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A STOCHASTIC SYNOPSIS OF BINARY VOTING RULES

Olga Ruff and Friedrich Pukelsheim

Institute for Mathematics, University of Augsburg, Germany

Binary voting rules are discussed with a view towards probability theory and statistics. For self-
dual and permutationally invariant distributions, the majority rule and the unanimity rule are
shown to bound the mean success margin of any other voting rule. The Penrose/Banzhaf model
uses the uniform distribution over all possible decisions. Bloc voting rules lead to product dis-
tributions beyond uniformity. The Shapley/Shubik approach entails correlated voting behavior.

1. Introduction. The discussion of voting rules and the measurement of power orig-
inates from, and usually is oriented towards, game theory. Von Neumann/Morgenstern
(1944) laid the foundation for the game-theoretic approach, and Shapley (1962), Coleman
(1971), Owen (1971), and Dubey (1975) followed their lead. Felsenthal/Machover (1998)
present a detailed overview of the subject, including a critical assessment of concepts and
methods. The present paper is an attempt to provide an alternative approach, motivated
by a decision-theoretic view used in statistics.

With our statistical background we occasionally felt some irritation that, when authors
make probabilistic statements, it remains unclear to which probability space they refer to.
Is it the set of voters? Is it the set of permutations into which the voters may be aligned?
Is it the space of decisions? Is it the space of all agendas to be treated during the voting
process? Our paper grew out of an attempt to extract just one reference space and see
how much of the current theory can be developed within the space chosen.

Our decision space ΩN consists of vectors a, called decisions. For every voter j in a
finite assembly N , a decision a records whether j votes Yea (aj = 1) or Nay (aj = 0). This
decision space figures prominently also in the Felsenthal/Machover (1998) monograph, and
in current research literature such as Laruelle/Valenciano (2004, 2005).

Section 2 introduces a voting rule WN as a set of decisions that forms a monotone,
nonempty, and proper subset of the decision space ΩN . Important events are Cj(WN ),
consisting of the decisions where voter j may exert critical decisiveness. An important
function is the success margin αWN (a), the difference between the number of voters for
whom the decision a is a success and the number of those for whom it is a failure.

Section 3 turns to general probability assumptions. Two properties become vital,
selfduality of a distribution P , and permutational invariance. For such distributions, The-
orem 2 proves that the mean success margin of a voting rule WN is bounded from above by
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the mean success margin of the majority rule, while it is bounded from below by the mean
success margin of the unanimity rule. This result is well-known for the Penrose/Banzhaf
model. Yet, our theorem shows that it is due to general probabilistic properties, rather
than being owed to the particular structure of the uniform distribution.

Section 4 turns to the Penrose/Banzhaf model. It is now easy to see that the sensitivity
of a voting rule coincides with its mean success margin. In Section 5 we overview other
power indices, by identifying them as conditional probabilities or conditional expectations
in the Penrose/Banzhaf model.

Section 6 focuses on bloc voting rules. Theorem 4 derives a product formula for the
influence probability of voter j, in the presence of a prespecified partitioning into blocs.
The formula splits into the impact of voter j in his or her bloc L, and the impact of
bloc L relative to the other blocs within the partitioning. The formula generalizes, and
compactifies, a result due to Felsenthal/Machover (2002). Partitionings of the assembly
N into blocs are also used by Laruelle/Valenciano (2004) and, for the investigation of list
apportionments in proportional representation systems, by Leutgäb/Pukelsheim (2009).

Section 7 merges the Shapley/Shubik indices into the present approach. As pointed
out by Dubey/Shapley (1979), the Shapley/Shubik model may be based on a two-stage
usage of uniform distributions. Section 8 concludes the paper with some final remarks.

2. Decision space and voting rules. Let N be an assembly, a finite set, of n voters.
A decision is a vector a = (aj)j∈N with binary components, aj := 1 in case voter j ∈ N is
a Yea-voter, or aj := 0 in case j is a Nay-voter. Altogether the decisions form the decision
space

ΩN := {0, 1}N .

Let 0N := (0, . . . , 0) denote the zero vector and 1N := (1, . . . , 1) the unity vector, each
with n components. For a given decision a ∈ ΩN the component-wise partial ordering ≤
of vectors induces the interval region [a, 1N ] := {b ∈ ΩN : a ≤ b ≤ 1N}. A binary voting
rule (also known as a simple voting game) is a subset WN ⊆ ΩN enjoying three properties:

(1) [a, 1N ] ⊆ WN for all a ∈ WN ,

(2) 1N ∈ WN ,

(3) 0N 6∈ WN .

The decisions in WN are called positive (also known as winning coalitions, winning confi-
gurations), those in the complement W c

N := ΩN \WN negative. In view of the monotonicity
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property (1), properties (2) and (3) mean that the positive decisions form a nonempty and
proper subset of the decision space, ∅ 6= WN 6= ΩN .

Voting rules are usually described in a form staying closer to the way a committee
operates. Let w = (wj)j∈N ∈ (0,∞)N be a voting weight vector. The scalar product
a′w :=

∑
j∈N ajwj designates the weight of the decision a, the sum of the voting weights

of the Yea-voters in a. The maximal possible weight is the weight of the full assembly N ,
and is abbreviated by w+ := 1N

′w.

By definition, the weighted voting rule WN (q; w) contains the decisions for which the
weight exceeds the pre-specified relative quota q ∈ [0, 1) :

WN (q; w) :=
{

a ∈ ΩN : a′w > qw+

}
.

In the symmetric case all voters possess the same voting weight, turning the weight vector
into w = λ1N for some λ > 0. The most prominent examples are the unanimity rule UN

and the straight majority rule MN :

UN := WN (1− 1/n; 1N ) = {1N},
MN := WN (1/2; 1N ) = {a ∈ ΩN : a+ > n/2}.

The Euclidean unit vector ej := (0, . . . , 0, 1, 0, . . . , 0) captures the decision where j is
the sole Yea-voter. The decisions in which the vote of j becomes critical (decisive) are
assembled in the event

Cj(WN ) :=
{

a ∈ ΩN :
(

a ∈ W c
N , a + ej ∈ WN

)
or

(
a ∈ WN , a− ej ∈ W c

N

)}
.

That is, a voter is either entry-critical (critical outside a decision) when leaving the Nay-
voters and joining the Yea-voters turns a negative decision into a positive deicision. Or
the voter is exit-critical (critical in a decision) when switching from the Yea-voters to the
Nay-voters turns a positive decision into the negative.

The critical event Cj(WN ) is understood better by concentrating, not on voter j, but
on the competitors N \ {j}. To this end let ΠN\{j} be the projection of the decision space
ΩN = {0, 1}N onto ΩN\{j} = {0, 1}N\{j}, the (n− 1)-dimensional marginal space leaving
out voter j. This is one instance—out of more to follow—where it proves helpful to use
sets as subscripts, such as the assembly and its subsets, and not their cardinalities.

Given a decision b ∈ ΩN\{j} without voter j, we denote the decision when j joins in
with a Yea by (b; 1), and when j votes Nea by (b; 0). The set of decisions where the vote
of j is critical may then be rewritten as

Cj(WN ) :=
{

a ∈ ΩN :
(
ΠN\{j}(a); 1

) ∈ WN ,
(
ΠN\{j}(a); 0

) ∈ W c
N

}
.
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Theorem 1. Let WN be a voting rule for an assembly N . Let Dj(WN ) :=
ΠN\{j}

(
Cj(WN )

)
denote the image of the critical event Cj(WN ) for voter j ∈ N under

the projection ΠN\{j}. Then Cj(WN ) is the pre-image of Dj(WN ):

Cj(WN ) = Π−1
N\{j}

(
Dj(WN )

)
.

Proof. A vector a ∈ ΩN is mapped to the image b := ΠN\{j}(a) ∈ ΩN\{j}, with
components bi = ai for all i 6= j. The vector b ∈ ΩN\{j} has two pre-images, (b; 0) and
(b; 1). Hence we obtain Dj(WN ) =

{
b ∈ ΩN\{j} : (b; 0) ∈ W c

N , (b; 1) ∈ WN

}
. Evidently

the pre-image of Dj(WN ) reproduces the event Cj(WN ).

A decision a ∈ ΩN is said to be a success for voter j provided it is positive and j is a
Yea-voter (a ∈ WN , aj = 1), or it is negative and j is an Nay-voter (a ∈ W c

N , aj = 0). A
positive decision is taken to be a failure for a Nay-voter, as is a negative decision for a Yea-
voter. The notion of success is emphasized by Laruelle/Valenciano (2005) as a property
capturing an aspect somewhat complementary to criticality.

The difference between the number of voters for which a decision a ∈ ΩN is a success,
and the number of the voters for which it appears to be a failure, defines the success margin
αWN

(a) of the voting rule WN :

αWN
(a) :=

{
a+ − (n− a+) = 2a+ − n in case a ∈ WN ,
(n− a+)− a+ = n− 2a+ in case a ∈ W c

N .

A particular emphasis is placed on positive decisions a ∈ WN appearing to be a failure to
a majority of voters. For such decisions the success margin is negative, whence its negative
part represents the majority deficit, δWN

:= α−WN
= (|αWN

| − αWN
)/2.

A few additional notions will be useful. A decision 1N−a is called the dual decision of
a ∈ ΩN . The dual decision rule of WN is defined to be W ∗

N := {1N − a ∈ ΩN : a ∈ W c
N}.

Denoting the cardinality of WN by ω, we obtain #W ∗
N = #W c

N = 2n − ω. A voter j with
Cj(WN ) = ∅ is never critical, and is called a dummy. In the voting rule WN = [ej , 1N ]
voter j, being able to determine the outcome of the decision, is called a dictator.

With these set theoretic preparations we now evaluate the events of interest by means
of appropriate probability distributions.
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3. Distributional assumptions. The aim is to equip the decision space ΩN with prob-
ability distributions P permitting a meaningful a priori analysis of decision rules WN .

The share of all positive decisions P (WN ) is called the decision-making ability of the
decision rule WN under P (also known as P -efficiency). The influence probability under P

(also known as swing probability), of voter j in the decision rule WN , is defined to be
P

(
Cj(WN )

)
. The sum of all influence probabilities, ΣP (WN ) :=

∑
j∈N P

(
Cj(WN )

)
, is

termed the P -sensitivity of the decision rule WN .

The critical events Cj(WN ), j ∈ N , generally neither cover the decision space ΩN ,
nor turn out to be pairwise disjoint. Hence only in special circumstances will the P -
sensitivity be equal to one. However, the P -sensitivity can be used to normalize the
influence probabilities into P

(
Cj(WN )

)
/ΣP (WN ). The normalized influence probabilities

are called the share of power of voter j under P . The power shares form a probability
distribution for the assembly N , preserving for any two voters i 6= j the ratio of their
influence probabilities, P

(
Ci(WN )

)
/P

(
Cj(WN )

)
.

Some structural properties of P become essential. A distribution P is said to be
selfdual when P ({a}) = P ({1N − a}) holds for all a ∈ ΩN . Selfduality means that the
probability for a decision on a bill is just the same as the probability for the dual decision
on the negation of that bill.

A distribution P is called permutationally invariant when P ◦ σ−1 = P holds for all
bijections (one-to-one and onto mappings) σ : N → N . To see the effect of the property, we
decompose the decision space into the sets of decisions with a fixed number k of Yea-voters:

ΩN =
n⊎

k=0

{
N

k

}
,

{
N

k

}
:=

{
a ∈ ΩN : a+ = k

}
.

The subset
{

N
k

}
has cardinality

(
n
k

)
. Within such a subset, a permutationally invariant

distribution behaves like a uniform distribution:

P ({a}) = P

({
N

k

}) /(
n

k

)
for all a ∈

{
N

k

}
.
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Theorem 2. Let WN be a decision rule for an assembly N .

(i) The success margin and the majority deficit of WN are related to the success margin
of the majority rule MN through αWN

= αMN
− 2δWN

≤ αMN
. In particular, every

distribution P fulfills

EP [αWN
] ≤ EP [αMN

].

(ii) Every selfdual distribution P fulfills

EP [αWN
] = 2

∑

a∈WN

(2a+ − n)P ({a}) = 2
n∑

k=1

(2k − n)P
(

WN ∩
{

N

k

})
.

(iii) Every selfdual and permutationally invariant distribution P fulfills

EP [αWN
] ≥ EP [αUN

] = 2nP ({1N}).

Proof. (i) The absolute value of any success margin is equal to the success margin
of the majority rule, since |αWN

(a)| = |2a+ − n| = αMN
(a). The assertions follow from

δWN
= (αMN

− αWN
)/2, and αWN

≤ |αWN
|.

(ii) For a ∈ ΩN we define the indicator function

1{a ∈ WN} =
{

1 in case a ∈ WN ,
0 in case a ∈ W c

N .

Thus the success margin turns into αWN (a) = (2 · 1{a ∈ WN} − 1)(2a+ − n). It
follows that EP [αWN ] = 2

∑
a∈WN

(2a+ − n)P ({a}) −∑
a∈ΩN

(2a+ − n)P ({a}). The last
sum vanishes due to the selfduality of P :

∑

a∈ΩN

(
a+ − (1N − a)+

)
P ({a}) =

∑

a∈ΩN

a+P ({a})−
∑

a∈ΩN

(1N − a)+P ({1N − a}) = 0.

The second equality of the assertion rearranges the sum according to the count of the Yea-
voters, observing 0N 6∈ WN . The final sum has at most n terms, while the penultimate
sum may have up to 2n − 1 terms.

(iii) Since 1N ∈ WN , part (ii) yields EP [αWN
] = 2nP ({1N}) + 2

∑n−1
k=1(2k − n)×

P
(
WN ∩

{
N
k

})
. It remains to show that the second sum is nonnegative. To this end we
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subdivide the range of summation into two regions of equal cardinality, 1 ≤ k < n/2 and
n/2 < k ≤ n− 1. Applying permutational invariance and selfduality, we obtain

n−1∑

k=1

(2k − n)P
(

WN ∩
{

N

k

})

=
∑

1≤k<n/2

(n− 2k)

(
P

(
WN ∩

{
N

n− k

})
− P

(
WN ∩

{
N

k

}) )

=
∑

1≤k<n/2

(n− 2k)P
({

N

k

})

(
n/2
k

)
(

#
(

WN ∩
{

N

n− k

})
−#

(
WN ∩

{
N

k

}))
.

Since a voting rule WN is monotone, by its defining property (1), any set of decisions with
many Yea-voters (n− k) outnumbers a set of decisions with only a few Yea-voters (k), for
all 1 ≤ k < n/2. This proves all terms of the final sum to be nonnegative.

4. The Penrose/Banzhaf model. The simplest distributional model is the Penrose/
Banzhaf distribution PN , the uniform distribution on the space ΩN :

PN ({a}) :=
1

#ΩN
=

1
2n

for all a ∈ ΩN .

The Penrose/Banzhaf distribution makes the voting behavior of all voters j ∈ N stochas-
tically independent and identically distributed, PN =

⊗
j∈N P{j}. The one-dimensional

marginal distributions are P{j} = Bernoulli(1/2). The distribution PN is selfdual and
permutationally invariant. The Penrose/Banzhaf decision-making ability (also known as
Coleman’s power of a collectivity to act) is PN (WN ) = ω/2n.

For a given voting rule WN , the Penrose/Banzhaf influence probability of the voter
j ∈ N evaluates to

PN

(
Cj(WN )

)
= PN ◦Π−1

N\{j}
(
Dj(WN )

)
= PN\{j}

(
Dj(WN )

)
=

ηj

2n−1
,

where ηj := #Dj(WN ) denotes the swing score (also known as Banzhaf score) of voter j.
The following result is well-known, see Theorem 3.3.5 in Felsenthal/Machover (1998).
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Theorem 3. In the Penrose/Banzhaf model, the P -sensitivity of every voting rule
WN coincides with its mean success margin:

ΣPN
(WN ) =

1
2n−1

∑

a∈WN

(2a+ − n) = EPN
[αWN

].

Proof. By definition, ΣPN
(WN ) = η+/2n−1. We set ωj := #{a ∈ WN : aj = 1}. If

voter j changes camps, then the positive decisions for which j is critical become negative
and drop out: #{a ∈ WN : aj = 0} = ωj − ηj . We obtain ω = 2ωj − ηj , that
is, ηj = 2ωj − ω. Substituting ωj =

∑
a∈WN

1{aj = 1} and summing over j, we get

η+ = 2
(∑

a∈WN

∑
j∈N 1{aj = 1}

)
−nω =

∑
a∈WN

(2a+−n). This proves the first equality.
The second equation follows from Theorem 2.

Theorems 2 and 3 imply that the unanimity rule UN and the majority rule MN provide
bounds for the Penrose/Banzhaf sensitivity of a voting rule WN :

n

2n−1
= ΣPN

(UN ) ≤ ΣPN
(WN ) ≤ ΣPN

(MN ) =
n

2n−1

(
n− 1
bn/2c

)
∼

√
2n

π
.

5. Conditional power indices in the Penrose/Banzhaf model. Other power indi-
ces emerge from the Penrose/Banzhaf model as conditional probabilities, or as conditional
expectations. For an appraisal of these indices see Felsenthal/Machover (1998).

5.1. Conditioning on the set of positive decisions. A first group of power indices
conditions on the voting rule WN itself, thereby emphasizing its interpretation as the set
of all positive decisions.

The Penrose/Banzhaf probability of the critical event Cj(WN ) given the positive de-
cisions WN is better known as Coleman’s power to prevent action:

EPN

[
1
{
a ∈ Cj(WN )

} ∣∣∣ WN

]
= PN

(
Cj(WN )

∣∣∣ WN

)
=

PN

(
Cj(WN ) ∩WN

)

PN (WN )

=
ηj/2n

ω/2n
=

ηj

ω
.

The penultimate equality uses that the number of positive decisions for which voter j is
exit-critical is #

(
Cj(WN ) ∩WN

)
= #

(
Cj(WN ) ∩W c

N

)
= #Cj (WN ) /2 = ηj .
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Coleman’s power to initiate action is given by PN

(
Cj(WN ) |W c

N

)
= ηj/(2n−ω). Here

the conditioning event is provided by the negative decisions W c
N , and ηj represents the

number of negative decisions where voter j is entry-critical. The harmonic mean of the
two Coleman indices reproduces the Penrose/Banzhaf influence probability PN

(
Cj(WN )

)
.

This reproduction property applies in every probability space (ΩN , P ) where the relation
P

(
Cj(WN ) ∩WN

)
= P

(
Cj(WN ) ∩W c

N

)
holds true.

Generally the two Coleman indices do not sum to unity. In either case normalization
reproduces the Penrose/Banzhaf influence probabilities.

An alternative idea is that in case of an increasing number of critical Yea-voters they
should be assigned decreasing pay-offs. This reasoning originates from a game-theoretic
approach, the winning coalition of Yea-voters having to share a fixed prize. For a decision
a ∈ ΩN we define the vector γ(a) to indicate whether voter j is exit-critical (γj(a) := 1),
or not (γj(a) := 0). Hence, the component sum γ+(a) indicates the number of exit-critical
Yea-voters. The Burgin/Shapley index is defined as

EPN

[
1

γ+(a)
1
{
a ∈ Cj(WN )

} ∣∣∣ WN

]
=

∑

a∈Cj(WN )

1
γ+(a)

PN

(
{a}

∣∣∣ WN

)

=
∑

a∈Cj(WN )∩WN

1
γ+(a)

1/2n

ω/2n
=

1
ω

∑

a∈Cj(WN )∩WN

1
γ+(a)

.

The normalized versions of the Burgin/Shapley indices are called Johnston indices.

5.2. Conditioning on the set of minimal-positive decisions. A second group of indices
arises when the conditioning event is taken to be the set of minimal-positive decisions, that
is, decisions wherein every Yea-voter is exit-critical:

Wmin
N :=

{
a ∈ WN : a− 1{aj = 1}ej ∈ W c

N for all j ∈ N
}

.

The interval regions that are induced by the minimal-positive decisions characterize the
decision rule: WN =

⋃
a∈W min

N
[a, 1N ]. Kirsch/Langner (2009) make do with minimal-

positive decisions to calculate influence probabilities.

The indices corresponding to Coleman’s power to prevent action are

EPN

[
1
{
a ∈ Cj(WN )

} ∣∣∣ Wmin
N

]
=

#
(
Cj(WN ) ∩Wmin

N

)

#Wmin
N

.

Normalization yields the Holler/Packel public good indices.
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In minimal-positive decisions every Yea-voter is exit-critical, γ(a) = a. The indices
that run parallel to the Burgin/Shapley indices are the Deegan/Packel indices

EPN

[
1

a+
1
{
a ∈ Cj(WN )

} ∣∣∣ Wmin
N

]
=

1
#Wmin

N

∑

a∈Cj(WN )∩W min
N

1
a+

.

Their total happens to be equal to unity, since for all a ∈ Wmin
N we get

∑
j∈N 1

{
a ∈

Cj(WN )
}

= a+, and
∑

j∈N EPN

[
1

a+
1
{
a ∈ Cj(WN )

} ∣∣ Wmin
N

]
= 1 .

Although the Penrose/Banzhaf uniform distribution is the most prominent model,
bloc voting rules give rise to other interesting distributions.

6. Bloc voting rules. We assume that an assembly N is given, together with its deci-
sion space ΩN and a decision rule WN . A partitioning L of the assembly N is a decompo-
sition of N into pairwise disjoint subsets. Its subsets K ∈ L are called blocs.

The smallest partitioning is {N}, embracing just the single bloc N . The largest
partitioning is

{{j} : j ∈ N
}
, featuring only trivial—that is, one-element—blocs {j}.

These two configurations are extreme and only of theoretical interest. Practical examples
use partitionings L consisting of more than one and less than n blocs. In Exhibit 1 we
partition the former EEC into four blocs, L =

{{DE}, {IT}, {FR}, {NL, BE, LU}}. The
big members stay alone, while the Benelux states join into a three-member bloc.

The assembly N is a disjoint union of the blocs K ∈ L, and the decision space is a
Cartesian product of the decision spaces of the blocs:

N =
⊎

K∈L
K, ΩN =

∏

K∈L
ΩK .

A decision in ΩN now is a block vector a = (aK)K∈L, with components aK := (aj)j∈K .

Given a bloc K ∈ L, we consider the assembly K and its corresponding decision space
ΩK . We assume that every bloc is given an internal decision rule WK . The final decision,
in the grand assembly N , is preceded by internal bloc decisions. If in bloc K the internal
decision aK is positive, then all members of the bloc vote Yea in the final decision. If aK is
negative, all of them vote Nay. The contribution of bloc K to the final decision therefore
is 1{aK ∈ WK}1K , namely 1K in case aK ∈ WK , and 0K otherwise. This leads to the
formal definition of the bloc voting rule to be

WN |(WK)K∈L :=
{

(aK)K∈L ∈ ΩN :
(
1{aK ∈ WK}1K

)
K∈L ∈ WN

}
⊆ ΩN .

Theorem 4 treats the partitioning L as another assembly, as in Felsenthal/Machover
(2002) and Laruelle/Valenciano (2004). The decision space ΩL is equipped with a decision
rule WL that is induced by the decision rule WN .
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Theorem 4. Let L be a partitioning of the assembly N . With voting rules WN for
N and WK for the blocs K ∈ L, we introduce

WL := {b ∈ ΩL : (bK1K)K∈L ∈ WN}, QL :=
⊗

K∈L
Bernoulli

(
PK(WK)

)
.

Then we have, for every bloc L ∈ L and for all voters j ∈ L:

PN

(
Cj

(
WN

∣∣(WK)K∈L
))

= PL

(
Cj(WL)

)
QL

(
CL(WL)

)
.

Proof. For every decision a in ΩN , the indicators bK(aK) := 1{aK ∈ WK} induce
the decision b(a) :=

(
bK(aK)

)
K∈L in ΩL. A voter j ∈ L is critical in ΩN , with respect

to the bloc voting rule WN |(WK)K∈L, if and only if j is critical in WL and the bloc L is
critical in WL:

Cj

(
WN

∣∣(WK)K∈L
)

=
{

a ∈ ΩN : aL ∈ Cj(WL), b(a) ∈ CL(WL)
}

.

By Theorem 1, the event CL(WL) = Π−1
L\{L}

(
DL(WL)

)
depends on the blocs in L \ {L},

only. Since the distribution PN is a product, PN =
⊗

K∈L PK , we obtain

PN

(
Cj

(
WN

∣∣(WK)K∈L
))

= PL

(
Cj(WL)

)
PN\L

({
(bK)K∈L\{L} ∈ DL(WL)

})
.

In the last factor we re-introduce the marginal space ΩL:

PN\L
({

(bK)K∈L\{L} ∈ DL(WL)
})

= PN

({
b ∈ CL(WL)

})
= PN ◦ b−1

(
CL(WL)

)
.

The distribution of the random vector b = (bK)K∈L under PN turns out to be

PN ◦ b−1 =
⊗

K∈L
PK ◦ b−1

K =
⊗

K∈L
Bernoulli(pK),

with pK := PK

({bK = 1}) = PK

({aK ∈ ΩK : aK ∈ WK}
)

= PK(WK). This yields the
distribution QL as claimed in the assertion.

Trivial blocs K = {j} do not really contribute anything novel to the product formula.
Indeed, the sole decision rule for them is W{j} = {1}. We obtain P{j}

(
Cj(W{j}

)
= 1,

whence the first factor in the product formula equals unity. Moreover, they enter into the
distribution QL as a Bernoulli(1/2) component, since P{j}(W{j}) = 1/2. For this reason
trivial blocs are often omitted when listing the members of a partitioning.
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In other words, if in a partitioning L a voter j stands alone, then the behavior of
the trivial bloc {j} in the partitioning assembly L is identical with the behavior of the
voter j in the original assembly N , with a common probability 1/2 of being a Yea-voter.
Thus a voter who stays back as a one-element bloc remains passive, and falls victim to the
competing blocs of the partitioning L.

In Theorem 4 the distribution QL is a product of Bernoulli distributions. But a Yea
in bloc K has probability PK(WK), and a Nay has probability 1 − PK(WK). In general,
it is no longer necessarily the case that a Yea emerges with probability 1/2. For example
in Exhibit 1, the Benelux bloc votes Yea under the unanimity rule with probability 1/8.

More than that, other instances give rise to distributions with correlated components.
An example is the Shapley/Shubik distribution.

7. The Shapley/Shubik model. The Shapley/Shubik distribution SN is based on a
superposition of uniform distributions, see Dubey/Shapley (1979). Every subset

{
N
k

}
,

k = 0, . . . , n, is assigned the same probability 1/(n + 1). Conditionally on such a subset,
its

(
n
k

)
decisions are also assumed to be uniformly distributed:

SN ({a}) :=
1

(n + 1)
(

n

a+

) for all a ∈ ΩN .

It is easy to verify that the Shapley/Shubik distribution is selfdual and permutationally
invariant. Moreover, Theorem 5 shows that the family of Shapley/Shubik distributions is
projectively consistent with respect to its marginal distributions.

Theorem 5. For all voters j ∈ N we have SN ◦Π−1
N\{j} = SN\{j}.

Proof. For b ∈ ΩN\{j} we have Π−1
N\{j}{b} = {(b; 0), (b; 1)}. Set k = b+. The

identities
(
n
k

)
+

(
n

k+1

)
=

(
n+1
k+1

)
= n+1

k+1

(
n
k

)
justify the assertion:

SN

(
{(b; 0), (b; 1)}

)
=

1

(n + 1)
(

n

k

) +
1

(n + 1)
(

n

k + 1

) =

(
n

k + 1

)
+

(
n

k

)

(n + 1)
(

n

k

)(
n

k + 1

)

=
1

(k + 1)
(

n

k + 1

) =
1

n

(
n− 1

k

) = SN\{j}({b}).
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The Shapley/Shubik influence probability of voter j becomes

SN

(
Cj(WN )

)
= SN\{j}

(
Dj(WN )

)
=

n−1∑

k=0

SN\{j}

({
N \ {j}

k

}
∩Dj(WN )

)
.

Since in the probability space (ΩN\{j}, SN\{j}) a uniform distribution rules on the subsets{
N\{j}

k

}
, we introduce the counting variables

ηj(k) := #
({

N \ {j}
k

}
∩Dj(WN )

)
=: sk+1,j ,

for all k ∈ {0, . . . , n − 1} and j ∈ N . The number sij counts the decisions consisting of
i Yea-voters (including j) and featuring voter j as exit-critical. Altogether they form the
{1, . . . , n} ×N swing matrix s = ((sij)). Therefore, we obtain

SN

(
Cj(WN )

)
=

n−1∑

k=0

ηj(k)
n
(
n−1

k

) =
1
n!

n−1∑

k=0

k!(n− 1− k)! ηj(k) =
1
n!

n∑

i=1

(i− 1)!(n− i)! sij .

Theorem 6 states that the Shapley/Shubik influence probabilities always sum to unity.
Hence the notion of sensitivity is superfluous, in the Shapley/Shubik model.

Theorem 6. In the Shapley/Shubik model every decision rule WN has SN -sensitivity
equal to unity: ∑

j∈N

SN

(
Cj(WN )

)
= 1.

Proof. The assertion is entirely of combinatorial nature:
∑n

i=1(i−1)!(n−i)!si+ = n!.
We show that the left hand side counts all permutations of n voters, as does the right hand
side. On the left hand side the counting is carried out in a way that is dictated by the
problem. Without loss of generality we assume that the assembly is arranged in the form
N = {1, . . . , n}. Let σ(1), . . . , σ(n) be an arbitrary permutation of the voters. We count
the cases where the sole Yea-voters are σ(1), . . . , σ(i) and where voter σ(i) is exit-critical:

eσ(1) + · · ·+ eσ(i−1) + eσ(i) ∈ WN , eσ(1) + · · ·+ eσ(i−1) ∈ W c
N .

Voter j := σ(i) maintains the exit-critical role in all permutations that originate from
rearranging the predecessors σ(1), . . . , σ(i− 1), as well as rearranging the successors σ(i +
1), . . . , σ(n). This generates (i − 1)!(n − i)! permutations. Finally, the number si+ :=∑

j∈N sij is the count of how often voter j takes the position of the exit-critical voter σ(i).
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Theorem 6 entails the rather strange consequence that, for weighted voting rules
WN (q;λ1N ) where all voters enjoy the same voting weight λ, the Shapley/Shubik influence
probabilities of all voters are equal to 1/n. They do not depend on the quota q, and
therefore the Shapley/Shubik model is incapable of distinguishing the unanimity rule UN

(with quota q = 1− 1/n), from the majority rule MN (with quota q = 1/2).

In the Shapley/Shubik model the mean success margin does not coincide with the
P -sensitivity, but provides extra information. Theorem 2 provides the bounds

2n

n + 1
= ESN

[αUN
] ≤ ESN

[αWN
] ≤ ESN

[αMN
] =

n + 1
2

−




1
2(n + 1)

in case n even,

0 in case n odd.

The Shapley/Shubik model assigns weights to the subsets
{

N
k

}
that differ from those

in the Penrose/Banzhaf model:

SN

({
N

k

})
=

1
n + 1

6= 1
2n

(
n

k

)
= PN

({
N

k

})
.

Nevertheless, within any such subset the conditional probabilities are the same. For all
decisions a ∈

{
N
k

}
we have SN

(
{a}

∣∣
{

N
k

})
= 1/

(
n
k

)
= PN

(
{a}

∣∣
{

N
k

})
.

The Shapley/Shubik model has marginal distributions S{j} = Bernoulli(1/2), for all
voters j ∈ N , as has the Penrose/Banzhaf model. However, any two voters are stochasti-
cally dependent in their behavior, CovSN

[ai, aj ] = CovS{i,j} [ai, aj ] = 1/12. Their correla-
tion coefficient turns out to be (1/12)/(1/4) = 1/3.

The positive correlation becomes visible also in the conditional probabilities

SN

({(b; 1)} ∣∣ {(b; 0), (b; 1)}) =
SN

({(b; 1)})

SN\{j}
({b}) =

b+ + 1
n + 1

.

In the Shapley/Shubik model voter j turns into a Yea-voter with a likelihood that increases
with the number of Yea-voters (b+) surrounding j. This is reminiscent of the accessus
procedure in clerical elections. The accession of minority voters to the majority may ease
the way to a two-thirds winning coalition, see Colomer/McLean (1998).
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8. Conclusion. In this paper we leave the common game theoretic ground and instead
rely on tools from probability theory and statistics. The use of the single decision space
ΩN , consisting of all possible decisions in an assembly N , provides us with an appropri-
ate framework to embed many prominent power measures known in the literature. This
leads to a general theory in which power measures arise from appropriate distributional
assumptions.

We have shown in Section 3 that the upper und lower bounds of the expected success
margin apply to all distributions that are selfdual and permutationally invariant, rather
than being restricted to special assumptions such as the Penrose/Banzhaf model. Hence
we are able to calculate the mean majority deficit in these cases, in particular for the
Shapley/Shubik model.

Bloc voting rules, which we have studied in Section 6, provide us with an entirely new
class of interesting distributions and yield a generalization to Felsenthal/Machover (2002).
We allow blocs of any sizes and arbitrary internal voting rules. The example of a Benelux
bloc in the former EEC illustrates the different power distributions among the six states
when the majority rule, or the unanimity rule, is used within the Benelux bloc.

Finally, we would like to remark that our approach extends to ternary voting rules
where abstentions are allowed, see Käufl/Ruff/Pukelsheim (2009). Contingent on the
probability t ∈ [0, 1) for abstaining, that paper developes formulas embracing the results
of the present paper as the case t = 0.
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Leutgäb, P. / Pukelsheim, F. (2009). List apparentements in local elections: A lottery. In: Festschrift
Hannu Nurmi. München.

Owen, G. (1971). Political games. Naval Research Logistics Quarterly 18 345-355.

Shapley, L.S. (1962). Simple games: An outline of the descriptive theory. Behavioral Science 7 59–66.

Von Neumann, J. / Morgenstern, O. (1944). Game Theory and Economic Behavior. Princeton.



 1 

 

Decision 
number 

DE 
(4) 

IT 
(4) 

FR 
(4) 

NL 
(2) 

BE 
(2) 

LU 
(1) 

Decision weight 
   WEU6   WEU6|MBenelux WEU6|UBenelux 

1 1 1 1 1 1 1 17 17 17 

2 1 1 1 1 1 0 16 17 12 

3 1 1 1 1 0 1 15 17 12 

4 1 1 1 0 1 1 15 17 12 

5 1 1 1 1 0 0 14 12 12 

6 1 1 1 0 1 0 14 12 12 

7 1 1 1 0 0 1 13 12 12 

8 1 1 0 1 1 1 13 13 13 

9 1 0 1 1 1 1 13 13 13 

10 0 1 1 1 1 1 13 13 13 

11 1 1 1 0 0 0 12 12 12 

12 1 1 0 1 1 0 12 13 - 

13 1 0 1 1 1 0 12 13 - 

14 0 1 1 1 1 0 12 13 - 

15 1 1 0 1 0 1 - 13 - 

16 1 1 0 0 1 1 - 13 - 

17 1 0 1 1 0 1 - 13 - 

18 1 0 1 0 1 1 - 13 - 

19 0 1 1 1 0 1 - 13 - 

20 0 1 1 0 1 1 - 13 - 

          

Voting 
rule 

Penrose/Banzhaf  
influence probability 

P/B sen- 
sitivity 

Mean 
majority 
deficit 

P/B effi-
ciency 

WEU6 20 20 20 12 12 0 84 18 14 

WEU6|MBenelux 24 24 24 12 12 12 108 6 20 

WEU6|UBenelux 18 18 18 6 6 6 72 24 11 

 

Exhibit 1: Weighted voting rule of the EEC 1958-1972 and 
two bloc voting variants. The voting rule WEU6 used voting 
weights 4, 4, 4, 2, 2, 1, and at least 12 voting weights 
are necessary for a positive decision.  The variants that   
treat Benelux as a bloc decide internally either by 
majority (WEU6|MBenelux), or by unanimity (WEU6|UBenelux).  The 
formation of the bloc may increase (24) or decrease (18) 
the influence probabilities of the voters that stand by 
themselves. The influence probabilities may be obtained by 
counting the critical decisions, or using Theorem 4. All 
values in the lower table are multiples of 1/64. 


