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ABSTRACT

Many content-based image mining systems extract local fea-
tures from images to obtain an image description based on dis-
crete feature occurrences. Such applications require a visual
vocabulary also known as visual codebook or visual dictionary
to discretize the extracted high-dimensional features to visual
words in an efficient yet accurate way.

Once such an application operates on images of a very spe-
cific domain the question arises if a vocabulary built from those
domain-specific images needs to be used or if a ”universal” vi-
sual vocabulary can be used instead. A universal visual vocabu-
lary may be computed from images of a different domain once
and then be re-used for various applications and other domains.

We therefore evaluate several visual vocabularies from dif-
ferent image domains by determining their performance at
pLSA-based image classification on several datasets. We em-
pirically conclude that vocabularies suit our classification tasks
equally well disregarding the image domain they were derived
from.

Keywords— visual vocabulary, visual words, image classifi-
cation

1. INTRODUCTION

In recent years bag-of-words models have become increasingly
popular for image content analysis due to the power to provide
a useful image description and yet handle occlusion and some
minor transformations effectively. Other techniques like com-
puting topic models such as probabilistic latent semantic analy-
sis (pLSA) on top of a bag-of-words model further improve the
expressiveness of the image descriptions, and are widely used
for many applications such as image retrieval and image classi-
fication.

During the development of a reliable adult image filtering
system in our lab an interesting question has been raised: Does
one have to create a visual vocabulary that is built from images
of the target domain or can a vocabulary computed from generic
images be used instead?

In this paper we therefore empirically examine whether bag-
of-words models always require the time-consuming computa-
tion of distinct visual vocabularies. For this purpose, we analyze

*This work was kindly funded by Advanced U.S. Technology Group
(ATG), http://www.austg.com. Special thanks to CEO Dr. Rudolf Hauke.

the classification results of such models based on vocabularies
from different image domains.

Our experiments suggest that the expense of creating a new
visual vocabulary over and over again can be omitted since one
can re-use a universal visual vocabulary. We experimentally
verify this statement for different vocabulary sizes and feature
types.

2. RELATED WORK

To create our visual vocabularies, we cluster image features by
employing hierarchical vocabulary trees as introduced by Nister
et al. [1]. The pLSA topic model we use to derive a high-level
image description is an unsupervised approach to compute topic
distributions of documents from simple word occurrences. It
was introduced by Hofmann [2][3] in the realm of text analysis.

Bosch et al. [4] proposed an approach to scene classification
based on pLSA models.

Lienhart et al. [5] applied the pLSA to the problem of im-
age retrieval in large scale image databases in a similar way
and showed that using topic vectors to represent images yields a
more accurate image description than plain feature histograms.

The image classification system we use for experimental
evalutation of our visual vocabularies is based on the work of
Hörster et al. [6] where the high-level image descriptions com-
puted by the pLSA model are used to classify images.

3. CONTRIBUTIONS

In this paper we show empirically that the performance of bag-
of-words models does not depend on the set of images used for
the creation of the underlying visual vocabulary (as long as we
use a reasonable number of images and a diverse enough image
set from which we derive the vocabulary).

We also examine if this conclusion holds for vocabularies
containing different numbers of words. Therefore, we create
each visual vocabulary in three different sizes, that is we com-
pute vocabularies consisting of 500, more than 9000 and more
than 90,000 visual words for each of four image sets. We use
pLSA image classification to evaluate the vocabularies by com-
paring the classification performance for each vocabulary.

To ensure that the observations are independent from the vi-
sual feature type used for creating the visual vocabularies, we
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compare Self-Similarity features [7] to SIFT features [8] by cre-
ating each of our vocabularies for both feature types.

Our results suggest that there is no need to compute a new
visual vocabulary each time we want to create a bag-of-words
model for a specific image domain. In fact we can simply com-
pute one general visual dictionary and can re-use it for all image
domains. Therefore the computation time for such models can
be reduced significantly.

4. VISUAL VOCABULARIES

This section describes the four image sets we use to compute
visual vocabularies. We also briefly explain the used features
and the vocabulary creation.

4.1. Image Sets

We use four different image collections to compute visual vo-
cabularies in several configurations and to evaluate their impact
on the performance of the actual classification task.

• Real world images: Flickr
The first image set consists of 100,000 images down-
loaded from the Flickr community image database by
querying the Flickr web service using more than 25 dif-
ferent query terms (e.g. ’baseball’, ’flowers’, ...). Statisti-
cal analysis shows that about 40% of all Flickr images la-
beled with a certain tag do not actually show the expected
content. Therefore, this image set can be considered a
heterogeneous collection of real world images with both
diverse content and appearance.

• Artificial object categories: Caltech 101
Our second image set is the complete Caltech 101
dataset [9] which consists of about 9000 images from 101
object classes and one background class. The number of
images per category varies from 40 to 800, but most cate-
gories consist of about 50 images. This dataset features a
high number of noise-free image classes. Caltech 101 is
commonly not considered a challenging dataset.

• Domain-specific images: adult images
Since the original question was if it is necessary to com-
pute domain-specific vocabularies for the application of
adult image filtering, we use a collection of 2600 adult
images to examine the application-specific impact.

• Domain-specific images: bikini images
We further evaluate the image classification and the vo-
cabularies on a collection of 2600 slightly noisy bikini
images (i.e. images featuring women wearing bikinis)
as they are somewhat inbetween inoffensive images and
adult images. Again, this tests the actual impact of the
vocabulary on a domain-specific classification task.

The domain of bikini images is necessary as mostly one
cannot work with the real adult images due to legal rea-
sons, and the classification system has to be developed

Table 1. The image sets used to compute the visual vocabularies
and the respective numbers of images

Vocabularies with 500 visual words
Flickr: 1000 random Flickr images
Flickr/Bikini: 500 Flickr images, 500 bikini images
Flickr/Adult: 500 Flickr images, 500 adult images
Caltech 101: 4500 images (50% of each class)

Vocabularies with 9,000+ visual words
Flickr: 1000 random Flickr images
Flickr/Bikini: 500 Flickr images, 500 bikini images
Flickr/Adult: 500 Flickr images, 500 adult images
Caltech 101: 4500 images (50% of each class)

Vocabularies with 90,000+ visual words
Flickr 5000 random Flickr images
Flickr/Bikini: 2500 Flickr images, 2500 bikini images
Flickr/Adult: 2500 Flickr images, 2500 adult images
Caltech 101: 4500 images (50% of each class)

without actually ”knowing” the target domain. It is fur-
ther of interest if vocabularies from a domain closely re-
lated to the adult images perform better at classifying
these images than vocabularies from unrelated domains
like the Flickr images.

In order to obtain a reasonable number of features to cluster,
we randomly draw subsets for which we then extract local fea-
tures and build feature histograms for further processing. These
subsets are listed in Table 1.

4.2. Local Image Features

We use two different types of local feature descriptors: SIFT
and Self-Similarity.

The Self-Similarity descriptor was introduced by Shechtman
et al. [7]. It models the similarity of a small center image patch
to the image patches in its surrounding. These similarities are
represented as correlation surfaces which are then transformed
to a log-polar representation.

The SIFT features which were developed by Lowe [8] are
among the best-known descriptors. SIFT features are basically
weighted gradient histograms. Originally they were designed
for use with the Difference-of-Gaussian keypoint dectector to
find stable keypoints in order to recognize and match objects
across images. However we extract SIFT features at locations
given by a dense grid as recent work [6] showed that this yields
better performance.

We compute both Self-Similarity and SIFT features on a
dense grid of 5×5 pixels from images with a maximum side
length of 640 pixels, i.e. larger images are scaled down. By
evaluating two different feature descriptors we show empiri-
cally that our results do not depend on a certain feature type.
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Fig. 1. Usage of a vocabulary tree to quantize feature vectors
into discrete visual words in order to construct the document
vector (word occurrence histogram).

4.3. Clustering

Most applications need to derive a discrete set of visual words
from the actual extracted visual features. One possible approach
is to partition a set of feature vectors into homogeneous groups
or clusters. A representative feature such as the centroid is then
chosen for each cluster and called a visual word. The set of rep-
resentative feature centroids then defines the visual vocabulary.
An unknown feature vector can then be mapped to its nearest
representative feature, which allows computing the discrete vi-
sual word occurrences.

One common approach to compute the visual vocabulary is
to cluster the feature vectors with the k-means algorithm [10].
This algorithm is a widely-used clustering algorithm and allows
unsupervised clustering of multidimensional data into k groups.
It clusters vectors iteratively into groups by minimizing the dis-
tance of each sample vector towards its nearest cluster centroid.
While the k-means algorithm is quite fast for a small number of
clusters k, it is time-consuming for larger vocabularies. In our
experiments we use it to build the vocabularies that consist of
500 visual words.

For vocabularies of larger sizes using a flat vocabulary is ex-
pensive both at creation and at quantizing features efficiently.
Therefore, to examine our larger vocabularies with more than
9,000 and 90,000 words we use hierarchical k-means clustering
to cluster the extracted features.

Hierarchical k-means clustering produces a vocabulary
tree [1] that hierarchically partitions the feature space. The cre-
ation of this tree is done by applying the k-means algorithm
repeatedly to partition the feature space recursively into a small
number of subspaces on each tree level.

Vocabulary trees have two advantages: They can be com-
puted very fast as on every tree level the k-means algorithm
only has to compute a coarse partition (small k) which is then
refined in the subsequent tree levels. In addition the tree struc-
ture allows an efficient traversal through the tree to find the near-
est feature. Therefore only O(log(|V|) vector comparisons are
necessary instead of O(|V|) comparisons when using a plain
list (See Figure 1). The disadvantage of using the hierarchical
approximated partitions instead of more accurate partitions pro-
duced by a plain k-means clustering is often made up for by the
ability to use a larger vocabulary.

We would like to note that even though vocabulary trees are a
more efficient way to cluster features than with non-hierarchical

Fig. 2. An extreme example of a pruned vocabulary tree with
k = 10 clusters per level and l = 4 levels. The actually con-
structed tree has 1594 leaves. The root node is at the center,
every level of the tree is colored differently.

approaches, creating a vocabulary tree of more than 90,000 vi-
sual words is still a highly time-consuming task. However, the
results of our experiments give rise to expectations that such a
costly vocabulary creation needs to be done only once, and thus
even more expensive but also more accurate clustering methods
may be used in the future as the vocabularies can be re-used by
many applications.

One difficulty in practice while building the vocabulary tree
is to adjust the right number of sample vectors that are used to
compute the tree. At each of l tree levels the current available
clusters (the current leaves) are further subdivided by applying
the k-means algorithm to each cluster. For each of these clus-
terings a sufficient number of sample vectors from within the
respective cluster is required.

Once this number of vectors is below a minimum number
the clustering is aborted, the respective tree branch stops and
the cluster is regarded a leaf. Therefore, given a set of feature
vectors, it is not known in advance how the resulting vocabulary
tree’s structure will look like. Unless the number of available
feature vectors is very high it is likely that the tree will have
some pruned branches and therefore less than kl leaves. This is
the reason why the number of distinct visual words of our vi-
sual vocabularies differs significantly from the targeted 100,000
words as the datasets we used for computing the different vo-
cabularies to examine only have a limited number of images
and therefore a limited number of feature vectors.

For illustration, Figure 2 shows one extreme example of such
a pruned tree that was targeted to have 10,000 clusters by ad-



justing the number of cluster of each separate clustering with
k = 10 and the number of levels to 4. Due to the lack of sample
vectors during construction however, it only has 1594 leaves.

Of course one can always lower the minimum number of vec-
tors used for clustering to sidestep this problem but this might
degrade the accuracy of the computed feature space partitions.

5. PLSA IMAGE CLASSIFICATION

We apply pLSA image classification to various image domains
in order to evaluate our visual vocabularies. We use pLSA mod-
els because they outperform basic bag-of-words models at im-
age classification according to [5].

In this section we therefore briefly review the pLSA and how
it is applied to images. Probabilistic latent semantic analysis
(pLSA) was originally invented for text modeling where the
document corpus consists of text documents. The goal of the
pLSA is to assign mixtures of topics to texts in an unsupervised
manner, i.e. the topics are not known in advance. The first step
of this procedure is to build a term-document co-occurrence ma-
trix of size M × N , where M is the number of documents in
the corpus and N denotes the number of words occurring in the
documents all together. As the order of words is ignored by
this matrix, this model is commonly known as a bag-of-words
model.

We need to define equivalents to documents and words in
order to be able to apply the pLSA to the image domain. Ob-
viously, images can be considered documents. Words in the
image domain are then called visual words and are derived as
discussed in Section 4.3.

Having devised a visual vocabulary, we can replace extracted
local features from all images of a given database by the most
similar visual word, i.e. by the closest word in the feature vec-
tor space. Counting the occurring words in each image yields
a term-frequency vector for each image. Together these vec-
tors constitute the co-occurrence matrix for the image database.
Given this co-occurrence matrix, the pLSA models the co-
occurrence of visual words across images using a finite number
K of hidden topics

The hidden topics usually model objects or object parts
which regularly re-occur in the image database. Thus, an im-
age can be explained as a mixture of multiple hidden topics and
the occurrences of visual words within the image are assumed to
be a result of this mixture. The probabilistic model is therefore:

P (di, wj) = P (di)
∑
K

P (zk|di)P (wj |zk) (1)

where P (di) denotes the probability of document di to be drawn
from the image database, P (zk|di) is the probability of the topic
zk given the current document, and P (wj |zk) denotes the prob-
ability of the visual word wj to occur given that it was caused
by the topic zk.

The latent topics cannot be observed directly, so we apply the
Expectation-Maximization algorithm to model the topic distri-
bution P (zk|di) for every image di from a database. We run

the EM algorithm for 500 iterations in our experiments. The
resulting topic distribution of an image is represented by a K-
dimensional vector which constitutes a high-level representa-
tion of the image based on its visual features. At the same time
it reduces the dimension of the image representation since we
commonly choose the number of topics in our model to be sig-
nificantly smaller than the number of visual words.

The topic vectors of a database of training images from given
image classes can then be directly used for classifying query
images [4]. We simply compute the topic vector of a query
image and apply the k-nearest neighbor algorithm. That is, for
the topic vector of the query image, we determine the k closest
topic vectors among the topic vectors of the training images.
The image class of the majority of the k nearest neighbors is
considered the classification result.

6. EXPERIMENTAL RESULTS

We evaluate several visual vocabularies to examine if the ori-
gin (the underlying set of images) of visual vocabularies affects
the classification performance of our bag-of-words-based im-
age classification on different target domains. For each of the
datasets discussed in Section 4.1 and for each feature type de-
scribed in Section 4.2 three differently sized vocabularies are
computed: A small vocabulary consisting of 500 visual words, a
medium-sized vocabulary of about 9,000 to 10,000 visual words
and a large-size vocabulary of about 90,000 to 100,000 visual
words. Due to the reasons described in Section 4.3 the exact
number of visual words varies depending on the actual dataset
and its size.

Note that these experiments are neither meant to find the op-
timal vocabulary size nor the best parameter settings for the
classification tasks or the pLSA model. Instead we compare the
classification performances regarding the image sets the visual
vocabularies are created from at several target domains.

Thus, we evaluate our visual vocabularies by examining the
classification performance of pLSA models on four different
image collections:

• 20,000 Flickr images and 2600 adult images
• 20,000 Flickr images and 2600 bikini images
• Caltech 101
• OT dataset

As the initial question has been raised during the develop-
ment of an adult-image classification system, we test the ability
of our classification system to discriminate adult images from
non-adult images using both domain-specific vocabularies and
vocabularies derived from other image sets. We further evaluate
the classification performance of discriminating bikini images
from non-bikini images.

We also evaluate the performance of discriminating all of the
classes of the Caltech 101 dataset. This task is more difficult
than separating the former image sets into two classes.

Finally we determine the classification performance of the
different vocabularies on the OT dataset. The OT dataset [11]
consists of 2688 images from eight scene categories: Coast,
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Fig. 3. Classification results based on visual vocabularies con-
sisting of 500 words

Forest, Highway, Inside of Cities, Mountain, Open Country,
Streets, Tall Buildings. This dataset was added to have a sec-
ond score for discriminating images into more than two classes
such as ’adult/non-adult’ and ’bikini/non-bikini’.

Given the vocabularies and the classification task on a speci-
fied dataset we extract local features from each image and quan-
tize them into discrete visual words. We then compute pLSA
models for the derived co-occurrence tables. We use one half
of the images of each category of the respective image set for
training, i.e. for computing the pLSA model and the topic dis-
tributions as described in section 5. The remaining half is then
used for testing.

Thus we compute the topic vectors for these images and
classify them according to their k-nearest neighbors within the
training set in topic vector space. An image of the test set is then
classified by determining the majority of classes of the 9-nearest
neighbors within the training set. That way we obtain the per-
centage of correctly classified images for each class. The overall
classification performance on a given dataset is then computed
as the average of these ratios. The resulting scores are much
lower than computing the percentage of correctly classified im-
ages directly for the whole image set, but prevent the result to
be dominated by classes with a large number of images.

Figures 3 to 6 show the evaluation results. In each figure, the
vertical axis represents the classification score. On the horizon-
tal axis, the four image sets are listed for both Self-Similarity
and SIFT features. Each of the four grouped bars represents a
different visual vocabulary, that is a visual vocabulary computed
from a different set of images.

As can be seen, none of the vocabularies consisting of 500
words yielded a pLSA model which classified significantly bet-
ter than the others. All models have almost identical average
classification performances. We exemplarily show the classifi-
cation performance split according to the image classes of the
respective image sets in Figure 4. There are some variations
for a few image classes such as the Highway class of the OT
dataset, however these variations are compensated by the results
for other classes.

Surprisingly, computing the vocabulary from image classes
which are used for both training the pLSA model and testing
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Fig. 5. Classification results based on visual vocabularies con-
sisting of about 9,000 words

it on unknown images does not improve the classification re-
sult. For example, one would expect that a model based on a
vocabulary computed from adult and Flickr images should per-
form better in discriminating these two classes than models de-
rived from other vocabularies. However, each of the other pLSA
models classify these image classes equally well. Altogether the
sets of images used for the computation of the vocabularies have
no significant influence on classification performance.

The same observations can be made for vocabularies con-
sisting of more than 9,000 visual words as shown in Figure 5.
All vocabularies yield similar classification performances. Fur-
thermore, comparing these results to the ones from Figure 3
reveals that the performance of vocabularies consisting of 500
and 9000+ words respectively yield pLSA models with almost
identical classification performances.

We also created visual vocabularies consisting of more than
90,000 words. Still, the origins of the visual vocabularies do not
influence the classification results. The results of pLSA models
based on these large vocabularies are also comparable to the re-
sults of the pLSA models with significantly smaller underlying
vocabularies of 9000+ and 500 words. In fact, the differences
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Fig. 6. Classification results based on visual vocabularies con-
sisting of about 90,000 words

between the results depicted in Figures 6 and 5 are smaller than
1% for all four classification tasks.

In addition, as can be seen from Figures 3 to 6 all four vo-
cabularies of each feature type perform equally well. Therefore,
the above observations are also independent of the feature type,
despite the fact that the performance on certain datasets varies
when Self-Similarity or SIFT features are interchanged.

SIFT features apparently work better at distinguishing Flickr
images from images with adult content and from bikini images
by up to 5% and 3% respectively. On the other hand, the re-
sults on Caltech 101 and the OT dataset are improved by about
3% and 5% respectively when Self-Similarity features are used
instead of SIFT.

7. CONCLUSION

Our experiments show that the origin of a visual vocabulary is
neglectable when creating a bag-of-words model for image clas-
sification. The classification performance of such models does
apparently not depend on the image set the underlying vocabu-
lary was computed from. This observation also holds for vari-
ous vocabulary sizes and feature types.

In other words, bag-of-words models do not require a spe-
cific, distinct visual vocabulary. This property presumably
arises from the fact that images normally do not consist of ran-
dom pixel arrangements but of a limited number of re-occurring
structures and shapes. That is, the visual words computed from
an arbitrary but diverse set of images are neither entirely ran-
dom nor unique. As long as the number of images is sufficiently
large, the resulting words are not biased towards special images
sets.

This key insight allows to derive general universal visual vo-
cabularies once and then reuse them for various applications
without further refinement. Thus, the time needed for creat-
ing bag-of-words models can be reduced significantly since the
time-consuming step of building the vocabulary needs to be
done only once.
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