is denoted by iter. We further denote by ρ =
(
√

εn/
√

ε0)1/iter the average reduction factor.



22 XUEJUN XU, HUANGXIN CHEN, AND RONALD H.W. HOPPE

Example 4.1. On the L-shaped domain Ω = [−1, 1] × [−1, 1]\(0, 1] × [−1, 0), we
consider the following elliptic boundary value problem

−∆(0.5u) + u = f(x, y) in Ω,

u = g(x, y) on ∂Ω,

where f and g are chosen such that u(r, θ) = r
2
3 sin( 2

3θ) is the exact solution (in
polar coordinates).

Table 1. Number of iterations and average reduction factor ρ on each level
for the respective algorithms with scaling number µJ,i = 0.8 and µJ,J = 1, 0 ≤
i ≤ J − 1, J ≥ 1. For the conjugate gradient method without preconditioning,
only the number of iterations is given (Example 6.1).

Level DOFs
CG SLMPA-GS SLMPA-Jacobi SLMAA-GS LMAA-Jacobi
iter iter ρ iter ρ iter ρ iter ρ

13 6831 206 9 0.2203 12 0.3184 34 0.6732 46 0.7475

14 11293 242 10 0.2408 12 0.3185 35 0.6783 47 0.7526

15 18121 310 10 0.2395 12 0.3179 35 0.6807 48 0.7567

16 30385 369 10 0.2412 12 0.3156 35 0.6833 49 0.7594

17 49825 458 10 0.2430 12 0.3141 36 0.6853 49 0.7614

18 80893 560 10 0.2400 12 0.3115 35 0.6852 49 0.7623

19 135060 700 10 0.2391 12 0.3079 35 0.6847 49 0.7624

20 219441 858 10 0.2405 12 0.3052 35 0.6838 50 0.7640

21 359337 1053 10 0.2375 12 0.3020 35 0.6844 50 0.7641

22 598091 1331 10 0.2353 12 0.2988 35 0.6845 49 0.7629

23 964580 1491 10 0.2356 12 0.2970 35 0.6848 50 0.7645

24 1592958 1715 10 0.2315 11 0.2873 35 0.6840 49 0.7631

Table 2. Average reduction factors ρ (SLPMA-GS) for different scaling
numbers (Example 6.1).

Level
µJ,0 = · · · = µJ,J−1 = α, µJ,J = 1

α = 1.8 α = 1.5 α = 1 α = 0.5 α = 0.2 α = 0.1

13 0.2448 0.2340 0.2196 0.2737 0.4100 0.5125

14 0.2462 0.2410 0.2394 0.2740 0.4162 0.5189

15 0.2479 0.2410 0.2393 0.2738 0.4234 0.5292

16 0.2507 0.2426 0.2410 0.2729 0.4228 0.5337

17 0.2508 0.2444 0.2426 0.2722 0.4194 0.5274

18 0.2488 0.2414 0.2397 0.2697 0.4163 0.5239

19 0.2484 0.2408 0.2387 0.2668 0.4148 0.5225

20 0.2482 0.2419 0.2400 0.2567 0.4088 0.5215

21 0.2490 0.2390 0.2370 0.2532 0.4067 0.5207

22 0.2666 0.2368 0.2347 0.2488 0.4023 0.5182

23 0.2666 0.2371 0.2351 0.2451 0.3979 0.5088

24 0.2678 0.2331 0.2310 0.2423 0.3949 0.5058

For ease of notation, we refer to SLMPA-GS,SLMAA-GS and SLMPA-
Jacobi,LMAA-Jacobi as the preconditioned conjugate gradient method by
SLMPA and SLMAA with local Gauss-Seidel smoothing and local Jacobi smooth-
ing, respectively. For the Jacobi iteration, the scaling factor is chosen according to
γ = 0.8.
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Figure 3. CPU times for SLMPA-GS, SLMPA-Jacobi, SLMAA-
GS, and LMAA-Jacobi (from left to right and top to bottom)

At first, we choose µJ,i = 0.8 (0 ≤ i < J) to illustrate the optimality of our
algorithms. Figure 2 displays the locally refined mesh at the 13-th refinement level.
As seen from Table 1, the number of iterative steps of the conjugate gradient method
without preconditioning (CG) increases quickly with the mesh levels. However,
for the algorithms SLMPA-GS, SLMPA-Jacobi, SLMAA-GS and LMAA-
Jacobi we observe that the number of iteration steps and the average reduction
factors are all bounded independently of the mesh sizes and the mesh levels. These
results and Figure 3, displaying the CPU times (in seconds) for the respective
algorithms, demonstrate the optimality of the algorithms and thus confirm the
theoretical analysis.

Next, we choose different scaling numbers to illustrate how they influence the
convergence behavior of the local multilevel methods. We only list the results
for SLMPA-GS. A similar behavior can be observed for the other algorithms.
We choose µJ,0 = · · · = µJ,J−1 = α and µJ,J = 1, and thus µ = min{α, 1}.
Table 2 shows that for a fixed α, SLMPA-GS converges almost uniformly. The
last four numbers of each row in Table 2 show that for a fixed level the average
reduction factor of SLMPA-GS deteriorates for decreasing µ. If α ≥ 1, then
µ = min{α, 1} = 1, and the convergence rate will also deteriorate as α increases.
This is also observed for the first numbers of each row in Table 2. In particular,
for µ = 1 the convergence rate of SLMPA-GS deteriorates only with respect to
ωi (the spectral bound of Ti), which increases linearly with µJ,i.
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Example 4.2. We consider Poisson’s equation

−∆u = 1 in Ω,

with Dirichlet boundary conditions on a domain with a crack, namely Ω = {(x, y) :
|x|+ |y| ≤ 1}\{(x, y) : 0 ≤ x ≤ 1, y = 0}. The exact solution is r1/2 sin(θ/2)− 1

4r2

(in polar coordinates).

In this example, we choose µJ,J = 1, µJ,i = 1 and µJ,i = 0.8 (0 ≤ i < J, J ≥ 1),
respectively, for the local multilevel methods with local Gauss-Seidel smoothing
and local Jacobi smoothing.
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Figure 4. Locally refined mesh at the 24-th refinement level (Example 6.2).

Table 3. Number of iterations and average reduction factors ρ on each level
for the respective algorithms with scaling numbers µJ,J = 1, µJ,i = 1, µJ,i =
0.8 ,0 ≤ i ≤ J − 1, J ≥ 1. For the conjugate gradient method without precon-
ditioning, only the number of iterations is given (Example 6.2).

Level DOFs
CG SLMPA-GS SLMAA-GS SLMPA-Jacobi LMAA-Jacobi
iter iter ρ iter ρ iter ρ iter ρ

28 18206 287 11 0.2610 51 0.7720 14 0.3756 65 0.8154

30 29108 341 10 0.2555 50 0.7662 13 0.3507 65 0.8151

32 46105 417 10 0.2403 52 0.7745 14 0.3615 65 0.8161

34 73571 523 11 0.2628 55 0.7854 14 0.3773 70 0.8271

36 116866 634 10 0.2511 52 0.7768 13 0.3309 63 0.8105

38 184155 768 10 0.2340 52 0.7764 14 0.3601 67 0.8212

40 292148 942 10 0.2513 55 0.7880 14 0.3708 70 0.8286

42 462599 1168 10 0.2395 52 0.7765 12 0.3181 64 0.8141

44 727564 1404 10 0.2337 53 0.7808 13 0.3511 68 0.8243

46 1150917 1536 10 0.2435 54 0.7852 14 0.3615 70 0.8275

Figure 4 displays the locally refined mesh at the 24-th refinement level. The
numbers in Table 3 and the CPU times (in seconds) displayed in Figure 5 show a
similar behavior as in the previous example and thus also support the theoretical
findings.
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Figure 5. CPU times for SLMPA-GS, SLMAA-GS, SLMPA-
Jacobi, and LMAA-Jacobi (from left to right and top to bottom)

Appendix

In this appendix, we analyze the stability of Ii and provide the proof of Lemma
4.3.

Proof of the stability result of the prolongation operator Ii. Let Ti+1 be the
refined triangulation obtained from Ti by the algorithm stated in section 2 or by
the newest vertex bisection. Then, there exist constants C0 and C̃0 such that

(Iiv, Iiv) ≤ C̃0(v, v) , a(Iiv, Iiv) ≤ C0ai(v, v) , v ∈ Vi.(A.1)

Since the analysis for the first bisection algorithm has been done in [26], we only
give the proof for the refinement by the newest vertex bisection.

The first inequality in (A.1) is trivial for Iiv being defined by local averaging. It
suffices to derive the second one.

The origin of vertices of T ∈ Ti+1 includes four cases depending whether the
vertex of T is the midpoint of an edge or a node in Ti. In particular, let m, n
denote the number of vertices of T ∈ Ti+1 representing midpoints or nodes in Ti,
respectively. Setting S = {(m,n) : m + n = 3, m, n = 0, 1, 2, 3}, we have #S = 4.
We only consider one of the possible cases: the vertices of T ∈ Ti+1 are all nodes
in Ti, i.e., T is not refined in the transition from Ti to Ti+1, e.g., T2 ∈ Ti+1 is also
K2 ∈ Ti in Figure 6. A similar analysis can be carried out in all other cases.
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Figure 6. The left figure illustrates a local grid from Ti, the right one
displays its refinement as part of Ti+1.

Note that a(Iiv, Iiv)|T2 can be bounded by

C((Iiv(x1)− Iiv(x2))2 + (Iiv(x1)− Iiv(x3))2)(A.2)

for some constant C. We recall that Iiv(xi) is the average of v at xi over the
triangles Kl, l = 1, ...,Mxi , where Mxi is the number of triangles containing xi.
Hence, the first term of (A.2) can be written as

1
Mx1

Mx1∑

l=1

(v|Kl
(x1)− v(m1)) +

1
Mx2

Mx2∑
s=1

(v(m1)− v|Ks(x2)).(A.3)

A similar result can be obtained for the second term of (A.2). Since

v|Kl
(x1)− v(m1) = v|Kl

(x1)− v(ml) +
l−1∑

j=1

(v(mj+1)− v(mj)),

it suffices to find a constant C such that the first term of (A.3) can be bounded by
Mx1∑

l=1

(v|Kl
(x1)− v(m1) ≤ Cai(v, v)|K̃ ,(A.4)

where K̃ = ∪Mx1
l=1 Kl. The same analysis can be carried out for the second term of

(A.3). Following (A.2-A.4), we get

a(Iiv, Iiv)|T2 ≤ Cai(v, v)|T̃2
(A.5)

with some constant C, where T̃2 is a patch of triangles in Ti also containing the
vertices of T2.

For T ∈ Ti+1, ∂T ∩ ∂Ω 6= ∅, let us assume ∂T4 ∩ ∂Ω 6= ∅. Then, a(Iiv, Iiv)|T4

can be bounded by

C((Iiv(m3)− Iiv(x4))2 + (Iiv(m3)− Iiv(x5))2) = 2C(v(m3)− v(m7))2.(A.6)

Combining (A.5) and (A.6) and summing up all T ∈ Ti+1 completes the proof. ¤

Proof of Lemma 4.3. The proof is similar to Lemma 3.2 in [29]. We only prove
the first estimate in (4.11) and (4.12). The second estimate in (4.11) and (4.12)
can be obtained similarly.
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For the proof of the first estimate in (4.11), we set

ρ(ml
i) = [

ln(hl
i/h0)

ln(1/2)
], h0 = max

E∈E0
hE ,(A.7)

which characterizes the actual number of refinements of edges in Ei. It is obvious
that

(
1
2
)ρ(ml

i)+1h0 < ρ(ml
i) ≤ (

1
2
)ρ(ml

i)h0.

Denoting by d(Ω̃k
j ) the diameter of Ω̃k

j , there exists a constant β > 1 depending
only on the minimum angle θ in (1.6) such that d(Ω̃k

j ) ≤ hk
j , whence

hl
i ≤ d(Ω̃l

i) ≤ d(Ω̃k
j ) ≤ βhk

j .

Due to the definition of (A.7), we have ρ(ml
i) ≥ ρ(mk

j )−n0, where n0 = [lnβ/ln2]+1.
Thus, for the left term in (4.11) we get

J∑

i=j+1

∑

ml
i∈M̃i,

Iiφ
l
i 6≡0 on Ek

j+1

(hl
i)

3/2 ≤(h0)3/2
J∑

i=j+1

∑

ml
i∈M̃i,

Iiφ
l
i 6≡0 on Ek

j+1

(
1√
2
)3ρ(ml

i)(A.8)

≤(h0)3/2
∞∑

m=ρ(mk
j )−n0

∑

(i,l)∈σ1(m,mk
j )

(
1√
2
)3m,

where σ1(m,mk
j ) = {(i, l) | ρ(ml

i) = m, j + 1 ≤ i ≤ J, Iiφ
l
i 6≡ 0 on Ek

j+1}. We define
a new set according to

σ0(m, y) = {i : y ∈ M̃i, ρ(y) = m, 0 ≤ i ≤ J}.
In view of the minimum angle condition in the newest vertex bisection, we easily
see that

#σ0(m, y) . 1.

Moreover,

#σ1(m,mk
j ) . max

(i,l)∈σ1(m,mk
j )

#σ0(m,ml
i) ·

hk
j

( 1
2 )m+1h0

.
hk

j

( 1
2 )m+1h0

.(A.9)

Therefore, (A.8) and (A.9) imply that
J∑

i=j+1

∑

ml
i∈M̃i,

Iiφ
l
i 6≡0 on Ek

j+1

(hl
i)

3/2 . (h0)3/2
∞∑

m=ρ(mk
j )−n0

(
1√
2
)3m

hk
j

( 1
2 )m+1h0

. (hk
j )3/2.

This proves the first estimate in (4.11).
For the second estimate in (4.12), we need to show

#σ2(m,ml
i) . 1,(A.10)

where σ2(m,ml
i) = {(k, j) | mk

j ∈ M̃j , ρ(mk
j ) = m, Iiφ

l
i 6≡ 0 on Ek

j+1, 0 ≤ j ≤ i−1}.
Let

N (m,ml
i) ={y : y ∈ M̃j , ρ(y) = m, |y −ml

i| ≤ d( ¯̄Ωy),

ml
i ∈ ¯̄Ωy, Iiφ

l
i 6≡ 0 on Ej+1(Ω̃y), 0 ≤ j ≤ i− 1},

where for y ∈ M̃j , ¯̄Ωy is the patch of triangles in Tj containing the vertices of Ω̃y.



28 XUEJUN XU, HUANGXIN CHEN, AND RONALD H.W. HOPPE

For each y ∈ N (m,ml
i), there exists a constant β̃ depending only on the minimum

angle in (1.6) such that

|y −ml
i| ≤ d( ¯̄Ωy) ≤ β̃(

1
2
)mh0.

On the other hand, for any y1, y2 ∈ N (m,ml
i), we have |y1 − y2| & (1

2 )m+1h0 and
#N (m,ml

i) . 1. Hence,

#σ2(m,ml
i) . #N (m, ml

i) · max
y∈N (m,ml

i)
#σ0(m, y) . 1,

which proves (A.10). Taking advantage of the preceding estimates, we conclude the
proof as follows:

i−1∑

j=1

∑

mk
j∈M̃j ,

Iiφ
l
i 6≡0 on Ek

j+1

(hk
j )−1/2 . h

−1/2
0

i−1∑

j=1

∑

mk
j∈M̃j ,

Iiφ
l
i 6≡0 on Ek

j+1

(
1√
2
)−ρ(mk

j )

.h
−1/2
0

ρ(ml
i)+n0∑

m=0

∑

(k,j)∈σ2(m,ml
i)

(
1√
2
)−m . h

−1/2
0 (

√
2)ρ(ml

i)+n0 . (hl
i)
−1/2.

¤

References

[1] Randolph E. Bank and L. Ridgway Scott, On the conditioning of finite element
equations with highly refined meshes, SIAM J. Numer. Anal., 26(1989), 1383-1394.

[2] P. Binev, W. Dahmen, and R. DeVore, Adaptive finite element methods with con-
vergence rates, Numer. Math., 97(2004), 219-268.

[3] J.H. Bramble, Multigird Methods, Pitman, 1993.
[4] J.H.Bramble, J.E.Pasciak, and J.Xu, The Analysis of Multigrid algorithms with

nonnested spaces or non-inherited quadratic forms, Math. Comp., 56(1991), 1-34.
[5] S.C. Brenner, An optimal multigrid method for P1 nonconforming finite elments,

Math. Comp., 52(1989), 1-16.
[6] S.C. Brenner, Convergence of nonconforming multigrid methods without full elliptic

regularity, Math. Comp., 68(1999), 25-53.
[7] S.C. Brenner, Convergence of nonconforming V-cycle and F-cyle multigrid algorithms

for second order elliptic boundary value problems, Math. Comp., 73(2004), 1041-
1066.

[8] A. Byfut, J. Gedicke, D. Günther, J. Reininghaus, S. Wiedemann, et al., FFW
Documentation, Humboldt University of Berlin, Germany, 2007.

[9] C. Carstensen, Quasi-interpolation and a posteriori error analysis in finite elements
methods, RAIRO Model. Math. Anal. Numer., 33(1999), 1187-1202.

[10] C. Carstensen and R.H.W. Hoppe, Convergence analysis of an adaptive nonconform-
ing finite element emthod, Numer. Math., 103(2006), 251-266.

[11] J.M. Cascon, C. Kreuzer, R.H. Nochetto, and K.G. Siebert, Quasi-optimal conver-
gence rate for an adaptive finite element method, SIAM J. Numer. Anal., 46(2008),
2524-2550.

[12] H. Chen, X. Xu, and R.H.W. Hoppe, Convergence and optimality of adaptive noncon-
forming finite element methods for nonsymmetric and indefinite problems, Preprint
No.11/2008, Instituts für Mathematik, Universität Augsburg.

[13] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Am-
sterdam, 1978.



LOCAL MULTILEVEL METHODS FOR ADAPTIVE NFEM 29

[14] H. Duan, S. Gao, R. Tan, and S. Zhang, A generalized BPX framework covering the
V-cycle nonested multigrid methods, Math. Comp., 76(2007), 137-152.

[15] R.H.W. Hoppe and B. Wohlmuth, Adaptive multilevel iterative techniques for non-
conforming finite element discretizations, East-West J. Numer. Math., 3(1995), 179-
197.

[16] W.F. Mitchell, Optimal multilevel iterative methods for adaptive grids, SIAM
J.Sci.Stat.Comput., 13(1992), 146-167.

[17] P. Morin, R.H. Nochetto, and K.G. Siebert, Convergence of adaptive finite element
methods, SIAM Review, 44(2002), 631-658.

[18] P. Oswald, Integrid transfer operators and multilevel preconditioners for noncon-
forming discretizations, Appl. Numer. Math., 23(1996), 139-158.

[19] P. Oswald, On a hierarchical basis multilevel method with nonconforming P1 ele-
ments, Numer. Math., 62(1992), 189-212.

[20] P. Oswald, On a BPX-preconditioner for P1 elements, Computing, 51(1993), 125-133.
[21] P. Oswald, Optimality of multilevel preconditioning for nonconforming P1 finite el-

ements, Numer. Math., 111(2008), 267-291.
[22] R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying

boundary conditions, Math. Comp., 54(1990), 483-493.
[23] Z. Shi and X. Xu, On a note for nonconforming multigrid for nonsymmetric and

indefinite problems, Chinese J. Numer. Math. Appl., 22(2000), 102-108.
[24] R. Stevenson, Optimality of a standard adaptive finite element method, Foundations

of Computional Mathematics, 2(2007), 245-269.
[25] A. Toselli and O. Widlund, Domain Decomposition Methods - Algorithms and The-

ory, Springer-Verlag, Berlin, 2005.
[26] P.S. Vassilevski and J. Wang, An application of the abstract multilevel theory to

nonconforming finite element methods, SIAM J. Numer. Anal., 32(1995), 235-248.
[27] S.P. Wong, Preconditioning nonconforming finite element methods for treating

Dirichlet boundary conditions, II, Numer. Math., 62(1992), 413-437.
[28] S.P. Wong, Preconditioning P1 nonconforming finite elements: condition numbers

and singular value distributions, Numer. Math., 65(1993), 253-271.
[29] H.J. Wu and Z.M. Chen, Uniform convergence of multigrid V-cycle on adaptively

refined finite element meshes for second order elliptic problems, Science in China,
39(2006), 1405-1429.

[30] J. Xu, Iterative methods by space decomposition and subspace correction, SIAM
Review, 34(1992), 581-613.

[31] J. Xu and L. Zikatanov, The method of alternating projections and the method of
subspace corrections in Hilbert space, J.Amer.Math.Soc., 15(2002), 573-597.

[32] X. Xu and J. Chen, Multigrid for the Mortar element method for P1 nonconforming
element, Numer. Math., 88(2001), 381-398.

[33] X. Xu, H. Chen, and R.H.W. Hoppe, Optimality of local multilevel methods on adap-
tively refined meshes for elliptic boundary value problems, submitted to J. Numer.
Math., 2009.

[34] X. Xu, L. Li, and W. Chen, A multigrid method for the Mortar-type Morley element
approximation of a plate bending problem, SIAM J. Numer. Anal., 39(2002), 1712-
1731.

[35] H. Yserentant, Old and new convergence proofs for multigrid methods, Acta Numer-
ica, 2(1993), 285-326.



30 XUEJUN XU, HUANGXIN CHEN, AND RONALD H.W. HOPPE

LSEC, Institute of Computational Mathematics, Chinese Academy of Sciences, P.O.Box
2719, Beijing, 100190, People’s Republic of China

E-mail address: xxj@lsec.cc.ac.cn

LSEC, Institute of Computational Mathematics, Chinese Academy of Sciences, P.O.Box
2719, Beijing, 100190, People’s Republic of China

E-mail address: chx@lsec.cc.ac.cn

Institute of Mathematics, University of Augsburg, D-86159, Augsburg,Germany, and
Department of Mathematics, University of Houston, Houston, TX 77204-3008, USA

E-mail address: rohop@math.uh.edu


