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INSTITUT FÜR INFORMATIK
D-86135 AUGSBURG



Copyright c© B. Tofan, G. Schellhorn, W. Reif
Institut für Informatik
Universiẗat Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —



Verifying a Stack with Hazard Pointers
in Temporal Logic

Bogdan Tofan Gerhard Schellhorn Wolfgang Reif
Institute for Software and Systems Engineering

University of Augsburg
{tofan,schellhorn,reif}@informatik.uni-augsburg.de

Abstract—A significant problem of lock-free concurrent data
structures in an environment without garbage collection, is to
ensure safe memory reclamation of objects that are removed
from the data structure. An elegant solution to this problem is
Michael’s hazard pointers method, but the verification of a simple
lock-free stack with hazard pointers is challenging.

This work contributes to the formal verification of lock-free
algorithms. Using the temporal logic framework of the interactive
prover KIV, we verify correctness and liveness of a lock-free
stack with hazard pointers. The proof exploits the algorithm’s
symmetry and requires neither additional history variables nor
temporal past operators to describe inter-process interference.
Moreover, the verification shows a relation between hazard
pointers and garbage collection, which makes it possible to reuse
the verification conditions from the simpler proof under garbage
collection.

I. I NTRODUCTION

Lock-free (non-blocking) implementations of concurrent
data structures avoid major problems associated with blocking,
such as convoying, deadlocks or priority inversion. Their main
liveness propertylock-freedom[1] guarantees global progress
even in the presence of arbitrary delays or failure of single
processes. Their main correctness propertylinearizability [2],
ensures that each operation appears to take effect instantly at
one step (the linearization point) between its invocation and
response. Thus from an external point of view, a linearizable
operation executes atomically and can be used in a modular
way. In addition, performance results show that lock-free
implementations can outperform lock-based implementations
significantly in the presence of contention or multiprogram-
ming [3]. These properties are even more important as multi-
core architectures have become mainstream.

The advantages of lock-free implementations come at the
price of an increased complexity to develop and verify them.
These data structures are often used in programming environ-
ments without support for automatic garbage collection (GC).
There, the problem of safe memory reclamation of objects that
have been removed from the data structure imposes significant
additional challenges on design and verification. Memory
occupied by a removed object can not be simply deallocated
(e.g., using afree library call in C / C++) as other processes
can still access this object in their operations. The possible
concurrent reuse of locations introduces a further fundamental
problem of lock-free algorithms, the ABA problem [4]. It
becomes manifest in subtle errors such as data structure
corruption or wrong return values (see Section III).

Several reclamation schemes that compensate the absence of
GC exist (see [5] for a performance analysis). Unfortunately,
not much work has been done on their mechanized verifica-
tion. It is nevertheless worthwhile to formally analyse their
subtleties, as these schemes affect many critical applications.

Contributions Hazard pointers [6] enable safe memory
reclamation by extending concurrent algorithms with local
non-blocking garbage collection. Our work contributes an
analysis of the central properties of hazard pointers and applies
the results to verify an extended lock-free stack. Proving
safe memory reclamation and ABA-avoidance for a stack
with hazard pointers has been setup a challenge for program
verification [7]. To the best of our knowledge, our proof is the
first mechanized proof of such an algorithm.

The verification allows for a comparison of our approach
(RGITL) –which applies interval temporal logic and sym-
metric rely-guarantee reasoning– with two other current ap-
proaches (CSL, HLRG) that have verified a similar case study
(cf. Section VII). On the one hand, the proofs show that
RGITL is able to mechanically analyze both safety and live-
ness requiring neither reasoning about the past nor additional
history variables to capture temporal properties. On the other
hand, both CSL and HLRG benefit from separation logic’s
more succinct modular reasoning about the heap.

Our proofs address all aspects of the reclamation scheme:
memory-safety and ABA-prevention as well as preservation of
linearizability and lock-freedom of the stack. The proof reveals
that the central correctness arguments under GC [8], [9] can
be reused with hazard pointers. Furthermore, all verification
conditions are expressed in terms of at most two contending
processes –a symmetry reduction which has not been exploited
to this extent before. Thus the proofs can be kept moderately
complex.

We have improved our previous decomposition theory (cf.
[9], [10]) to allow for this symmetry reduction, but the focus in
this work is rather on its application. Due to space limitations
and to keep the presentation readable, we do not detail every
formal aspect. However, the KIV system and a complete web
presentation of all proofs from both the verification of the
decomposition theory and its application to the stack (under
GC and with hazard pointers) is available online [8].

The remainder of this paper is organized as follows: Sec-
tion II gives an introduction to hazard pointers. Section III
specifies the main case study of this paper, the extended
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Fig. 1: Michael’s Hazard Pointers Method.

stack algorithm. Section IV briefly introduces the verification
framework which forms the base for the applied decomposition
theory. The system model, the embedding of rely-guarantee
reasoning and the decomposition of linearizability and lock-
freedom are described in Section V. Section VI shows four
central properties of the hazard pointers method and their
specialization to formal verification conditions in the case
study. Section VII presents related work and a comparison.
Finally, Section VIII concludes with a summary of the main
results and a short overview of our current and future work.

II. T HE HAZARD POINTERSMETHOD

Figure 1 illustrates hazard pointers, which allow removed
objects to be safely freed to the environment’s memory man-
agement system without depending on special support from
the underlying architecture.

(1) processesp, q, . . . can concurrently allocate and insert
new objectsNEW to a lock-free data structureLDS . Every
processp collects the memory of objects that it removes from
LDS in a local pool of retired locationsRLp. These loca-
tions are potential candidates for deallocation. However,the
contending use of these retired locations must be considered
first.

(2) each process is associated with a fixed (small) number
of single-writer multi-reader shared pointers, so called hazard
pointers. All hazard pointers of all processes are contained in a
global hazard pointer recordHPR. By setting one of its hazard
pointers to a locationr , processp signals other contending
processes not to deallocate this location. Crucially, to ensure
that this signal is indeed considered,p subsequently checks
whetherr is still part ofLDS . Only if this check (called hazard
pointer validation) succeeds,p enters a hazardous code region
where it accessesr .

To deallocate memory, a processp executes a scan operation
in two phases (3) and (4). In (3), it consecutively collects all
hazard pointers of all processes in a local pointer listPLp by
traversingHPR. In (4), all retired memory locationsr that
were not found when traversingHPR (r ∈ RLp − PLp), are

freed to the environment’s memory management system for
arbitrary reuse.

A properly extended lock-free algorithm with hazard point-
ers has the following central correctness property:

A validated hazard pointer is not concurrently freed.(1)

This is because at the time of its successful validation, a hazard
pointer is inLDS and hence in no retired list. Consequently,
no currently running scan will deallocate it. After its successful
validation, a hazard pointer might be concurrently retired,
while still being used. Yet it is not freed, since the retiring
process collects the pointer during its traversal ofHPR.

III. A L OCK-FREE STACK WITH HAZARD POINTERS

A. Lock-Free Stack

Instead of using locks, lock-free algorithms typically utilize
an optimistic try-retry scheme and atomic synchronization
primitives such as the widely supported single-word CAS
(Compare-And-Swap) instruction. A lock-free operation spec-
ulatively applies several manipulations on a local copy (called
snapshot) of the shared data and attempts to synchronize the
global data with the updated copy using CAS.

CAS(Old ,New ;G,Succ) {
if* G = Old then {G := New , Succ := true}
elseSucc := false}

A CAS instruction compares a global word-sized parameter
G with an older local snapshot versionOld. If these values
are equal, thenG is updated to a new valueNew and true is
returned to indicate the successful update.

Throughout this work, we use formal KIV-specifications to
describe programs. In the specification of CAS, the semicolon
separates input from reference parameters; the additionalpa-
rameterSucc is used to return a (boolean) value, a comma
separates parallel assignments andif* denotes that the com-
parison requires no (extra) step.

Figure 2 illustrates the lock-free stack which provides
concurrent push and pop operations (the shaded code in pop
can be ignored for now). The algorithm is a prime example of a
lock-free data structure, taken from Michael [6] and attributed
to Treiber [4]. The shared stack is a singly linked list of cells
in the application’s memory heapH .

The heap is simply a partial function from referencesr :
ref (with null ∈ ref ) to cells, which are pairs of values and
locations having .val and .nxt selector functions. The heap
is associated with several standard operations:r ∈ H tests
whetherr is inH ’s domain (allocated), heap lookup is denoted
as H [r ], deallocation asH − r , heap update asH [r , c] and
allocation asH [r , ?], where ? denotes an arbitrary cell content.

A shared variableTop points to the top cell of the stack.
Top

vnv1

Whenever a process executes a push, it first allocates a new
cell UNew (lines U3 / U4 execute in one step) and initializes
it with input value In. Then it repeatedly tries to CAS the
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Push(In; UNew ,USucc,Top,H ) {
let UTop = ? in {

chooser with (r 6= null ∧ r /∈ H ) in {
UNew := r ,H := H [r , ?],USucc := false;
H [UNew ].val := In;
while ¬ USucc do {

UTop := Top;
H [UNew ].nxt := UTop;
CAS(UTop,UNew ;Top,USucc)}}}}
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Pop(; Id ,OHazardpc ,OTop,OSucc,RL,Top,H ,HPR,Out) {
let ONxt = ?,Lo = emptyin {

OSucc := false;
while ¬ OSucc do {

OTop := Top,OHazardpc := false;
if OTop = null then {

OSucc := true
} else{

HPR(Id) := OTop;
if* OTop = Top then {

OHazardpc := true;
ONxt := H [OTop].nxt;
CAS(OTop,ONxt ;Top,OSucc)}}}

if OTop 6= null then {
Lo := H [OTop].val′;
RL := OTop + RL,OHazardpc := false}

Out := Lo}}

S1
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S7
S8
S9
S10
S11

Scan(; Scan,BefIncpc ,Lid ,Lhp,PL,RL,H ,HPR) {
PL := [], Scan := true;
while Lid ≤ MAXID do {

Lhp := HPR(Lid), BefIncpc := true;
if Lhp 6= null then {

PL := Lhp + PL}
Lid := Lid + 1, BefIncpc := false};

while Scan do {
chooser with (r ∈ RL − PL) in {

RL := RL − r , H := H − r}
ifnone Scan := false, Lid := 0}}

R1 Reset(; Id ,HPR) {HPR(Id) := null}

Fig. 2: Lock-Free Data-Stack with Hazard Pointers.

global top to point to this new cell (lines U6 – 9). A pop
reads the shared top (if this snapshot is null, the special
valueemptyis returned) and locally stores the snapshot’s next
reference which becomes the target of the subsequent CAS.
If it succeeds, the top cell is removed from the stack and its
value is returned.

Simply deallocating a removed cell at the end of pop
can cause contending pop-processes to dereference an illegal
snapshot pointer. If the reference is concurrently reused,an
ABA problem can occur: suppose that a pop-processp takes
a snapshot of the top pointer when the stack consists of
exactly one cell at location A. Processp is delayed after
setting its local next referenceONxt to null in line O12 for
another processq, which executes a successful pop, freeing
A. Subsequently,q executes two successful push operations,
thereby allocating reference B and then again A. Thenp is
rescheduled and its CAS operation in line O13 erroneously
succeeds, violating the semantics of pop.

B. The Extended Stack

Applying the hazard pointers technique requires no modifi-
cation of the push operation. The pop operation requires one
hazard pointer to cover the hazardous usage of the snapshot
pointer OTop in lines O12 and O13. This hazard pointer is
atomically set in line O9, using the global hazard pointer
record HPR : N → ref and the identifierId : N of the
current process. In line O10, before any hazardous usage,
the hazard pointer is validated. Crucially, only after thistest
succeeds, it can be guaranteed that the snapshot cell is not
concurrently freed and possibly reused. An additional boolean
flag OHazardpc marks the hazardous code region in which the
validated hazard pointer equals (covers) the snapshotOTop

(this flag is required in the verification only, since our logic
does not use program counters). In line O16, a location that
has been removed from the stack is added to a local list of
retired referencesRL.

OperationScan (characterized by boolean flagScan) frees
retired locations that are not concurrently used. In its first loop,
a scan sequentially traverses the hazard pointer record: reading
each hazard pointer and collecting it in a further pointer listPL

–where constant MAXID denotes the greatest occuring process
identifier. This includes atomically taking a snapshotLhp of
the HPR entry at process indexLid (initially 0) and adding
it to a local pointer listPL (BefIncpc is a further program
counter substitute used in the proofs). In the second loop,
retired memory locations that are not inPL are consecutively
deallocated.

To simplify verification while maintaining the core ideas of
Michael’s algorithm, our version of the extended stack uses
several algebraically specified data structures. In particular,
we use a function to model the hazard pointer record, while
Michael proposes a singly linked heap list. In the second loop
of the scan operation, thechoosesummarizes some merely
local steps that are required to determine the deallocable
referencesRL − PL. Furthermore, we allow a scan to be
performed arbitrarily between stack operations, while Michael
calls a scan at the end of pop, depending on the current number
of retired locations. As a simple extension, we consider the
possible reset of a hazard pointerReset between executions
of push, pop or scan, while the original code does not explicitly
reset.

IV. T HE VERIFICATION FRAMEWORK

A. Interval Temporal Logic

Interval temporal logic (ITL) [11] in KIV [12] is based
on algebras and intervals. Algebras define a semantic for
the signature and intervals (executions) are finite or infinite
sequences of states which evolve from program execution.
A state maps variables to values in the algebra. In contrast
to standard ITL, the logic explicitly includes the behavior
of the program’s environment in each step: in an interval
I = [I(0), I ′(0), I(1), I ′(1), . . .] the first program transition
leads from the initial stateI(0) to the primed stateI ′(0) and
the next transition (from stateI ′(0) to I(1)) is a transition



of the program’s environment. In this manner program and
environment transitions alternate (similar to [13]).

We write V , V ′, V ′′ to denote variableV in states
I(0), I ′(0) and I(1) respectively. Hence transitions of the
form (V, V ′) refer to program transitions, whereas transitions
(V ′, V ′′) denote environment transitions. The last state of an
interval is characterized by the atomic formulalast.

The logic uses standard temporal operators to express future
properties of an interval (2, 3, • , until , . . . ), but it does
not include temporal past operators. In rely-guarantee proofs,
formulasR(V ′, V ′′)

+

−→ G(V, V ′) are of particular interest,
whereG resp.R is the guarantee resp. rely condition of a
process and the “sustains” operator

+

−→ ensures that a process
sustains its guarantee in each step, as long as the environment
has not previously violated its rely (cf. Section V).

R(V ′, V ′′)
+

−→ G(V, V ′) :↔
G(V, V ′)unless (G(V, V ′) ∧ ¬ R(V ′, V ′′))

whereϕunlessψ abbreviates(2 ϕ) ∨ (ϕuntilψ).
The programming language provides the common sequential

constructs (:=, ; , if , . . . ), a construct for weak-fair (‖) and one
for non-fair (‖nf) interleaving. Note that arbitrary programsα
and formulas can be mixed, since they both evaluate to true
or false over an algebraA and an intervalI. In particular,α
evaluates to true inI iff I is an execution ofα (interleaved
with arbitrary environment steps).

B. Symbolic Execution and Induction

The framework is based on the sequent calculus. A sequent
is an assertion of the formΓ ⊢ ∆, where Γ,∆ are lists
of formulas. It claims that the conjunction of all formulas
in antecedentΓ implies the disjunction of all formulas in
succedent∆. Sequents are implicitly universally closed. A
typical sequent (proof obligation) about concurrent programs
has the form

α,E, F ⊢ ϕ

where a programα executes the program steps in an envi-
ronment constrained by temporal formulaE. Predicate logic
formula F describes the current state of anα-execution and
ϕ denotes the temporal property of interest. A sequent of the
aforementioned form is:

(M := M + 1; β), M = 1 ⊢ M ′′ = M ′
+

−→M ′ > M (2)

The executed program is the sequential compositionM :=
M + 1; β, environment behavior is unrestricted (E = true
omitted), the current state mapsM to 1 and the succedent
claims that the program incrementsM as long as its environ-
ment leavesM unchanged (M ′′ = M ′

+

−→M ′ > M ).
Symbolic Execution. Proving sequents that contain tempo-

ral assertions is done by symbolically stepping forward to the
next states of an interval, calculating strongest post conditions
for each program step, possibly weakened according to envi-
ronment assumptions. Thus the calculus is rather similar to
classic symbolic execution of sequential programs [14], once
environment behavior is suitably restricted.

Executing one step is done in two implicit phases which
concern programs as well as formulas. In the first phase,
information about the first program and environment transition
is separated from information about the rest of an interval
by applying unwinding rules. A program is unwound by
calculating the effect of its first statement and discardingit;
the sustains operator is unwound as follows:

ψ
+

−→ ϕ ≡ ϕ ∧ (ψ → • (ψ
+

−→ ϕ))

Applying this rule on the succedent of (2) yields

M ′ > M ∧ (M ′′ = M ′ → • (M ′′ = M ′
+

−→M ′ > M))

In other words, we have to show that the counter is incre-
mented in the (first) program transition andM ′ > M has
to be sustained in the rest of the interval, only if the (first)
environment transition leavesM unchanged.

The second phase of a symbolic execution step “moves” to
the next state of an interval. In (2), the rest of the interval
must satisfy:

β, M = 2 ⊢ M ′′ = M ′
+

−→M ′ > M

Note that the counter has value 2 in the next state and the
remaining program isβ.

Induction Well-founded induction is used to deal with
loops. A suitable induction term can be frequently derived
from a known liveness propertyϕ as the number of steps until
ϕ holds. Thus the proof of a sustains formula on an infinite
intervalI can be carried out by inducing over the length of an
arbitrary finiteI-prefix. Further details on induction and the
underlying temporal logic calculus can be found in [15], [16].

V. THE SYSTEM MODEL, SYMMETRIC RELY-GUARANTEE

REASONING AND THE DECOMPOSITIONTHEOREMS

A. The Concurrent System Model

We define a generic interface procedure COP which models
arbitrary operations (blocking or non-blocking) that a process
can invoke on concurrent data structures.

COP(In;LS ,GS ,Out)

ParametersIn resp.Out are used to insert resp. return values.
ParameterLS : lstate is the exclusive local state of the
invoking process (with process identifierLS .id), whereas
GS : gstate corresponds to the global state.

In the stack case study, COP is instantiated with the non-
deterministic choice between one of the non-blocking opera-
tions that each legal process (having an identifier≤ MAXID)
can concurrently execute. Illegal processes just skip.

COP(In;LS ,GS ,Out) {
if LS .id ≤ MAXID then {

Push(In;LS ,GS) ∨ Pop(; LS ,GS ,Out)
∨ Scan(; LS ,GS) ∨ Reset(;LS ,GS)}}

The global stateGS consists of the shared variablesTop, H ,
HPR for the top-of-stack pointer, the application’s heap and
the hazard pointer record, whereas the local stateLS is the
tuple of all local variablesId , UNew , USucc, OHazardpc ,
OTop, OSucc, Scan, BefIncpc , Lid , Lhp, PL, RL.



The generic procedure SEQ defines the possible sequential
behaviors of each process. A process can either instantly
terminate or execute, finitely or infinitely often, the following
steps (denoted by the star operator* ): it executes steps that
are unrelated to COP (abstracted byskip), or it runs one of
the data structure operations.

SEQ(p; In,LS ,GS ,Out) {
{skip ∨ COP(In;LS ,GS ,Out)}*}

The generic system model SPAWN recursively spawnsn+1
processes (n : N) to execute in parallel.

SPAWN(n; Inf ,LSf ,GS ,Outf ) {
if* n = 0 then

SEQ(0; Inf (0),LSf (0),GS ,Outf (0))
else

SEQ(n; Inf (n),LSf (n),GS ,Outf (n))f
SPAWN(n− 1; Inf ,LSf ,GS ,Outf )}

ParametersInf ,LSf ,Outf are global functions from process
identifiers to the corresponding process-local component,e.g.,
LSf : N → lstate maps each process to its local state.

The interleaving of process steps in SPAWN is weakly fair.
However, lock-freedom must also ensure global progress under
an unfair scheduler which can discard single processes for
good. To relax the assumption of weak-fair interleaving for
the decomposition of lock-freedom, we have defined a further
standard concurrent system (similar to [17]), in which each
process executes non-blocking COP calls in an infinite loop
and the interleaving is not fair (cf. [8]). In both systems, the
decomposition yields the same local proof obligations for rely-
guarantee reasoning and lock-freedom (cf. Sections V-B, V-C),
i.e., these proof obligations also ensure lock-freedom under an
unfair scheduler in the standard system.

B. Symmetric Rely-Guarantee Reasoning

To reduce the proof effort that arises from interleaving
process steps in the overall concurrent system SPAWN, we have
embedded a symmetric version of rely-guarantee reasoning
[18], [19] within the temporal logic framework. The symmetry
reduction avoids reasoning over the whole program state
LSf × GS, allowing specifications to consider at most two
processesp resp.q with local statesLS resp.LSQ .

The rely-guarantee embedding avoids reasoning about in-
terleaved executions, by abstracting from interference from
other processes using rely conditionsRext . In return, each
process guarantees a certain behavior towards its environment
according to guarantee conditionsGext . Our central rely-
guarantee proof obligation claims that in each execution of
COP, each program transition sustainsGext if the preceding
environment transitions have preservedRext .

COP(In;LS ,GS ,Out) ⊢ Rext
+

−→ Gext (3)

We introduce further subpredicates to structureGext and
Rext into three categories: step invariant guarantee and rely
conditionsG andR, state invariant conditionsInv andDisj (to
encode disjointness between the two local states), plus, local
pre- postconditionsIdle which hold between COP-executions
only. A more detailed description of the structural predicates

is given in the following; their use in the stack case study is
shown in Section VI in detail.

According toGext , program steps in COP executions main-
tain the guarantee conditions and the state invariants, plus, they
establish the pre- postconditions.

Gext (LS ,LSQ ,GS ,LS ′,LSQ ′,GS ′) :↔
G(LS ,LSQ ,GS ,LS ′,GS ′)

∧ ( Inv(LS ,GS) ∧ Inv(LSQ ,GS) ∧ Disj (LS ,LSQ)
→ Inv(LS ′,GS ′) ∧ Inv(LSQ ′,GS ′) ∧ Disj (LS ′,LSQ ′))

∧ (last → Idle(LS))

According toRext , environment transitions do not modify the
local stateLS and they maintainR and the state invariants.

Rext (LS ′,LSQ ′,GS ′,LS ′′,LSQ ′′,GS ′′) :↔
LS ′′ = LS ′ ∧ R(LS′, GS′, GS′′)

∧ (Inv(LS ′,GS ′) ∧ Inv(LSQ ′,GS ′) ∧ Disj (LS ′,LSQ ′) →
Inv(LS ′′,GS ′′) ∧ Inv(LSQ ′′,GS ′′) ∧ Disj (LS ′′,LSQ ′′))

The first parameter of the transitive rely relationR ⊆
lstate × gstate × gstate corresponds to a process’ local
state before an environment transition. The second resp. third
parameter of a rely is the global state before resp. after an
environment transition. In the case study,R ensures for in-
stance that the content of a new cell in push is not concurrently
changed, as long as it is not part of the stack.

¬ USucc′ → H ′′[UNew ′] = H ′[UNew ′]

The first three parameters of the reflexive guarantee condi-
tionG ⊆ lstate× lstate×gstate× lstate×gstate denote the
local states of the two processes and the global state before
a program step; the last two parameters stand for the current
process’ local state and the global state after this step. The
local state of the other process is used to express a central
correlation between guarantee and rely conditions: guarantee
steps are rely steps from the point of view of the other process.

G(LS0,LSQ
0
,GS0,LS1,GS1)

→ R(LSQ
0
,GS0,GS1) (4)

The state predicates are entirely decoupled fromR andG
to avoid unnecessarily strong rely resp. guarantee conditions.
Every state in a COP-execution (including intermediate states)
must satisfy the invariant predicateInv ⊆ lstate×gstate and
the symmetric disjointness predicate between the two local
statesDisj ⊆ lstate×lstate. The idle predicateIdle ⊆ lstate
encodes local state pre- postconditions of finite executions of
COP. In the case study, idle states satisfy the following local
restrictions:

Idle(LS) :↔ USucc ∧ OSucc ∧ ¬ OHazardpc

∧ ¬ Scan ∧ ¬ BefIncpc ∧ Lid = 0

Together, the full version of (3), which takes into account
the structural predicates, is:

COP(In;LS ,GS ,Out), Idle(LS), Inv(LS ,GS),
LS.id 6= LSQ.id, Inv(LSQ ,GS), Disj (LS ,LSQ)

⊢ Rext
+

−→ Gext

(5)

Local proof obligations (4) and (5) imply several global
properties of interleaved executions of SPAWN (cf. [8] for
details).

Theorem 1 (Symmetric Rely-Guarantee Decomposition). If
formulas (4) and (5) hold for two arbitrary disjoint local



statesLS ,LSQ , the global stateGS and some transitive rely
predicateR, reflexive predicateG, symmetric predicateDisj

and predicatesIdle and Inv , then:

SPAWN(n; . . . ), 2 RSPAWN, Init ⊢ 2 ϕ

whereϕ :↔ ϕG ∧ ϕInv ∧ ϕDisj ∧ ϕIdle . According toϕG,
each system step is a guarantee stepG which does not modify
the local state of other processes.

ϕG :↔
∃ p ≤ n. ∀ q 6= p. G(LSf (p),LSf (q), GS,LSf ′(p),GS ′)

∧ LSf ′(q) = LSf (q)

The invariant conditions hold for all processes at all times

ϕInv :↔ ∀ p. Inv(LSf (p),GS) ∧ Inv(LSf ′(p),GS ′)
ϕDisj :↔
∀ p 6= q. Disj (LSf (p),LSf (q)) ∧ Disj (LSf ′(p),LSf ′(q))

and all processes are in their idle states just before they invoke
COP, according toϕIdle .

The overall system starts in an initial state satisfyingInit ,
which must imply Inv , Disj and Idle for all processes.
The system’s environment behavior is restricted by a further
rely conditionRSPAWN which is the identity relation over all
reference parameters in SPAWN. A weaker system rely could
be defined to account for an external garbage collector which
removes unused locations from the global heap, but this is not
required here.

C. The Decomposition of Linearizability and Lock-Freedom

Linearizability Basically, we prove linearizability –the ma-
jor correctness property of lock-free algorithms– by locating
the linearization point of each operation during its execution.
Our current approach suffices to verify linearizability of al-
gorithms that have an internal linearization point (withinthe
code of the executing process), even when its location depends
on system behavior. This is possible, since future states ofan
interval can be easily analyzed in ITL (refer to [9] for details).

Conceptually, the linearization point of an execution of
COP is determined in a refinement proof using an abstraction
functionAbs ⊆ gstate×astate (a partial function defined on
global states that satisfyInv , which returns a corresponding
abstract state). In the stack example,Abs maps a linked list
representation of the stack to a finite algebraic listSt of its
data values.

Abs(Top,H , [ ]) :↔ Top = null
Abs(Top,H , v + St) :↔ Top 6= null ∧ Top ∈ H

∧ H [Top].val = v
∧ Abs(H [Top].nxt,H , St)

To prove linearizability, one has to show that each concrete
operation from COP, non-atomically refines a corresponding
abstract operation, which is defined in a further generic pro-
cedure AOP. In the case study, AOP is the non-deterministic
choice between an abstract push or pop, or a sequence of mere
skip steps for the scan and reset operations, which leave the
stack unchanged.

AOP(In;St ,Out) {
APush(In;St) ∨ APop(; St ,Out) ∨ skip∗}

APush(In;St) {
skip∗; St := push(In,St); skip∗}

APop(;St ,Out) {
let Lo = emptyin {

skip∗;
if* St 6= [ ] then {Lo := top(St),St := pop(St)};
skip∗;Out := Lo}}

Fig. 3: Formal definition of the abstract stack operations.

Figure 3 shows the abstract stack operations APush and APop.
They use atomic operationspush resp. pop to add resp.
remove an element fromSt at concrete linearization points
and additional skip steps at non-linearization points.

Refinement (i.e., trace inclusion) between COP and AOP
is simply expressed as COP⊢ AOP in the framework. Hence
the process-local proof obligation for linearizability is:

COP(In;LS ,GS ,Out),
2 ( LS ′′ = LS ′ ∧ R(LS ′,GS ′,GS ′′)

∧ Inv(LS ,GS) ∧ Inv(LS ′,GS ′)
∧ Abs(GS ,AS) ∧ Abs(GS ′,AS ′)), Idle(LS)

⊢ AOP(In;AS ,Out)

(6)

(6) is based on the established conditionsϕG, ϕInv andϕIdle

from Theorem 1. In particular, sinceϕG implies that system
steps never change other local states, the executing process
may assume that its local state is not concurrently changed.
Moreover, since each system step satisfies its guarantee, itis
a rely step for other processes according to (4) and we may
assumeR for environment steps in (6).

Theorem 2 (Decomposition of Linearizability). In a setting in
which the preconditions of Theorem 1 and proof obligation (6)
hold for a suitable abstraction functionAbs, the concurrent
systemSPAWN is linearizable [2].

Lock-Freedom Lock-free data structures ensure that even
when single processes crash, no deadlocks occur. In the stack
example, single push and pop operations can be forced to
always retry their loop if another process modifies the global
top pointer. If such an interference occurs, it is the interfering
process which terminates its current execution and without
interference, the current process terminates.

We capture this intuitive argument using an additional
reflexive and transitive relationU ⊆ gstate × gstate to
describe interference freedom (“unchanged”). To prove lock-
freedom, one has to do two process-local termination proofs
for each data structure operation. First, termination without
U -interference and second, termination after violatingU in a
step:

2 (2 U (GS ′,GS ′′) → 3 last)
2 (¬ U (GS ,GS ′) → 3 last)

Together, the process-local proof obligation for lock-freedom,
(again) based on propertiesϕG, ϕInv andϕIdle from Theorem
1, is as follows (cf. [8], [10] for details).

COP(In;LS ,GS ,Out),
2 ( LS ′′ = LS ′ ∧ R(LS ′,GS ′,GS ′′)

∧ Inv(LS ,GS) ∧ Inv(LS ′,GS ′)), Idle(LS)
⊢ 2 ((2 U (GS ′,GS ′′)) ∨ ¬ U (GS ,GS ′) → 3 last)

(7)



Theorem 3(Decomposition of Lock-Freedom). In a setting in
which the preconditions of Theorem 1 and proof obligation (7)
hold for a reflexive and transitive relationU , the concurrent
systemSPAWN is lock-free.

VI. V ERIFYING THE STACK WITH HAZARD POINTERS

The introduced reduction theory can be applied to verify
the stack, considering two representative processes only.This
is possible, since a retired locationr can only be freed by the
process, which has removedr from the stack and then retired
it. Thus when a process is in its hazardous code region, thereis
at most one other process which could free its critical pointer.

A. Central Properties of Hazard Pointers

Two central invariant properties of the hazard pointers
method ensure that heap access errors do not occur in haz-
ardous code regions and in deallocation steps respectively.

HPRvalid ⊆ H (8)

RL ⊆ (H − LDS) (9)

According to (8), each validated hazard pointer is in the
application’s heap at all times, i.e., it is never freed (cf.
(1)). This central property correlates with GC where one may
assume that a heap locationr is not concurrently freed if it is
just referenced by a pointer in some operation. With hazard
pointers, one can make the same assumption ifr is covered
by a validatedhazard pointer.

Before a processp validates a locationr , however, it can be
concurrently freed by another processq and arbitrarily reused
even ifp has already set its hazard pointer tor . This happens
when HPRp := r is executed after the location has been
retired by q, and q has passedp’s hazard pointer entry in
its current traversal ofHPR.

Property (9) ensures that retired locations are in the appli-
cation’s heap, but not in the lock-free data structure. Thishas
two major consequences. First, deallocation steps are safe, as
they do not affect locations which are not in the application’s
heap. Second, succeeding validations (a location is inLDS

at that time) imply that the validated location is currentlynot
retired, hence not a deallocation candidate of any current scan.

Two further central properties of hazard pointers ensure that
no ABA problem occurs.

if r ∈ HPRvalid then r /∈ NEW (10)

if under GC:H ′′(r) = H ′(r) then
if r ∈ HPRvalid : H ′′(r) = H ′(r)

(11)

(10) states that if a locationr is covered by a validated hazard
pointer, then it is not reused, i.e., it is not reinserted in the data
structure which averts the ABA problem. This property is also
related to GC, where a heap location is not reused as long as
it is referenced in some operation. Hence, the environment
assumption (11) holds: if the contents of a heap locationr are
not concurrently changed in an environment with GC, then
they also remain unchanged whenr is covered by a validated
hazard pointer.

Pred Name Property

Inv

ϕt OHazardpc ∧ OTop 6= null
→ OTop ∈ H ∧ HPR(Id) = OTop

ϕrl ∀ r ∈ RL. r 6= null ∧ r ∈ H ∧
¬ reach(Top, r ,H )

ϕnod ¬ dups(RL)

ϕrm OHazardpc ∧ OSucc → ¬ reach(Top,OTop,H )

ϕn ¬ USucc → UNew 6= null ∧ UNew ∈ H ∧
¬ reach(Top,UNew,H )

ϕst ∃ St. Abs(Top,H , St)

ϕill Id > MAXID → RL = [] ∧ Idle(LS)

Disj

δish ishazard(LS ,LSQ)

δrl disj (RL,RLq)

δtrl OHazardpc ∧ OSucc → OTop /∈ RLq

δrm OHazardpc ∧ OSucc ∧ OHazardqpc ∧ OSuccq
→ OTop 6= OTopq

δnrl ¬ USucc → UNew /∈ RLq

δtn OHazardpc ∧ ¬ USuccq → OTop 6= UNewq

δnn ¬ USucc ∧ ¬ USuccq → UNew 6= UNewq

R

ρt OHazardpc
′ ∧ OTop′ 6= null

→ H ′′[OTop′] = H ′[OTop′]

ρn ¬ USucc′ → H ′′[UNew ′] = H ′[UNew ′]

ρhp HPR′′(Id ′) = HPR′(Id ′)

G
γnol pvnoleak(LS ,GS ,LS ′,GS ′)

γR R

TABLE I: Formal verification conditions for the stack with
hazard pointers and under GC (bold script).

B. Memory-Safety and ABA-Prevention of the Extended Stack

Properties (8) - (11) are specialized to verification condi-
tions which ensure memory-safety and ABA-avoidance for
the extended stack from Figure 2. To improve readability,
we have summarized all conditions in Table I, where column
Pred contains the (structural) predicate which subsumes the
properties from columnName; the properties in bold script
are the verification conditions of the stack under GC, which
we have simply reused, due to the aforementioned relation
between hazard pointers and GC.

Absence of Access ErrorsThe stack-specific counterpart
of generic property (8) ensures that the snapshot pointer is
allocated (and covered by a validated hazard pointer) in the
hazardous code region of pop (ϕt). The stack-specific version
of (9) implies that retired locations are allocated and disjoint
from the stack (ϕrl), where a standard reachability predicate
checks whether a locationr is in the stackreach(Top, r ,H ).
Together, verification conditionsϕt and ϕrl ensure that no
heap access errors occur in pop and scan.

To sustainϕt at all times in every possible execution, the
validated hazard pointerOTop = HPR(Id) used in a pop
operation of processp (OHazardpc holds, Id is the process
identifier ofp) must not be freed by any processq. The worst
case is thatq has retiredOTop, just traversesHPR, but has not
yet collected it (OTop ∈ RLq−PLq). Thenq must not have
passed the entry ofp yet (Lidq ≤ Id ) and if it has reachedp’s



entry, it must storeOTop in the local variableLhpq to ensure
that it is collected. Invariantishazard encodes this criterion
precisely:

ishazard(LS ,LSQ) :↔

if OHazardpc ∧ OTop ∈ (RLq − PLq) ∧ Scanq then

if BefIncqpc then Lidq < Id ∨ (Lidq = Id ∧ Lhpq = OTop)

elseLidq ≤ Id

To sustain invariantϕrl at all times, we must establish that
retired lists are always duplicate free and pairwise disjoint
(ϕnod, δrl). Otherwise, a retired list might contain a freed
location after a deallocation step. Furthermore, three basic
heap-disjointness properties are necessary: removed locations
(which are subsequently retired) must be disjoint from the
stack and they must not be concurrently retired, plus, concur-
rently removed locations must be disjoint (ϕrm, δtrl, δrm).

To ensure that heap access faults do not occur in push either,
we claim that new cells that have not been inserted yet, are
always allocated (ϕn) and never (concurrently) retired (δnrl),
hence never freed.

Absence of Leaks The hazard pointers method avoids
memory leaks, i.e., all heap locations are either in the lock-free
data structure or owned by a process. In terms of the stack,
this heap-global property is defined as

noleak(LSf ,GS) :↔
∀ r ∈ H . reach(Top, r ,H ) ∨ ∃ p. owns(r ,LSf (p))

where a process owns its new, removed and retired locations.
owns(r ,LS): ↔

(¬ USucc ∧ UNew = r)
∨ (OHazardpc ∧ OSucc ∧ OTop = r) ∨ r ∈ RL

We decompose the absence of leaks to a process-local guar-
antee conditionpvnoleak , which guarantees that each process
step preserves ownership of a referencer .

pvnoleak(LS ,GS ,LS ′,GS ′) :↔
∀ r . r /∈ H ∨ reach(Top, r ,H ) ∨ owns(r ,LS)
→ r /∈ H ′ ∨ reach(Top′, r ,H ′) ∨ owns(r ,LS ′)

ABA-Prevention The stack-specific version of property
(10) ensures that the validated snapshot pointer in pop is not
reused, thus it is disjoint from (other) new cells (δtn). The
specialization of (11) yields a rely condition which ensures
that the snapshot’s contents are immutable in the hazardous
code region of pop (ρt). Hence, an ABA problem does not
occur between the execution of lines O12 and O13. An ABA
problem is avoided in push as well, since the contents of a
new cell remain unchanged according to rely conditionρn. To
maintain this rely for the other process, when the current push
process updates the new cell’s next reference (line U8), new
cells must be disjoint (δnn).

Finally, two simple verification conditions ensure that a
process’ hazard pointer entry is not concurrently modified
(ρhp) and that illegal processes are irrelevant (ϕill). We note
that all structural predicates from Table I, except forDisj , are
defined as the conjunction of their subproperties. To ensure
symmetry of the disjointness predicate, we use the following
stronger definition.

Disj (LS ,LSQ) :↔ disj (LS ,LSQ) ∧ disj (LSQ ,LS)
disj (LS ,LSQ) :↔ δish ∧ . . . ∧ δnn

The full guaranteeG of each process includes all rely condi-
tionsR, to ensure that guarantee steps are rely steps for other
processes (cf. (4)).

The Main Proof The main effort of the case study
is to prove the rely-guarantee proof obligation (5) –
sustainment of the verification conditions during steps of
each operation. We proceed by case analysis over OP ∈
{Scan,Pop,Push,Reset}. The proof resembles a Hoare-style
proof of a sequential program. We use

+

−→ induction for loops
and consecutively, symbolically execute each program state-
ment in OP according to Section IV. Only major arguments
are outlined.

Lemma 1 (OP
+

−→).

Op,LS .id ≤ MAXID, Idle(LS), Inv(LS ,GS),
LS .id 6= LSQ.id, Inv(LSQ ,GS), Disj (LS ,LSQ)

⊢ Rext
+

−→ Gext

Proof: OP ≡ Scan: It is rather subtle to establish the
symmetric version ofishazard (ishazard(LSQ ,LS )) when
the current process switches to the next hazard pointer entry
(line S7). This step must not miss a validated hazard pointer
OTopq of the other processq if the current processp has
retired, but not yet collected it (OTopq ∈ RL − PL). If the
snapshotLhp (of the currentHPR entry) is not null, we
know from previous symbolic execution that it is inPL. If
the current iteration examinesq, the symmetric version of
ishazard before this step implies thatLhp = OTopq , i.e., the
validated hazard pointer has just been collected in the current
iteration (OTopq ∈ PL).

In the deallocation step (line S10), the symmetric version
of ishazard ensures that the validated snapshot location of the
other process is not freed (ϕt). The proof is by contradiction:
if the other process is in its hazardous code region and its
snapshot pointer is inRL−PL, then (the symmetric version of)
ishazard before this step implies that the current process must
not have finished its traversal. However, the current process is
in its second scan loop already (technically, the contradiction
is MAXID + 1 = Lid ≤ Idq ≤ MAXID).

OP ≡ Pop: In the succeeding hazard pointer validation step
(lines O10 / O11),ϕt and ishazard can be established, since
the hazard pointer is in the data structure, hence allocatedand
not concurrently retired.

Immediately after removal of the snapshotOTop from the
stack (line O13), we know fromϕrl that it can not be in the
current process’ retired listRL. Hence, we can establishϕrl

again in the retiring step (line O16), since bothOTop andRL

are local.
OP ≡ Push: The allocation step (lines U3 / U4) resets the

contents of a new cell. However, it does not affect allocated
locations and thus neither rely conditionρn nor ρt of the other
process are violated. We additionally establishUNew /∈ RL in
this step which allows to prove disjointness of retired locations
from the data structure (ϕrl), when the new cell is added to
the stack (line U9).
Op ≡ Reset : The reset of a hazard pointer entry is safe,

since it happens outside of the hazardous code region in pop.



C. Linearizability and Lock-Freedom of the Stack

Preservation of Linearizability The actual proof of lin-
earizability (proof obligation (6)) is not described in more
detail, since it resembles our former proof under garbage
collection [8], [9]. It distinguishes between the four possible
concrete operations. In case of the hazard pointer operations
scan and reset, each concrete step refines an abstract skip step.
In particular, the deallocation step (lines S9 / S10) does not
affect the stack, as retired locations are disjoint from thestack
(ϕrl).

The extended pop operation still has one linearization point
in line O5 if the stack is empty, or else in line O13 if the
CAS succeeds. Relyρt ensures that the next reference of the
snapshot cell and its value are immutable. Thus the successful
CAS corresponds to an abstract pop, returning the correct
value. In case of a push operation, the linearization point is
the successful CAS. Relyρn ensures that the initial value of
the new cell and its next reference are immutable. Hence, the
successful CAS corresponds to an abstract push of the invoked
value.

Preservation of Lock-Freedom According to (7), the
proof of lock-freedom requires termination proofs for each
data structure operation if environment behavior is restricted
according toU and if a step violatesU . We determine the
unchanged relation as identity over the top-of-stack pointer.

U (GS0,GS1) :↔ Top1 = Top0

It is then relatively simple (compared to [10], where we
prove lock-freedom of a more complicated lock-free queue)
to show that the push and pop operations terminate. Since
the scan operation is wait-free, we can prove its termination
without U .

Scan(;LS ,GS), 2 LS ′′ = LS ′ ⊢ 3 last

Termination of the first scan loop uses well-founded induction
over the term MAXID−Lid which decreases in every iteration.
Similarly, termination of the second loop follows with an
inductive argument over the number of retired locations.

VII. R ELATED WORK AND COMPARISON

Related approaches that have been used to verify lock-
free algorithms, can be classified according to their degree
of automation as follows.

Automatic Approaches No current automatic technique
proves correctness or lock-freedom, without assuming GC.

Model Checking is good at quickly finding bugs in concur-
rent algorithms [20]. Yet it only checks short executions of
a few processes and thus possibly provides counterexamples,
but not full proofs. Shape Analysis in contrast proves lineariz-
ability in systems with an unbounded number of processes
[21].

An automatic approach for verifying linearizability is taken
by Vafeiadis et al. [22] based on rely-guarantee reasoning and
separation logic (RGSep). To verify lock-freedom, RGSep is

substantially extended in [23], while our approach integrates
correctness and liveness analysis in one logical framework.

Interactive Verifications As far as we know, there is no
interactive (mechanized) verification of a lock-free algorithm
with hazard pointers. [24] describes an automata-based proof
of linearizability of a lock-free queue, considering the less
advanced reclamation technique of modification counters [4].
To verify the dequeue operation which has a conditional
linearization point that depends on system behavior, backward
simulation is used, while we have verified linearizability (and
lock-freedom) without additional techniques (cf. [9], [10]).

Manual Proofs Michael himself [6] gives a semantic ver-
ification condition which ensures safe memory reclamation
for an arbitrary lock-free algorithm with hazard pointers.
This global condition requires the existence of a time in the
past from which a hazardous location is safely covered by a
hazard pointer. Our concrete verification of the stack formally
resembles Michael’s arguments, while avoiding both global
reasoning and reasoning about the past.

There are two formal pen and pencil proofs of a Treiber-
like stack with hazard pointers. Parkinson et al. [7] apply
concurrent separation logic (CSL) to verify the stack, focusing
on heap-modular reasoning and fractional permissions. Their
central correctness argument states that after a hazard pointer
covers a locationt, it can not be removed from the stack and
then reinserted (which avoids the ABA problem). They use
history variables to capture this property, while we ensure
ABA avoidance by directly claiming immutability of cell
contents in a simple rely condition (ρt).

Fu et al. [25] verify the stack in a new program logic
for history (HLRG), which extends previous work by Feng
et al. [26]. It provides temporal operators of the past only
and evaluates state assertions in the last state of an execution.
Thus their logic is inherently limited to finite executions.
Their operation “retireNode(t)” is not lock-free, since itdoes
not complete when locationt is covered by a hazard pointer
and the associated process fails. However, the combinationof
temporal logic, rely-guarantee reasoning and separation logic
is a promising approach that is relevant for our future work.

Both related formal verifications [7], [25] view the stack as
an implementation of a lock-free memory allocator which inte-
grates hazard pointers in its access operations, abstracting from
cell data. In contrast, we abstract from the underlying memory
allocator and focus on a lock-free data-stack implementation
in an environment without garbage collection. HLRG and CSL
are based on separation logic and use abstract code annotations
in their verification, while we use refinement (separating
concrete from abstract code). They benefit from the implicit
treatment of different heap locations by the separating con-
junction operator, while we have to encode some disjointness
properties explicitely. Their verification considers memory-
safety and structural invariance of the free-stack only. They
prove neither linearizability nor lock-freedom of the stack.
Their proofs use global conditions which quantify over all
processes, without exploiting the symmetry of the reclamation
technique.



VIII. S UMMARY

This work describes the first mechanized verification of a
challenging lock-free stack with hazard pointers. The proof
shows central properties of the hazard pointers method and
takes advantage of the relation between Michael’s method
and GC, carrying over the verification conditions from the
simpler proof under GC with just minor adaptations. As we
believe, these ideas can be reused for the verification of
other extended lock-free data structures, possibly in other
logics and formalisms as well. As a step towards higher
automation, our proof avoids global reasoning by exploiting
the symmetry of the hazard pointers method, which allows
to express the central correctness conditions in terms of two
processes only. Moreover, the proof is, as we believe, intuitive
since it avoids any reasoning about additional history variables
and the temporal past.

As an extension of our verification, Maged Michael pro-
posed that reading and writing hazard pointers non-atomically
should be safe too, even though the scan algorithm may
then read corrupted values. We confirmed this conjecture by
replacing the atomic assignments with generic read and write
procedures. These were specified to work correctly only if the
environment does not concurrently modify the global value.
The proofs only changed minimally and are available online
too [8].

In future work, we will verify further algorithms that use
hazard pointers. Moreover, we strive to generalize and improve
the decomposition of linearizability to treat complex lineariza-
tion points (such as in the elimination stack [3]), applying
these improved techniques to further challenging case studies.
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