
Universität Augsburg

KABCROMUNGSHO0

Embedding Rely-Guarantee Reasoning

in Temporal Logic

B. Tofan, G. Schellhorn, S. Bäumler, W. Reif

Report 2010-07 August 2010

Institut für Informatik
D-86135 Augsburg

Copyright c© B. Tofan, G. Schellhorn, S. Bäumler, W. Reif
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Embedding Rely-Guarantee Reasoning in

Temporal Logic

Bogdan Tofan, Gerhard Schellhorn, Simon Bäumler, and Wolfgang Reif

Institute for Software and Systems Engineering
University of Augsburg

D-86135 Augsburg, Germany
{tofan,schellhorn,baeumler,reif}@informatik.uni-augsburg.de

Abstract. The combination of temporal logic and rely-guarantee rea-
soning is a solid approach for the verification of concurrent programs. We
describe a formalization of rely-guarantee reasoning within the temporal
logic framework of the interactive prover KIV. Our previous encoding has
been enhanced to permit simpler rely conditions and enriched to make
it more expressive. Moreover, an instance of the new theory is defined
to better exploit the symmetry inherent in many concurrent systems, by
considering a single pair of processes only. We verify the resulting local
proof obligations, applying symbolic execution to show memory safety,
linearizability and lock-freedom of a shared stack that recycles memory.

Keywords: Verification, Temporal Logic, Compositional Reasoning,
Rely-Guarantee, ABA Problem, Linearizability, Lock-Freedom

1 Introduction

Today’s prevalent computers are multi-core systems that share a common mem-
ory space for inter-process communication. Much of recent research is focusing
on the analysis of safety, correctness and liveness properties of concurrent pro-
grams for these architectures, trying to find suitable formal methods to deal with
the challenges that arise from sharing common resources.

In 1976, Owicki and Gries described a fundamental technique for the for-
mal analysis of shared memory concurrency [1]. Their Hoare-style proofs were
based on predicate logic and code annotations at every point where interference
could occur, requiring these properties to be preserved during the steps of other
processes (or more generally, components). Since it is necessary to know the
implementation details of concurrently running processes, their technique is not
compositional.

In 1983, Jones’ rely-guarantee method [2] (also known as assume/commit)
essentially improved the Owicki-Gries approach, providing a compositional and
scalable treatment of interference. Processes abstractly specify their expected
environment behavior which permits to verify each process separately without
relying on concrete implementation details of other processes.

Our approach is based on interval temporal logic [3] and applies symbolic
execution (stepping forward through a process’ code and calculating strongest
post-conditions) for the compositional verification of concurrent programs. An
embedding of rely-guarantee reasoning is used to reduce the proof effort that
arises from non-deterministically interleaving process steps (previously described
in [4]). The expressive framework permits to formalize and verify rely-guarantee
reasoning and decomposition theorems to prove global safety, correctness and
liveness properties of concurrent algorithms by looking at single processes only.
This technical report focuses on improvements on this formalization, demon-
strating its benefits by verifying a lock-free stack which reuses memory locations
[5]. The main contributions are:

– The improved encoding of the rely-guarantee method provides a simple def-
inition of the

+

−→ operator [6] and simplifies rely conditions by removing
the claim of stability of the invariant. Two further predicates are added to
ensure the existence of suitable initial states and to describe conditions that
hold in between executions of a process’ concurrent operations (similar to
the Hoare-style pre- and post conditions in [7]).

– An instance of this improved encoding is defined which better exploits the
symmetry inherent in many concurrent systems. By splitting the overall
program state into process-local and shared parts further simplifications for
both specification and verification are achieved.

– Finally, we show the applicability of this instance by verifying memory safety
(inlcuding absence of null dereferences and memory leaks), linearizability and
lock-freedom of a (slightly optimized) shared stack which recycles memory.
We have previously assumed garbage collection to avoid the intricacies of
memory reuse in lock-free algorithms.

The report is structured as follows: Section 2 gives a brief introduction to
KIV’s temporal logic framework. Section 3 describes the improved encoding
of rely-guarantee reasoning. Section 4 defines an instance of this theory which
exploits the symmetry of many concurrent systems. Section 5 describes the stack
and its verification based on this symmetric instance. We conclude with a section
about related work and a summary (Section 6).

2 Temporal Logic in KIV

This section gives a short introduction to the temporal logic framework in KIV
[8]. Further details can be found e.g. in [9].

2.1 Interval Temporal Logic

Our variant of interval temporal logic (ITL) [3] is based on predicate logic,
algebras (to define a semantic for the signature) and intervals, i.e. finite or infinite
sequences of states (a state maps variables to values in the algebra). In contrast

3

to standard ITL, our formalism explicitly includes the behavior of the program’s
environment in each step: in an interval I = [I(0), I ′(0), I(1), I ′(1), . . .] the first
program transition leads from the initial state I(0) to the primed state I ′(0)
whereas the next transition (from state I ′(0) to I(1)) is a transition of the
program’s environment. In this manner program and environment transitions
alternate (similar to [7]).

Variables are partitioned into static variables v (written lower case), which
never change their value (I(0)(v) = I ′(0)(v) = I(1)(v) = . . .) and flexible vari-
ables V (starting with an uppercase letter) which can have different values in
different states of an interval. We write V , V ′, V ′′ to denote variable V in states
I(0), I ′(0) and I(1) respectively. In the last state (characterized by the atomic
formula last) of an interval, the value of a primed or double primed variable is
equal to the value of the unprimed variable by convention.

The logic uses standard connectives (∧, ∨, . . .) as well as the usual temporal
operators to express properties of an interval (2, 3, • , until , unless , . . .).
We usually write ϕ,ψ to indicate a formula (α, β to indicate a program). For
instance, the standard semantics of an unless formula ϕunlessψ requires ϕ
to hold in every state of an interval or to hold until a state in which ψ holds
is reached (2 ϕ ∨ (ϕuntilψ)). In rely-guarantee proofs, formulas of the form
ϕunless (ϕ ∧ ¬ ψ) are of particular interest. That is why an additional operator

+

−→ (“sustains”) is introduced to save the second writing of formula ϕ:

ψ
+

−→ ϕ :≡ ϕunless (ϕ ∧ ¬ ψ) (1)

The programming language provides the common sequential constructs (:=
, ; , if, . . .), a construct for weak-fair (α ‖ β) and one for non-fair (‖nf) interleav-
ing. The usual (blocking) synchronization construct await ϕ is also supported:
it blocks execution until the test ϕ is satisfied (not used in the non-blocking
algorithms here).

Programs and formulas can be mixed arbitrarily since they both evaluate to
true or false over an algebra A and an interval I (hence module implementations
can be abstracted by temporal properties). A program evaluates to true (A, I |=
α) if I is a possible run of the program.

2.2 Symbolic Execution and Induction

KIV is based on the sequent calculus. A sequent is an assertion of the form Γ ⊢ ∆,
where Γ and ∆ are lists of formulas, which means that the conjunction of all
formulas in antecedent Γ implies the disjunction of all formulas in succedent ∆.
Sequents are implicitly universally closed. A typical sequent (proof obligation)
about interleaved programs has the form

α,E, F ⊢ ϕ

where an (interleaved) program α executes the system steps; the system’s en-
vironment behavior is constrained by temporal formula E and F is a predicate

4

logic formula that describes the current state; ϕ is the property which has to be
shown. For example, a sequent of the form mentioned above might be

(M := M + 1; β), 2 M ′′ ≥M ′, M = 1 ⊢ M ′′ = M ′ +
−→M ′ > M

The program executed is (M := M +1; β) where β is an arbitrary program and
the environment is assumed never to decrement counter M (formula 2 M ′′ ≥
M ′). The current state maps M to 1 and it has to be shown that the program
increments M if previous environment steps have not changed its value (formula

M ′′ = M ′
+

−→M ′ > M).
Symbolic Execution. Proving sequents that contain temporal assertions is

done by symbolically stepping forward to the next states of an interval. Executing
such a step concerns both programs and formulas in two implicit phases.

In the first phase, information about the first step (both system and environ-
ment) is separated from information about the rest of the run. In the example
above, from the assignment and the environment assumption we get M ′ = M+1
and M ′′ ≥M ′ for the first step and • β, respectively • 2 M ′′ > M ′ for the rest
of the run. That is, executing a program is done by calculating the effect of the
first statement and discarding it. An always formula is transcribed using the
unwinding rule 2 ϕ ≡ ϕ ∧ • 2 ϕ. Similarly, by applying the unwinding rule for
the sustains operator

ψ
+

−→ ϕ ≡ ϕ ∧ (ψ → • (ψ
+

−→ ϕ))

the succedent is transcribed to M ′ > M ∧ (M ′′ = M ′ → • (M ′′ = M ′
+

−→
M ′ > M)).

In the second phase of a symbolic execution step, the unprimed and primed
variables M and M ′ are substituted with fresh static variables that describe
the former state, whereas the double primed variable M ′′ is replaced with the
unprimed variable M and leading next operators (•) are dropped in the next
state. Let variable M be replaced by m, respectively M ′ by m0 in the example
above. Then a symbolic execution step leads to a trivial predicate logic goal for
the first system transition (essentially m0 = m + 1 → m0 > m) and a sequent
that describes the remaining interval from the next state on:

β, 2 M ′′ ≥M ′, M = 2 ⊢ M ′′ = M ′ +
−→M ′ > M

M has value 2 in the new state, because M ′ > M has to be further sustained
only if the environment leaves M unchanged.

Induction. Well-founded induction is used to deal with loops. For finite in-
tervals it is possible to induce over the length of an interval. For infinite intervals
a term for well-founded induction can often be derived from liveness properties
3 ϕ as the number of steps N until ϕ holds:

3 ϕ ↔ ∃ N. (N = N ′′ + 1) until ϕ (2)

The equivalence states that ϕ is eventually true, if and only if N can be decre-
mented (note that N = N ′′ + 1 is equivalent to N > 0 ∧ N ′′ = N − 1) until ϕ

5

becomes true. Proving a formula of the form 2 ϕ on infinite traces is then simply
done by rewriting 2 ϕ to ¬ 3 ¬ ϕ and a proof by contradiction. Similarly, an
induction term can be extracted from an unless formula using the equivalence

ϕ unless ψ ↔ ∀ B. (3 B) → (ϕ unless (ϕ ∧ B ∨ ψ)) (3)

ϕ unless ψ is true if it is true on every prefix of the trace that is terminated
by the first time when boolean variable B becomes true. This rewriting enables
extraction of the liveness property 3 B to prove that the initial unless formula
holds, by applying well-founded induction over the number of steps until B is
true (2). Based on (3) and the definition of the sustains operator (1), a term
for well-founded induction can be extracted from sustains formulas using the
equivalence

ψ
+

−→ ϕ ↔ ∀ B. (3 B) → ((ψ ∧ ¬ B)
+

−→ ϕ) (4)

3 Rely-Guarantee Reasoning and Decomposition of

Linearizability and Lock-Freedom

This section describes our concurrent system model and the improved encod-
ing of rely-guarantee reasoning, outlining the benefits of the new formalization.
Moreover, the decomposition theorems for linearizability and lock-freedom are
briefly introduced (for details see [4] and [10]).

3.1 System Model

The parallel system CSpawn recursively spawns n + 1 processes (n : nat) to
execute a generic operation CSeq in parallel (if* denotes that evaluating the
if-condition requires no extra step).

CSpawn(n;Act , In,CS ,Out) {
if* n = 0 then

CSeq(n;Act , In,CS ,Out)
else

CSeq(n;Act , In,CS ,Out)f
CSpawn(n− 1;Act , In,CS ,Out)}

CSeq(p;Act , In,CS ,Out) {
{ skip

∨ {Act(p) := true;
COP(p, In;CS ,Out);
Act(p) := false}

}*}

Operation CSeq finitely or infinitely often (denoted by *) non-deterministically
chooses (∨) between two possible behaviors: either it executes a no operation
skip (this models computations that are not directly related to the investigated
algorithm) or it executes one of the operations of the underlying algorithm (mod-
eled as COP). In the stack case study for instance (cf. Section 5), COP is the
nondeterministic choice between one of the two concrete operations push and
pop.

CSeq’s value parameter p : nat represents the identifier of the invoking
process. Reference parameter Act : nat → bool is a boolean function which is

6

used to distinguish whether a process is currently executing COP (mainly used
to lift liveness properties). Function In : nat → input passes an arbitrary input
value In(p) to COP. Since In is a reference parameter in CSeq, whenever COP

is invoked its input value can differ from previous invocations. The remaining
parameters include a generic state variable CS : cstate and an output function
Out : nat → output to return values. All processes work on the overall program
state CS which abstracts all local states and the global state.

3.2 Embedding Rely-Guarantee Reasoning in ITL

Reasoning about properties of the (interleaved) executions of CSpawn is te-
dious work. The goal of rely-guarantee reasoning is to avoid such global reason-
ing and examine executions of single processes instead, trying to find suitable
process-local properties (of COP, resp. CSeq) which can be lifted to global
ones. To achieve such a decomposition, the behavior of other processes is ab-
stracted using a rely predicate Rp : cstate× cstate which describes p’s expected
environment behavior. In return, each process guarantees a certain behavior to-
wards its environment using a guarantee predicate Gp : cstate × cstate. The
first parameter of a rely/guarantee condition corresponds to the state before the
environment/system transition and the second argument denotes the next state.

An important relation between guarantees and relies is that each guarantee
must preserve the rely conditions of all other processes.

q 6= p ∧ Gp(CS0,CS1) → Rq(CS0,CS1) (5)

The main local temporal property requires each process to sustain its guar-
antee if preceding environment steps have not violated its rely condition.

COP(p, In;CS ,Out) ⊢ Rp(CS
′, CS′′)

+
−→ Gp(CS,CS′)

In order to propagate this property to executions of CSeq, guarantee con-
ditions must be reflexive (in case of skip or a step that sets the activity flag,
the current state stays the same). The lifting of this local property to the level
of interleaved executions of CSpawn, requires the ability to summarize several
consecutive rely steps, i.e. we claim Rp to be transitive.

Gp(CS ,CS)
Rp(CS0,CS1) ∧ Rp(CS1,CS2) → Rp(CS0,CS2)

(6)

Reasoning in practice strongly relies on suitable invariant properties of the
analyzed algorithm. This is why our rely-guarantee encoding also provides an in-
variant predicate Inv : cstate. To ensure that this predicate holds in every state,
it is sufficient to claim its stability over rely steps, i.e. Inv(CS0) ∧ Rp(CS0, CS1)
→ Inv(CS1). The disadvantage of this requirement is that the rely condition

(and the guarantee) becomes unnecessarily strong. Alternatively one could re-
quire stability over the guarantee condition only, but we prefer to completely
decouple both rely and guarantee conditions from the invariant and to claim

7

its preservation (both by system and environment transitions) separately, as a
further property to be sustained.

COP(p, In;CS ,Out), Inv(CS)

⊢ (Rp(CS′, CS′′) ∧ (Inv(CS ′) → Inv(CS ′′)))
+

−→ (Gp(CS,CS′) ∧ (Inv(CS) → Inv(CS ′)))

Properties which hold in between executions of COP only (similar to the pre-
and post conditions in [7]) can not be encoded within the invariant since this
predicate must hold in intermediate states of COP as well. Therefore a further
predicate Idlep : cstate is defined which is unchanged by other processes and
(re)established in the last state of each run.

COP(p, In;CS ,Out), Inv(CS), Idlep(CS)

⊢ (Rp(CS
′, CS′′) ∧ (Inv(CS ′) → Inv(CS ′′))

∧ (Idlep(CS′′) ↔ Idlep(CS′)))
+

−→ (Gp(CS,CS′) ∧ (Inv(CS) → Inv(CS ′))

∧ (last → Idlep(CS))

∧ (∀ q 6= p. (Idleq(CS
′) ↔ Idleq(CS))))

(7)

To prove the existence of suitable initial states which establish the idle and
invariant properties, a further predicate Init : cstate is used. It must ensure that
initially all processes are idle and the invariant holds.

(∃ CS . Init(CS))
Init(CS) → Idlep(CS) ∧ Inv(CS)

(8)

Since the generic setting also takes into account the environment of the over-
all system, a global rely condition RS is required too. It preserves all local rely
conditions, the invariant, all idle predicates and prohibits changes to the activ-
ity function by the system’s environment. The rely-guarantee formulas (5) to
(8) plus the restrictions on the global environment are sufficient to establish
the following three properties to hold in every interleaved execution: each step
preserves its local guarantee, the invariant holds in every state and whenever a
process is not active, it is an idle state.

Theorem 1 (Rely-Guarantee).
If formulas (5) to (8) can be proved (for some RS , Rp, Gp, Idlep, Init , Inv), then:

CSpawn(n; . . .), 2 RS , Init(CS), ∀ p ≤ n. ¬ Act(p)
⊢ 2 ((∃ p ≤ n. Gp(CS,CS

′)) ∧ Inv(CS) ∧ Inv(CS ′)
∧ (∀ p ≤ n. ¬ Act(p) → Idlep(CS)))

The proof for the improved theorem proceeds much like the old one [4]. It is
important to notice that Theorem 1 has a major significance for verification
in practice. As the identified rely-guarantee and invariant conditions hold at all
times in each concurrent execution they can be used to establish other properties
of interest, here memory safety, linearizability and lock-freedom.

8

3.3 Decomposition of Linearizability and Lock-Freedom

Linearizability [11] is a global correctness property for concurrent algorithms
(similar to serializability). It claims for each interleaved execution the existence
of an equivalent and legal sequential execution which preserves the order of non-
concurrent runs. This global property can be broken down to a local proof obliga-
tion which requires operations to appear to take effect instantly at one point (the
linearization point) between their invocation and return. Using Theorem 1 the
refinement-based proof of linearizability requires each concrete run of COP to
refine an abstract run of operation AOP (concrete states are mapped to abstract
states AS : astate using the representation predicate Abs : astate× cstate). The
abstract executions consist of an atomic step (the linearization point) which is
preceded and followed by skip steps.

Theorem 2 (Linearizability).
CSpawn is linearizable if formulas (5) to (8) hold and:

COP(p, In;CS ,Out),
2 (Rp(CS ′,CS ′′) ∧ Inv(CS) ∧ Inv(CS ′)), Idle(CS)

⊢ ∃ AS . AOP(p, In;AS ,Out) ∧ 2 (Abs(AS ,CS) ∧ Abs(AS ′,CS ′))

Lock-freedom is a global liveness property which requires that at all times
in a concurrent execution, one of the running operations eventually completes
[12]. Our decomposition technique reduces the proof of lock-freedom to a local
proof obligation based on finding a suitable predicate U : cstate× cstate which
describes interference freedom. The local proof obligation requires showing that
each local execution terminates if it updates the state (corresponding to the
linearization point), or if it encounters no interference.

Theorem 3 (Lock-Freedom).
CSpawn is lock-free if formulas (5) to (8) hold and there is a reflexive and
transitive predicate U with:

COP(p, In;CS ,Out),
2 (Rp(CS ′,CS ′′) ∧ Inv(CS) ∧ Inv(CS ′)), Idle(CS)

⊢ 2 (¬ U (CS ,CS ′) ∨ (2 U (CS ′,CS ′′)) → 3 last)

4 Exploiting Symmetry

The generic setting presented in Sections 3.1 and 3.2 provides process-specific
operations, relies and guarantees. However, the verification of many concurrent
algorithms which are inherently symmetric (all processes execute the same code)
does not require this full generality. The symmetry can be exploited to break
down the analysis of the overall system into analyzing just two parallel processes:
a process p and one other process q (abstracted by p’s rely condition) which rep-
resents all other processes. Since the previous theory does not have this localized
view of two processes, we refer to it as the “global theory” and call its symmetric
instance the “local theory” in the following.

9

4.1 Symmetric Rely-Guarantee Instance

Other processes are abstracted by p’s rely condition in the global theory, but
all processes work on the same generic program state CS (including all local
states and the global state). Therefore, properties typically must be specified
globally, i.e. based on variable functions (for each process and local variable)
and universal quantification over all process identifiers. This can lead to a lower
degree of proof automation in practice as a suitable quantifier instantiation can
not always be deduced automatically.

These shortcomings are avoided by introducing a localized view of the (sym-
metric) system. The key idea is to split the overall state CS into its process-local
and global parts by instantiating it with a pair LSF ×GS consisting of a local
state function LSF : nat → lstate (mapping each process to its local state) and
a global state variable GS : gstate. This allows for explicitly denoting individual
local states LS,LSQ : lstate where LS represents the local state of process p
(LSF (p)) and LSQ the local state of process q (LSF (q)).

Since the notion of a heap is not an inherent part of our logic (in contrast
to separation logic, the heap is a part of the global state), it is occasionally
necessary to explicitly encode disjointness properties of local states in practice.
That is why a symmetric predicate LDisj : lstate× lstate is added to the theory
(in the global theory, disjointness properties are part of the invariant and usually
quantified over all pairs of process identifiers).

LDisj (LS ,LSQ) → LDisj (LSQ ,LS)

Similar to the global theory, it is required that initial states establish the (local)
idle predicate, invariant and disjointness. The existence of such initial states has
to be shown for all local states. This is the only place where the new theory still
has a global flavor though.

∃ LSF ,GS . GInit(GS) ∧ ∀ p. LInit(LSF (p))
LInit(LS) → LIdle(LS)
LInit(LS) ∧ GInit(GS) → LInv(LS ,GS)
LInit(LS) ∧ LInit(LSQ) → LDisj (LS ,LSQ)

The local guarantee LG : lstate × lstate × gstate × lstate × gstate still has to
be reflexive. Its first three parameters represent the two local states and the
global state before a system transition (the first parameter is the local state of
the running process). The last two parameters are the local state of the running
process and the global state after a system transition. The local state of the other
process (second parameter) implicitly remains unchanged in a step. The localized
guarantee still has to preserve the transitive rely LR : lstate × gstate × gstate

of the other process. Its parameters correspond to the local state of one of both
processes (depending on the context) and the global state before and after a
transition.

LG(LS ,LSQ ,GS ,LS ,GS)
LR(LS ,GS0,GS1) ∧ LR(LS ,GS1,GS2) → LR(LS ,GS0,GS2)
LG(LS0,LSQ

0
,GS0,LS1,GS1) → LR(LSQ

0
,GS0,GS1)

10

The main local temporal property (corresponding to (7)), rephrased in terms of a
single pair of processes, claims that during the execution of a localized procedure
LCOP (starting in an idle state in which the invariant and disjointness holds for
both processes), an extended (localized) guarantee (syntactically abbreviated as
LGext) is sustained if preceding environment steps have preserved an extended
(localized) rely LRext .

LCOP(I ;LS ,GS ,O), LIdle(LS),
LInv(LS ,GS), LInv(LSQ ,GS), LDisj (LS ,LSQ)

⊢ LRext

+
−→ LGext

(9)

Operation LCOP is called with input and output variables I : input, O :
output (in the global theory these are functions), the local state of the running
process and the global state. The extended guarantee requires the local guarantee
(hence the rely of the other process) to be preserved, the idle predicate to hold
in each final state and the invariant (for both processes) and disjointness to be
preserved.

LGext :≡ LG(LS ,LSQ ,GS ,LS ′,GS ′) ∧ (last → LIdle(LS))
∧ (LInv(LS ,GS) ∧ LInv(LSQ ,GS) ∧ LDisj (LS ,LSQ)

→ LInv(LS ′,GS ′) ∧ LInv(LSQ ′,GS ′) ∧ LDisj (LS ′,LSQ ′))

The extended rely expects the environment not to change the local state of the
executing process (this has to be coded within the rely in the global theory) and
to maintain the local rely, the invariant and disjointness.

LRext :≡ LS ′′ = LS ′ ∧ LR(LS′, GS′, GS′′)
∧ (LInv(LS ′,GS ′) → LInv(LS ′′,GS ′′))
∧ (LInv(LSQ ′,GS ′) → LInv(LSQ ′′,GS ′′))
∧ (LDisj (LS ′,LSQ ′) → LDisj (LS ′′,LSQ ′′))

Process identifiers are no explicit part of the local theory. They are not
required in the case study (see Section 5) and if they were needed, they could be
simply defined as part of the local state. Furthermore, there is no upper bound
on process identifiers which are just natural numbers. If there is a need for an
upper bound in applications, it is possible to introduce a constant bound, letting
processes with a higher identifier just execute a skip step.

To prove that the new theory is indeed an instance of the global theory,
the global proof obligations (5) to (8) must follow from the local ones based
on suitable instantiations of the global signature. The initial restrictions from
the global theory are instantiated with the corresponding restrictions on all
local states and the global state. The global idle predicate is equivalent to the
corresponding local predicate.

Init(LSF ,GS) ↔ GInit(GS) ∧ ∀ p. LInit(LSF (p))
Idlep(LSF ,GS) ↔ LIdle(LSF (p))

The global invariant corresponds to all local invariants plus the disjointness
predicate for all pairs of local states.

Inv(LSF ,GS) ↔ (∀ p. LInv(LSF (p),GS))
∧ (∀ p 6= q. LDisj (LSF (p),LSF (q)))

11

The global rely condition is mapped to the local rely and the assumption that
the local state is not changed by the environment. Finally, the global guarantee
simply preserves all global relies.

Rp(LSF ′,GS ′,LSF ′′,GS ′′) ↔ LSF ′′(p) = LSF ′(p)
∧ LR(LSF ′(p),GS ′,GS ′′)

Gp(LSF 0,GS0,LSF 1,GS1) ↔ ∀ q 6= p. Rq(LSF 0,GS0,LSF 1,GS1)

4.2 Local Proof Obligations for Linearizability and Lock-Freedom

Within this symmetric instance, the proof obligations for linearizability and
lock-freedom are fully local, i.e. they only take into account the local state of
the executing process and the global state.

LCOP(I ;LS ,GS ,O), LIdle(LS),
2 (LS ′′ = LS ′ ∧ LR(LS ′,GS ′,GS ′′)

∧ LInv(LS ,GS) ∧ LInv(LS ′,GS ′))
⊢ ∃ AS . LAOP(I ;AS ,O) ∧ 2 (LAbs(AS ,GS) ∧ LAbs(AS ′,GS ′))

(10)

The new (localized) unchanged predicate for lock-freedom is defined purely on
global state transitions LU : gstate× gstate.

LCOP(I ;LS ,GS ,O), LIdle(LS),
2 (LS ′′ = LS ′ ∧ LR(LS ′,GS ′,GS ′′)

∧ LInv(LS ,GS) ∧ LInv(LS ′,GS ′))
⊢ 2 (¬ LU (GS ,GS ′) ∨ (2 LU (GS ′,GS ′′)) → 3 last)

(11)

The global counterparts for the (local) representation and unchanged predicates
are easy to find. If verification of (10) or (11) in case studies requires more infor-
mation, the always formula in the antecedent can be enriched by the invariant
for the other process or disjointness properties (not required here).

5 A Case Study: Treiber’s Stack

Lock-free concurrent algorithms try to avoid the problems of conventional lock-
based implementations (e.g. deadlocks, priority inversion) by applying an op-
timistic try-retry scheme and atomic synchronization primitives such as CAS

(Compare And Swap) instead of locks.

CAS(Old ,New ;G,Succ) {
if* G = Old then {G := New , Succ := true} else {Succ := false}}

CAS compares a global value G with a local value Old (an older snapshot version
of G). If these values are equal, then G is updated to a new value New and
boolean flag Succ is set to true to indicate a successful update. Otherwise the
flag is set to false indicating that no update has occurred. Since CAS executes
atomically (a comma separates parallel assignments), evaluating the if-condition
requires no extra step.

12

5.1 The Stack Algorithm

CAS does not guarantee that the current value A of G has not been changed
since it was stored in Old . In the meantime, other processes can change G to
B and then back to A. Such undetected intermediate modifications can cause
problems like data structure corruption or wrong return values (ABA problem).
A simple solution is attaching a counter to shared locations and increasing it
with every modification (this solution requires atomic double-width read and
CAS instructions; the possibility not to detect changes due to a wrap around of
the counter can be disregarded in practice [5]).

Treiber’s stack algorithm (see Figure 1) initiates a modification counter to
detect changes to the shared variable Top (pairs of references and natural num-
bers with constructor rc and selector functions .ref and .cnt) which marks the top
cell (pairs of values and references along with .val and .nxt selector functions) of
the stack. The global data structure is represented in the application’s memory
Hp as a singly linked list of cells (area Stack in the figure). In programming
environments without garbage collection, cells that are removed from the stack
should be deallocated to avoid memory leaks. However, simple deallocation can
lead to memory access faults. To still reduce memory usage, cells which are re-
moved from the stack are inserted into a global set of pointers Free (heap area
Free in the figure).

Whenever a process executes a push it tries to reuse a node from the set of
free references instead of constantly allocating new references (cf. NewNode in
Figure 1). Then it stores the shared top (both pointer and counter) in a local
snapshot and sets the new node’s next reference to the snapshot pointer. Using
CAS the top pointer is updated and its counter is incremented if both values
are equal to the snapshot (otherwise the loop is reiterated).

Similarly, a pop operation takes a snapshot and (if the associated pointer is
not null) locally stores its next reference. This local next reference is the target
of the subsequent CAS (without the increment of the modification counter in
push, this instruction might succeed when it should not, due to memory reuse,
corrupting the stack). If it succeeds, the cell is removed from the stack, added
to the free-set and its value is returned (otherwise the loop is reiterated).

5.2 Verifying the Stack.

In this section we describe the instantiation of the local rely-guarantee theory.
The identified relies, guarantees and invariant properties are sufficient to prove
the absence of access errors and memory leaks, linearizability and lock-freedom.

Rely-Guarantee Conditions and Invariant. The generic LCOP opera-
tion is instantiated with the nondeterministic choice between one of the two
stack operations. The generic local state variable LS becomes a tuple consist-
ing of variables UNew ,USucc,OTop,OSucc (for the other local state, variables
UNewq ,USuccq ,OTopq ,OSuccq are used). The global state GS corresponds to
Top,Hp and Free.

13

Stack

Top

UNew

OTop

OTop

Free

CPush−NewNode CPop−Free++

CPush−CAS

CPop−CAS

CPush(I;UNew ,USucc,Top,Hp,Free) {
NewNode(I;UNew ,USucc,Hp,Free);
let UTop = [?] in {
while ¬ USucc do {
UTop := Top;
Hp[UNew].nxt := UTop.ref;
CAS(UTop, rc(UNew ,UTop.cnt + 1);

Top,USucc) }}}

NewNode(I;UNew ,USucc,Hp,Free) {
choose Ref with (Ref 6= null

∧ (Free = ∅ → ¬ Ref ∈ Hp)
∧ (Free 6= ∅ → Ref ∈ Free)) in {
Hp := Hp ∪ {Ref }, Free := Free \ {Ref },
Hp[Ref].val := I, USucc := false,

UNew := Ref }}

O1
O2
O3
O4
O5
O6
O7
O8
O9
O10
O11
O12
O13
O14
O15

CPop(;OTop,OSucc,Top,Hp,Free,O) {
let Lo = empty,ONxt = [?] in {
while ¬ OSucc do {
OTop := Top;
if OTop.ref = null then {
OSucc := true;
} else {
ONxt := Hp[OTop.ref].nxt;
CAS(OTop, rc(ONxt ,OTop.cnt);

Top,OSucc) }}
if OTop.ref 6= null then {
Lo := Hp[OTop.ref].val′;
Free := Free ∪ {OTop.ref},
OSucc := false }

O := Lo, OSucc := false }}

Fig. 1. Declaration of push and pop in KIV.

In idle states the loop flag for push is true and the flag for pop is false (these
flags are also used to mark code areas since the logic does not provide program
counters). Moreover, in initial states the local new and top pointers (“local top”
relates to the snapshot pointer in pop in the following) are null and the stack,
the free-set and heap are empty.

The invariant ensures a valid heap pointer structure, i.e. the stack represents
a finite list. The local new and top pointers are either null or allocated. Fur-
thermore, they are disjoint from the stack: new cells are not in the stack before
being successfully pushed (i.e. when ¬ USucc holds; see heap area UNew in
Figure 1) and local top pointers are not part of the stack after being popped as
long as they are not freed (i.e. when OTop.ref 6= null ∧ OSucc holds; see area
OTop in the figure). Moreover, all references within the free-set are not null,
allocated and disjoint from the stack, the local (not yet pushed) new variables,
and the (removed but not freed) top variables. The invariant implies that null
dereferences do not occur during execution.

Disjointness of both local states relates to new cells (not yet pushed) and
local top references (removed but not yet free): these cells are disjoint among

14

each other (i.e. UNew 6= UNewq , OTop 6= OTopq) and new cells are disjoint
from the other process’ top and vice versa.

For proving correctness of the stack implementation (linearizability), three
main rely conditions have to be established. First, the content of new cells re-
mains unchanged by the environment during the push-loop.

UNew ′ 6= null ∧ ¬ USucc′ → Hp′′[UNew ′′] = Hp′[UNew ′]

Second, during the pop-loop, the global top and the local top’s next pointer
remain unchanged, or if the local top pointer becomes reachable (again) the
counter has been increased (due to the increment in push).

¬ OSucc′ ∧ OTop′.ref 6= null ∧ OTop′ = Top′

→ Top′′ = Top′ ∧ Hp′′[OTop′′.ref].nxt = Hp′[OTop′.ref].nxt
∨ ¬ reachable(Top′′.ref,OTop′′.ref,Hp′′)
∨ Top′′.cnt > Top′.cnt

(12)

Third, after a cell has been removed from the stack but not yet freed, its value
is unchanged and the cell remains disjoint from the stack.

OSucc′ ∧ OTop′.ref 6= null

∧ ¬ reachable(Top′.ref,OTop′.ref,Hp′)
→ Hp′′[OTop′′.ref].val = Hp′[OTop′.ref].val

∧ ¬ reachable(Top′′.ref,OTop′′.ref,Hp′′)

(13)

Two further rely properties cause the pop-loop to retry if the local top is
removed from the stack before the CAS: the modification counter is never decre-
mented and whenever the snapshot is inserted in the stack, the modification
counter grows.

Top′′.cnt ≥ Top′.cnt
∧ (¬ OSucc′ ∧ OTop′.ref 6= null

∧ ¬ reachable(Top′.ref,OTop′.ref,Hp′)
→ (reachable(Top′′.ref,OTop′′.ref,Hp′′) → Top′′.cnt > Top′.cnt))

(14)

The guarantee is weakly defined to maintain the rely condition of the other
process. Furthermore, it ensures that each step preserves ownership of previously
owned references which are not inserted in the stack or free-set. A reference Ref
is owned if it is a local new or top reference.

Owns(Ref ,LS)
↔ (¬ USucc ∧ UNew = Ref)

∨ (OSucc ∧ OTop.ref 6= null ∧ OTop.ref = Ref)

Each local step preserves (or establishes) ownership of cells which are allocated
(or reused), removed from the stack or previously owned and not inserted in the
stack or the free-set.

PreservesNoLeak(LS ,GS ,LS ′,GS ′) ↔ ∀ Ref ∈ Hp′.

(¬ Ref ∈ Hp ∨ Ref ∈ Free

∨ reachable(Top.ref,OTop.ref,Hp) ∨ Owns(Ref ,LS))
→ (reachable(Top′.ref,OTop′.ref,Hp′)

∨ Ref ∈ Free′ ∨ Owns(Ref ,LS ′))

15

.

O6, S, ((=) ∨ (−) ∨ (+)) ⊢ . . .
(4)

O5, S,Top 6= null, (=) ⊢ . . .
(3)

O5, S, (−) ⊢ . . . O5, S, (+) ⊢ . . .

O5, S, ((=) ∨ (−) ∨ (+)) ⊢ . . .
(2)

O4, S,Top 6= null ⊢ (Rext ∧ ¬ B)
+

−→ Gext

(1)

S :≡ ((N = N
′′ + 1)untilB) ∧ IH ∧ ¬ OSucc ∧ Lo = empty

∧ LInv(LS ,GS) ∧ LInv(LSQ ,GS) ∧ LDisj (LS ,LSQ)

(=) :≡ Top = OTop; (−) :≡ ¬ reachable(Top,OTop,Hp)

(+) :≡ Top.cnt > OTop.cnt

Fig. 2. Proof outline for pop.

This property can be lifted to prove that memory leaks do not occur. Starting
in an initial state without leaks and knowing that each system step preserves its
local guarantee at all times, heap locations are always either in the stack, the
free-set or in a local new/top variable.

Proof Outline. Obviously, an initial state exists which is idle and establishes
the invariant and symmetric disjointness properties. It is also simple to show
that the guarantee is reflexive and implies the transitive rely condition.

Figure 2 outlines the (remaining) proof of temporal property (9) to demon-
strate how the extended guarantee is maintained during the symbolic execution
of LCOP. The focus is on the more challenging pop operation only.

Before symbolically executing the first step to enter the loop, the induction
term N for well-founded induction is extracted from the

+

−→ formula. The re-
sulting induction hypothesis IH can be applied whenever a similar configuration
is reached again and N has been decremented. The first symbolic execution step
(a skip for evaluating the loop condition, followed by an environment transi-
tion) preserves the extended guarantee. If the last environment transition has
preserved LRext , then the invariant and disjointness properties hold again in the
new state (formula S) and the remaining program is the loop body starting from
line 4, followed again by the loop (denoted as O4).

The proof in case of a non-empty stack (Top 6= null in the root of the proof-
tree) proceeds as follows. Proof step (1) is a symbolic execution step which
locally stores the shared top, followed by an environment transition. This step
preserves the extended guarantee and the proof continues knowing that the last
environment transition has preserved the extended rely. In the next state the
remaining program is O5 and according to rely condition (12) there are three
possible cases (depending on environment behavior). Proof step (2) discerns
these cases. In the third premise (counting from left to right), the modification
counter has been incremented (+) and in the second premise the local top is not

16

in the stack anymore (–). In both cases the rely conditions (14) ensure that the
loop must be reiterated and the evolving sequents are closed inductively. In the
first premise, the global top has not been modified, i.e. the current iteration can
still succeed (=).

The proof applies the same pattern again in proof steps (3) and (4) (symbolic
execution and a case distinction to discern environment behavior) until CAS is
executed. In the leftmost branch of the proof-tree (corresponding to a successful
loop), the next reference of the local top is not modified by the environment
according to the first disjunct of (12), i.e. the CAS instruction reflects a correct
pop and maintains a valid stack. In the remaining steps the removed cell is
owned by the running process and its value remains unchanged (13), i.e. pop
indeed returns the value that has been popped from the stack (needed for the
refinement-based proof of linearizability).

Based on the established rely and invariant conditions, proving linearizability
(10) is analogous to [4]. Proving lock-freedom (11) is much simpler for the stack
then it was for the queue in [10] (the “unchanged” predicate which ensures
termination of LCOP simply claims the shared top to remain unchanged by the
environment).

6 Related Work and Summary

6.1 Related Work

A lot of interesting research has been done both on the rely-guarantee method
and the verification of lock-free algorithms which we can not address here, lim-
iting our considerations to some related approaches. To the best of our knowl-
edge, no other approach is currently applied to mechanically verify memory
safety (inlcuding absence of null dereferences and memory leaks), linearizability
and lock-freedom of non-trivial lock-free algorithms using one logical framework
only.

Nieto et al. [13] present the formalization of rely-guarantee reasoning in the
interactive theorem prover Isabelle. Their compositional approach is based on
an encoding into higher- order logic (instead of temporal logic). This has the
advantage that soundness can be reduced to the soundness of higher-order logic,
but the semantic encoding introduces a relatively large overhead. Their Hoare-
style approach does not exploit symmetry and specifies relies and guarantees over
the entire program state. We are not aware of an application of this encoding to
verify fine-grained concurrency.

Pasareanu et al. [14] present a compositional framework for (symmetric and
asymmetric) rely-guarantee based verification. Rely conditions are incrementally
constructed by automatically learning from counter examples that are found by
locally model checking single components. As far as we know, the approach
concentrates on safety properties and has not been applied to verify lock-free
algorithms.

Yahav et al. [15] describe their experience in using SPIN to model check lin-
earizability of non-blocking concurrent algorithms. The considered algorithms

17

include a set implementation [16] with linearization points outside of the code of
an executing operation. They assume garbage collection to avoid complications
resulting from manual memory management and try to apply symmetry reduc-
tion to optimize the applicability of their approach when all processes execute
the same operation. Their experimental results are yet limited to small system
sizes.

A fully automatic approach for verifying linearizability is taken by Vafeiadis
et al. [17] based on separation logic [18] and rely-guarantee reasoning. RGSep
splits the program state in local and global parts and profits from the implicit
treatment of disjoint heap locations by the separating conjunction operator
which allows for specifying their relies and guarantees over the shared state
only. The logic is restricted to safety analysis and the derivation of their proof
obligations is not mechanized. They verify linearizability of a simplified version
of the stack which is stripped off memory management code.

A rather different approach is taken by Reps et al. [19] based on abstract in-
terpretation to automatically prove linearizability of several lock-free data struc-
tures. Their experimental results (in TVLA) are yet reduced to small system sizes
and their verification relies on garbage collection and does not explicitly consider
memory reuse.

Groves et al. [20] present a pen-and-paper proof of linearizability of a non-
trivial elimination stack algorithm [21] based on trace-reduction and incremental
refinement. Furthermore, they were the first to prove linearizability of a non-
trivial queue algorithm (including modification counters) [22]. Their proof is
automata-based and mechanized in PVS. In contrast to their monolithic proof,
our proof for the queue does not require to encode programs as automata using
program counters. Another difference is that their technique needs an intermedi-
ate automaton and backward simulation whereas our approach does not require
any additional techniques.

6.2 Summary

We have described an improved generic embedding of rely-guarantee reasoning
in the temporal logic framework of KIV. Moreover, we have derived a more
symmetric instance of this theory and showed its application on a lock-free stack.

Currently, we are investigating the verification of a refined stack algorithm
which replaces the algebraically specified free-set by a Treiber-like stack. We have
successfully applied a similar symmetric instance (comprising the other process’
local state in the rely condition) on the stack, extended by the hazard pointer al-
gorithm from [23] which ensures safe memory reclamation. Improvements on the
theory for proving linearizability (including a formal definition of linearizability
[24] and the treatment of external linearization points), lock-freedom (integrat-
ing a more adequate notion of failure) and further case studies are part of future
work. We are also interested in the integration of automatic techniques (shape
analysis) within the prover to achieve a higher degree of automation.

18

References

1. Owicki, S.S., Gries, D.: An Axiomatic Proof Technique for Parallel Programs I.
Acta Inf. 6 (1976) 319–340

2. Jones, C.B.: Specification and design of (parallel) programs. In: Proceedings of
IFIP’83, North-Holland (1983) 321–332

3. Moszkowski, B.: Executing Temporal Logic Programs. Cambridge Univ. Press
(1986)

4. Bäumler, S., Schellhorn, G., Tofan, B., Reif, W.: Proving linearizability with tem-
poral logic. Formal Aspects of Computing (FAC) (2009)

5. Treiber, R.K.: System programming: Coping with parallelism. Technical Report
RJ 5118, IBM Almaden Research Center (1986)

6. Abadi, M., Lamport, L.: Conjoining specifications. ACM Transactions on Pro-
gramming Languages and Systems (1995)

7. DeRoever, W.P., de Boer, F., Hannemann, U., Hooman, J., Lakhnech, Y., Poel,
M., Zwiers, J.: Concurrency Verification: Introduction to Compositional and Non-
compositional Methods. Number 54 in Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press (2001)

8. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications and in-
teractive proofs with KIV. In Bibel, W., Schmitt, P., eds.: Automated Deduction—
A Basis for Applications. Volume II: Systems and Implementation Techniques.
Kluwer Academic Publishers, Dordrecht (1998) 13 – 39

9. Bäumler, S., Balser, M., Nafz, F., Reif, W., Schellhorn, G.: Interactive verification
of concurrent systems using symbolic execution. AI Communications 23((2,3))
(2010) 285–307

10. Tofan, B., Bäumler, S., Schellhorn, G., Reif, W.: Temporal logic verification of
lock-freedom. In: Proc. MPC 2010. Springer LNCS (2010)

11. Herlihy, M., Wing, J.: Linearizability: A correctness condition for concurrent ob-
jects. ACM Transactions on Programming Languages and Systems 12(3) (1990)
463–492

12. Massalin, H., Pu, C.: A lock-free multiprocessor os kernel. SIGOPS Oper. Syst.
Rev. 26(2) (1992) 108

13. Prensa Nieto, L.: The rely-guarantee method in Isabelle /HOL. In Degano, P.,
ed.: ESOP’03. Volume 2618 of LNCS., Springer (2003) 348–362

14. C. Pasareanu, D. Giannakopoulou, M.B.J.C.H.B.: Learning to divide and con-
quer: applying the l* algorithm to automate assume-guarantee reasoning. Formal
Methods in System Design (2008)

15. Vechev, M., Yahav, E., Yorsh, G.: Experience with model checking linearizability.
In: Proceedings of the 16th International SPIN Workshop on Model Checking
Software, Springer-Verlag (2009) 261–278

16. Heller, S., Herlihy, M., Luchangco, V., Moir, M., III, W.N.S., Shavit, N.: A lazy
concurrent list-based set algorithm. Parallel Processing Letters 17(4) (2007) 411–
424

17. Vafeiadis, V.: Modular fine-grained concurrency verification. PhD thesis, Univer-
sity of Cambridge (2007)

18. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. Lecture Notes in Computer Science 2142 (2001)

19. Amit, D., Rinetzky, N., Reps, T.W., Sagiv, M., Yahav, E.: Comparison under
abstraction for verifying linearizability. In: CAV. (2007) 477–490

19

20. Groves, L., Colvin, R.: Trace-based derivation of a scalable lock-free stack algo-
rithm. Formal Aspects of Computing (FAC) 21(1–2) (2009) 187–223

21. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. In:
SPAA ’04: ACM symposium on Parallelism in algorithms and architectures, New
York, NY, USA, ACM Press (2004) 206–215

22. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a practical
lock-free queue algorithm. In: FORTE 2004. Volume 3235 of LNCS. (2004) 97–114

23. Michael, M.M.: Hazard pointers: Safe memory reclamation for lock-free objects.
IEEE Trans. Parallel Distrib. Syst. 15(6) (2004) 491–504

24. Derrick, J., Schellhorn, G., Wehrheim, H.: Proving linearizabilty via non-atomic
refinement. In J. Davies, J.G., ed.: Proceedings of the International Conference on
integrated formal methods (iFM) 2007. Volume 4591 of LNCS., Springer (2007)
195–214

20

