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Abstract—A significant problem of lock-free concurrent data Several reclamation schemes that compensate the absence of
structures in an environment without garbage collection, is to GC exist (see [5] for a performance analysis). Unforturyatel
ensure safe memory reclamation of objects that are removed i mych work has been done on their mechanized verifica-
from the data structure. An elegant solution to this problem is ti It i thel thwhile to f I | ith
Michael's hazard pointers method, but the verification of a simple Ion. _'S neverineless worthwhile 1o Ofma_Y ana ys_el €
lock-free stack with hazard pointers is challenging. subtleties, as these schemes affect many critical apipifat

This work contributes to the formal verification of lock-free Contributions Hazard pointers [6] enable safe memory
algorithms. Using the temporal logic framework of the interactive  reclamation by extending concurrent algorithms with local

prover KIV, we verify correctness and liveness of a lock-free _ ; ; :
stack with hazard pointers. The proof exploits the algorithm’s non-blocking garbage collection. Our work contributes an

symmetry and requires neither additional history variables nor analysis of the Cen'FraI properties of hazard pointers apﬁeap_
temporal past operators to describe inter-process interferece. the results to verify an extended lock-free stack. Proving
Moreover, the verification shows a relation between hazard safe memory reclamation and ABA-avoidance for a stack
pointers and garbage collection, which makes it possible to reuse jth hazard pointers has been setup a challenge for program
the verlflcatlon conditions from the simpler proof under garbage verification [7]. To the best of our knowledge, our proof ig th
collection. . . .
first mechanized proof of such an algorithm.
|. INTRODUCTION The verification allows for a comparison of our approach

Lock-free (non-blocking) implementations of concurrenfRGITL) —which applies interval temporal logic and sym-
data structures avoid major problems associated with bigck metric rely-guarantee reasoning— with two other current ap
such as convoying, deadlocks or priority inversion. Thedirm proaches (CSL, HLRG) that have verified a similar case study
liveness propertyock-freedoni1] guarantees global progress(cf. Section VII). On the one hand, the proofs show that
even in the presence of arbitrary delays or failure of singRGITL is able to mechanically analyze both safety and live-
processes. Their main correctness propéngarizability [2], ness requiring neither reasoning about the past nor addltio
ensures that each operation appears to take effect instntlhistory variables to capture temporal properties. On tierot
one step (the linearization point) between its invocatiad ahand, both CSL and HLRG benefit from separation logic’s
response. Thus from an external point of view, a linearizabinore succinct modular reasoning about the heap.
operation executes atomically and can be used in a modulaPur proofs address all aspects of the reclamation scheme:
way. In addition, performance results show that lock-frememory-safety and ABA-prevention as well as preservation o
implementations can outperform lock-based implememntatiolinearizability and lock-freedom of the stack. The proofaals
significantly in the presence of contention or multiprogranthat the central correctness arguments under GC [8], [9] can
ming [3]. These properties are even more important as multie reused with hazard pointers. Furthermore, all verificati
core architectures have become mainstream. conditions are expressed in terms of at most two contending

The advantages of lock-free implementations come at theocesses —a symmetry reduction which has not been exploite
price of an increased complexity to develop and verify thernto this extent before. Thus the proofs can be kept moderately
These data structures are often used in programming ervircomplex.
ments without support for automatic garbage collectionXGC We have improved our previous decomposition theory (cf.
There, the problem of safe memory reclamation of objects tH8], [10]) to allow for this symmetry reduction, but the facin
have been removed from the data structure imposes sigrifictinis work is rather on its application. Due to space limda$
additional challenges on design and verification. Memomnd to keep the presentation readable, we do not detail every
occupied by a removed object can not be simply deallocateEdmal aspect. However, the KIV system and a complete web
(e.g., using dreelibrary call in C / C++) as other processegresentation of all proofs from both the verification of the
can still access this object in their operations. The péssildecomposition theory and its application to the stack (unde
concurrent reuse of locations introduces a further funaddaate GC and with hazard pointers) is available online [8].
problem of lock-free algorithms, the ABA problem [4]. It The remainder of this paper is organized as follows: Sec-
becomes manifest in subtle errors such as data structtiom Il gives an introduction to hazard pointers. Sectioh I
corruption or wrong return values (see Section III). specifies the main case study of this paper, the extended



freed to the environment's memory management system for
Environment without GC arbitrary reuse.

® allo A properly extended lock-free algorithm with hazard point-
w ers has the following central correctness property:
st Y
o A validated hazard pointer is not concurrently fre‘ea)
remy, retirg, Vayi
e 9 This is because at the time of its successful validation zartia
pointer is in LDS and hence in no retired list. Consequently,
@ @ no currently running scan will deallocate it. After its sassful
| | validation, a hazard pointer might be concurrently retired

while still being used. Yet it is not freed, since the retyin
process collects the pointer during its traversaliatR.

_ deallog,

Il. AL ocCK-FREE STACK WITH HAZARD POINTERS
A. Lock-Free Stack

Instead of using locks, lock-free algorithms typicallyliag
an optimistic try-retry scheme and atomic synchronization
. . _ , . primitives such as the widely supported single-word CAS
stack algorithm. Section IV briefly introduces the verifioat (Compare-And-Swap) instruction. A lock-free operatioresp
framework which forms the base for the applied decompos't'%latively applies several manipulations on a local copyiéda

theory. The system model, the embedding of rely-guarantge, \snot) of the shared data and attempts to synchronize the
reasoning and the decomposition of linearizability anddocgIobal data with the updated copy using CAS.
:

freedom are described in Section V. Section VI shows fo

; ; ; CAS(0Old, New; G, Succ) {
centr_al_prqpertles of the ha_lz_ard_ pomters_ _meth_od and their i#* G — Old then {G = New, Succ - true}
specialization to formal verification conditions in the eas elseSucc := false }

study. Section VII presents related work and a compariso

Finally, Section VIII concludes with a summary of the mairﬁg CAS instruction compares a global word-sized parameter

results and a short overview of our current and future WOFk.G with an older !ocal snapshot versiddld. If these valu_es
are equal, ther7 is updated to a new valudew and true is

Il. THE HAZARD POINTERSMETHOD returned to indicate the successful update.

Figure 1 illustrates hazard pointers, which allow removed Thrpughout this work, we use formal KIV—specifications to
objects to be safely freed to the environment's memory mafiescribe programs. In the specification of CAS, the semitolo

agement system without depending on special support frofparates input from reference parameters; the additfmaral
the underlying architecture. rameterSuccis used to return a (boolean) value, a comma

(1) processep, q,... can concurrently allocate and inserS€Parates parallel assignments afiiddenotes that the com-

new objectsNEW to a lock-free data structurBDS. Every Parison requires no (exira) step. _ _
procesg collects the memory of objects that it removes from Fi9ure 2 illustrates the lock-free stack which provides
LDS in a local pool of retired locations?Z,. These loca- concurrent push and pop operations (the shaded code in pop

tions are potential candidates for deallocation. Howetrez, €N D€ ignored for now). The algorithm is a prime example of a

contending use of these retired locations must be considel%Ck'fr,ee data structure, taken frqm Miphael ,[6] and_ attréal
first. to Treiber [4]. The shared stack is a singly linked list ofigel

(2) each process is associated with a fixed (small) numtBrthe application’s memory heafi.

of single-writer multi-reader shared pointers, so calledard 1€ heap is simply a partial function from references
pointers. All hazard pointers of all processes are contiima. "¢/ (With null € 7ef) to cells, which are pairs of values and
global hazard pointer recoiPR. By setting one of its hazard !ocatlons_ havmg .val and .nxt selector fun_cnons. The heap
pointers to a location-, processp signals other contending 'S @ssociated W,'th several standard operations I tests
processes not to deallocate this location. Crucially, teues whetherr isin H's QOmaln (allocated), heap lookup is denoted
that this signal is indeed considered.subsequently checks S (7], deallocation as — r, heap update a#[r, | and
whetherr is still part of LDS. Only if this check (called hazard &llocation asif [r, 7], where ? denotes an arbitrary cell content.
pointer validation) succeeds,enters a hazardous code region A Shared variablefop points to the top cell of the stack.
where it accesses. Top

To deallocate memory, a procgsexecutes a scan operation E
in two phases (3) and (4). In (3), it consecutively colledts a
hazard pointers of all processes in a local pointerM&f, by Whenever a process executes a push, it first allocates a new
traversing HPR. In (4), all retired memory locations that cell UNew (lines U3 / U4 execute in one step) and initializes
were not found when traversingPR (r € RL, — PL,), are it with input value In. Then it repeatedly tries to CAS the

Scan

Fig. 1. Michael's Hazard Pointers Method.




Ul Push(In; UNew, USucc, Top, H) {

U2 let UTop = 7in { B. The Extended Stack

u3 chooser with (r # null A r ¢ H) in { ; ; . . e
U4 UNew := r, H 1= H[r,?), USucc := false Applylng the hazard pointers technique requires no .mod|f|
us H[UNew].val := In; cation of the push operation. The pop operation requires one
U6 while = USucc do { hazard pointer to cover the hazardous usage of the snapshot
u7 UTop := Top; : s . . .

us H[UNew].nxt := UTop; pointer OTop in lines O12 and O13. This hazard pointer is
u9 CAS(UTop, UNew; Top, USucc)}}}} atomically set in line O9, using the global hazard pointer

record HPR : N — ref and the identifierld : N of the
01 Pop(; Id, OHazard,., OTop, OSuce, RL, Top, H, HPR, Out) { current process. In line 010, before any hazardous usage,

02 let ONxt = ?, Lo = emptyin { the hazard pointer is validated. Crucially, only after ttést
82 Oglucc = false succeeds, it can be guaranteed that the snapshot cell is not
while = OSucc do { . >

05 OTop := Top, OHazardps = false concurrently freed and possibly reused. An additional éaol

06 if OTop = null then { flag OHazard,. marks the hazardous code region in which the

o }gsi?cc = true validated hazard pointer equals (covers) the snapshbip

09 HPR(Id) := OTop; (this flag is required in the verification only, since our logi

812 if*OOHTopj Top then { does not use program counters). In line O16, a location that
azardy. = true; . .

012 ONat ::PH[OTOP]_nxt ha_s been removed from the stack is added to a local list of

013 CAS(OTop, ONzt; Top, OSucc)}}} retired reference$ L.

014 if OTop # null then { OperationScan (characterized by boolean flafyan) frees

015 Lo := H[OTop].val;

016  RL:= OTop + RL, OHazardy, := false} retired locations that are not concurrently used. In it$ krsp,

017  Out:= Lo}} a scan sequentially traverses the hazard pointer recading
each hazard pointer and collecting it in a further pointgr/iL

S1 Scan(; Scan, Beflncye, Lid, Lhp, PL, RL, H, HPR) { —where constant MAXID denotes the greatest occuring peoces

S2 PL:=], Scan := trug identifier. This includes atomically taking a snapstidty of

S3  while Lid < MAXID do { the HIPR entry at indeid (initially 0) and addi

S4  Lhp:= HPR(Lid), Beffncpe := true; the entry at process index: (|n.| ially 0) and adding

S5 if Lhp # null then { it to a local pointer listPL (Beflnc,. is a further program

gs . _1; P;:LﬁthJer é}l — talsa counter substitute used in the proofs). In the second loop,

S8 while b;;anldoﬁ » Beflnep. := falsey; retired memory locations that are not Ri, are consecutively

S9 chooser with (r € RL — PL) in { deallocated.

S10 RL:=RL—r, H:=H—r} To simplify verification while maintaining the core ideas of

S11 | = id = . , : .
finone Sean := false Lid := 03} Michael's algorithm, our version of the extended stack uses

several algebraically specified data structures. In pdaic
we use a function to model the hazard pointer record, while
Fig. 2: Lock-Free Data-Stack with Hazard Pointers.  Michael proposes a singly linked heap list. In the secong loo

of the scan operation, thehoosesummarizes some merely
local steps that are required to determine the deallocable
referencesRL — PL. Furthermore, we allow a scan to be
performed arbitrarily between stack operations, while hiel

global top to point to this new cell (lines U6 — 9). A popcalls a scan at the end of pop, depending on the current number

reads the shared top (if this snapshot is null, the specil retired locations. As a simple extension, we consider the

valueemptyis returned) and locally stores the snapshot’s negbssible reset of a hazard pointBeset between executions

reference which becomes the target of the subsequent CABpush, pop or scan, while the original code does not exjlici

If it succeeds, the top cell is removed from the stack and itgset,

value is returned.

R1 Reset(; Id, HPR) {HPR(Id) := null}

IV. THE VERIFICATION FRAMEWORK
Simply deallocating a removed cell at the end of pop

can cause contending pop-processes to dereference aai illéy 'nterval Temporal Logic

shapshot pointer. If the reference is concurrently reused, Interval temporal logic (ITL) [11] in KIV [12] is based
ABA problem can occur: suppose that a pop-progesakes on algebras and intervals. Algebras define a semantic for
a snapshot of the top pointer when the stack consists the signature and intervals (executions) are finite or i&ini
exactly one cell at location A. Procegsis delayed after sequences of states which evolve from program execution.
setting its local next referenc@Nzt to null in line 012 for A state maps variables to values in the algebra. In contrast
another procesg, which executes a successful pop, freeintp standard ITL, the logic explicitly includes the behavior
A. Subsequentlyg executes two successful push operationsf the program’s environment in each step: in an interval
thereby allocating reference B and then again A. Thes I = [I(0),1'(0),1(1),I'(1),...] the first program transition
rescheduled and its CAS operation in line O13 erroneoussads from the initial staté(0) to the primed statd’(0) and
succeeds, violating the semantics of pop. the next transition (from staté’(0) to I(1)) is a transition



of the program’s environment. In this manner program and Executing one step is done in two implicit phases which
environment transitions alternate (similar to [13]). concern programs as well as formulas. In the first phase,
We write V, V/, V" to denote variableV in states information about the first program and environment tramsit
I(0), I'(0) and I(1) respectively. Hence transitions of thes separated from information about the rest of an interval
form (V, V') refer to program transitions, whereas transitionlsy applying unwinding rules. A program is unwound by
(V’, V") denote environment transitions. The last state of aalculating the effect of its first statement and discarding

interval is characterized by the atomic formugest. the sustains operator is unwound as follows:
The logic uses standard temporal operators to expres®futur . N
properties of an interval{, <, e, until,...), but it does Ve S e Ao e W 9)

not include temporal past operators. In rely-guaranteefpro Applying this rule on the succedent of (2) yields
formulas R(V', V") = G(V, V') are of particular interest,
where G resp. R is the guarantee resp. rely condition of a
process and the “sustains” operatér ensures that a processin other words, we have to show that the counter is incre-
sustains its guarantee in each step, as long as the envinbnmgented in the (first) program transition add’ > M has

M'>MA(M" =M — e (M"=M - M > M))

has not previously violated its rely (cf. Section V). to be sustained in the rest of the interval, only if the (first)
ROV V') 5 GOV s environment transition leave®/ un_changed._ ) )
G(V, V") unless (G(V, V') A = R(V', V")) The second phase of a symbolic execution step “moves” to
. ] the next state of an interval. In (2), the rest of the interval
wherey unless ¢ abbreviatesO ¢) V (puntil ¢). must satisfy:
The programming language provides the common sequenualf '

constructs=, ;, if, ...), a construct for weak-fair|j and one B, M=2+ M'=M "> M >M

for non-fair (|) interleaving. Note that arbitrary programs o hat the counter has value 2 in the next state and the
and formulas can be mixed, since they both evaluate to trPeemainin rogram is9

or false over an algebrd and an intervall. In particular,a g prog '

2 . . . Induction Well-founded induction is used to deal with
evaluates to true i iff I is an execution ofv (interleaved . . . .
: . . loops. A suitable induction term can be frequently derived
with arbitrary environment steps).

from a known liveness property as the number of steps until
B. Symbolic Execution and Induction o holds. Thus the proof of a sustains formula on an infinite

The framework is based on the sequent calculus. A sequg}fzva” fc_:a? bIe ca:crledFoutthby |crj1dtuc;||ng ov_erdth(i. length dOIhan
is an assertion of the forni® = A, whereI',A are lists arbitrary Tinite I-pretix. Further details on induction an €

of formulas. It claims that the conjunction of all formulasunderlying temporal logic calculus can be found in [15],][16

in antecedentl” implies the disjunction of all formulas in V. THE SYSTEM MODEL, SYMMETRIC RELY-GUARANTEE
succedentA. Sequents are implicitly universally closed. A°  REASONING AND THE DECOMPOSITIONTHEOREMS

typical sequent (proof obligation) about concurrent padg$ A The Concurrent System Model

has the form
We define a generic interface procedure COP which models

a,E,FFo arbitrary operations (blocking or non-blocking) that aqaess

. can invoke on concurrent data structures.
where a progranm executes the program steps in an envi-

ronment constrained by temporal formula Predicate logic COR(In; LS, GS, Out)
formula F' describes the current state of arexecution and .
arameterdn resp.Out are used to insert resp. return values.

ggg:ﬁ;ﬁé:i;i?ﬁ”g property of interest. A sequent of t BrameterLS : Istate is the exclusive local state of the

invoking process (with process identifigbS.id), whereas
(Mi=M+1;8), M=1F M' =M < M' > M (2) GS: gstate corresponds to the global state.
) ) ) In the stack case study, COP is instantiated with the non-
The executed program is the sequential composifién:=  geterministic choice between one of the non-blocking opera

M +1; 3, environment behavior is unrestricted (= true (ons that each legal process (having an identifieMAXID)
omitted), the current state mapd to 1 and the succedent g, concurrently execute. lllegal processes just skip.
claims that the program increment$ as long as its environ-

COR(In; L ¢
ment leaves\/ unchanged {/” = M’ — M’ > M). ORIn:. SS’MG&.S“H%E%{
Symbolic Execution Proving sequents that contain tempo- Push(In; LS, GS) V Pop(; LS, GS, Out)
ral assertions is done by symbolically stepping forwarche t V Scan(; LS, GS) V Reset(; LS, G5)}}

next states of an interval, calculating strongest postitiond The global statezS consists of the shared variabl&sp, H,

for each program step, possibly weakened according to entiPR for the top-of-stack pointer, the application’s heap and
ronment assumptions. Thus the calculus is rather similar ttte hazard pointer record, whereas the local siaieis the
classic symbolic execution of sequential programs [14feontuple of all local variablesid, UNew, USucc, OHazardy.,
environment behavior is suitably restricted. OTop, OSucc, Scan, Beflncy., Lid, Lhp, PL, RL.



The generic proceduree® defines the possible sequentials given in the following; their use in the stack case study is
behaviors of each process. A process can either instarghhown in Section VI in detail.
terminate or execute, finitely or infinitely often, the fallmg According toG.,:, program steps in COP executions main-
steps (denoted by the star operatdr it executes steps thattain the guarantee conditions and the state invariants, filay
are unrelated to COP (abstracted $kip), or it runs one of establish the pre- postconditions.

the data structure operations. Geat(LS, LSQ, GS, LS, LSQ', GS') 1
. G(LS,LSQ, GS,LS’, GS")
SEQ(p; In, LS, GS, Out) { ) ) ) ’ .
. ’ * A Inv(LS,GS) A Inv(LSQ, GS) A Disj(LS, LSQ)
{skip v COR(In; LS, GS, Out)}*} — mu(LS’, GS') A Inv(LSQ'. GS') A Disj(LS', LSQ"))
The generic system modebPSwN recursively spawns + 1 A (last — Idle(LS))
processesr(: N) to execute in parallel. According toR.,;, environment transitions do not modify the
SPAWN(n; Inf, LSf, GS, Outf) { local stateL.S and they maintaink and the state invariants.
if* n = 0 then i / i 1" " "y .
Rext(LS', LSQ', GS’, LS", LSQ", GS") :=
eISSeEQ(O; Inf(0), LSf(0), GS, Outf (0)) ig,, 218 A R(LS.GS', Gs™) )
A (Inv(LS’, GS") A Inv(LSQ’, GS’) A Disj(LS’', LSQ") —
SEQ(n; Inf (n), LSf(n), GS, Outf (n)) Inv(LS", GS") A Inv(LSQ", GS") A Disj(LS", LSQ"))

|| SPAWN(n — 1; Inf, LSf, GS, Outf)}
i The first parameter of the transitive rely relatigd C
Parameterdnf, LSf, Outf are global functions from process; ;.  gstate x gstate corresponds to a process’ local
identifiers to the corresponding process-local COMpOre0t,  giate pefore an environment transition. The second resp. th
LSf : N — Istate maps each process to its local state.  yaameter of a rely is the global state before resp. after an
The interleaving of process steps iRAVN is weakly fair. enyironment transition. In the case study,ensures for in-

However, lock-freedom must also ensure global progresemundance that the content of a new cell in push is not concuyrent
an unfair scheduler which can discard single processes fqy,

’ ) - anged, as long as it is not part of the stack.
good. To relax the assumption of weak-fair interleaving for
the decomposition of lock-freedom, we have defined a further — USucc’ — H"”[UNew'] = H'[UNew']

standard concurrent system (similar to [17]), in which each tpe first three parameters of the reflexive guarantee condi-

process executes non-blocking COP calls in an infinite logp G C Istate x Istate x gstate x Istate X gstate denote the

and the interleaving is not fair (cf. [8]). In both systemse t |05 gtates of the two processes and the global state before
decomposition yields the same local proof obligations &+ 5 104ram step: the last two parameters stand for the current

guarantee reasoning and lock-freedom (cf. Sections V-B).V- y a5 |ocal state and the global state after this step. Th
i.e., these proof obligations also ensure lock-freedomeund |40 state of the other process is used to express a central
unfair scheduler in the standard system. correlation between guarantee and rely conditions: gteean

B. Symmetric Rely-Guarantee Reasoning steps are rely steps from the point of view of the other praces

To reduce the proof effort that arises from interleaving Hggfg% LSG%W%%O’)LSI’GS” (4)
process steps in the overall concurrent systemwsy, we have 0o e .
embedded a symmetric version of rely-guarantee reasonindr he_state predlcat_es are entirely decoupled fiirand G_ _
[18], [19] within the temporal logic framework. The symmetr to avoid unpecessarlly strong rely resp. ggarantee_cmmu
reduction avoids reasoning over the whole program staﬁé(ery sta_\te maQOP.-execqu.n (including intermediatiesta
LSf x GS, allowing specifications to consider at most twdnUst satisfy the invariant predicafev C Istate x gstate and
processes resp.q with local statesi.s resp. LSQ. the symmetnc disjointness predlcate bgtween the two local

The rely-guarantee embedding avoids reasoning about TiR1eSDisj € IstatexIstate. The idle predicatddle C Lstate
terleaved executions, by abstracting from interferencenfr encodes local state pre- postcondltlons_ of finite execs tiin
other processes using rely conditiols,;. In return, each COP. In the case study, idle states satisfy the followinglloc

process guarantees a certain behavior towards its envinonnd €strictions:
according to guarantee condition§.,;. Our central rely- Idle(LS) - USucc A OSucc A = OHazardye
guarantee proof obligation claims that in each execution of A = Sean A = Beflnepe A L_ld =0 .
COP, each program transition sustaifis,; if the preceding Together, the fuI_I version of (3), which takes into account
environment transitions have preservig,;. the structural predicates, is:
COR(In; LS, GS, Out), Idle(LS), Inv(LS, GS),
COP(In; LS, GS, Out) + Rewt —— Gent (3) LS.id # LSQ.id, Inv(LSQ, GS), Disj(LS, LSQ) (5)

. . = Remt L} Gezt
We 'F"Oduce further §ub.pred|c§1tes .to structufe,; and Local proof obligations (4) and (5) imply several global
R.,;: into three categories: step invariant guarantee and r%lyoperties of interleaved executions oP@N (cf. [8] for
conditionsG and R, state invariant conditionBiv and Disj (to details) '
encode disjointness between the two local states), plag] lo ’
pre- postconditiongdie which hold between COP-executionsTheorem 1 (Symmetric Rely-Guarantee Decompositiof)
only. A more detailed description of the structural pretbsa formulas (4) and (5) hold for two arbitrary disjoint local



statesLS, LSQ, the global stateG:S and some transitive rely Azzzsg{”;sftz):{push( In, St); skip®)

predicate R, reflexive predicatés, symmetric predicateisj
and predicateddle and Inv, then: APop(; 5t, Out) {
let Lo = emptyin {
skip™;
if* St £ [ ] then {Lo := top(St), St := pop(St)};
skip*; Out := Lo}}

SPAWN(n; ... ), O Rspawn, Init = 0O ¢

wherey 1« g A @me A ©pisj N @1die- According topg,
each system step is a guarantee steprhich does not modify ~ Fig. 3: Formal definition of the abstract stack operations.
the local state of other processes.

PG

Ip<n.Vqg#p  GLSf(p),LSf(q),GS, LSf'(p), GS’) Figure 3 shows the abstract stack operations APush and APop.

A LSf'(a) = LSf(a) They use atomic operationsush resp. pop to add resp.

The invariant conditions hold for all processes at all imes remove an element fron$¢ at concrete linearization points
and additional skip steps at non-linearization points.

e i ¥ p- Iv(LSf(p), G5) A Inv(LS'(p), GS") Refinement (i.e., trace inclusion) between COP and AOP

PDisj

Y p # q. Disj(LSf(p), LSf(q)) A Disj(LSf'(p), LSf'(q)) is simply expressed as COPAOP in the framework. Hence
and all processes are in their idle states just before thegke 1€ Process-local proof obligation for linearizability is
COP, according toy ;e - COM(In; LS, GS, Out),

O( LS”=LS AR(LS', GS', GS")
The overall system starts in an initial state satisfyingt, A Inv(LS, GS) A Inv(LS’, GS’) (6)

A Abs(GS, AS) A Abs(GS’, AS")), Idle(LS)

which must imply Inv, Disj and Idle for all processes. - AOP(In: AS. Out)

The systerts environment behavior is restricted by a further . .
rely condition Rsoau Which is the identity relation over all (6) is based on the established conditions, v rm, andypraze
reference parameters irP8VN. A weaker system rely could from Theorem 1. In particular, singgc implies that system

be defined to account for an external garbage collector whiefgPs never change other local states, the executing groces

removes unused locations from the global heap, but thistis fB2y assume that its local state is not concurrently changed.
required here. Moreover, since each system step satisfies its guarantise, it

a rely step for other processes according to (4) and we may
C. The Decomposition of Linearizability and Lock-FreedomassumeR for environment steps in (6).

Linearizability Basically, we prove linearizability —the ma-Theorem 2 (Decomposition of Linearizability)In a setting in
jor correctness property of lock-free algorithms— by lawgt which the preconditions of Theorem 1 and proof obligation (6
the linearization point of each operation during its ex@sut hold for a suitable abstraction functiodbs, the concurrent
Our current approach suffices to verify linearizability df a systemSpawn is linearizable [2].
gorithms that have an internal linearization point (withire
code of the executing process), even when its location dispen Lock-_Freedom Lock-free data structures ensure that even
on system behavior. This is possible, since future statesofWhen single processes crash, no deadlocks occur. In thie stac
interval can be easily analyzed in ITL (refer to [9] for dégpi €Xample, single push and pop operations can be forced to
Conceptually, the linearization point of an execution qtlways retry their loop if another process modifies the dloba

COP is determined in a refinement proof using an abstractif§P Peinter. If such an interference occurs, it is the ireerig
function Abs C gstate x astate (a partial function defined on Process which terminates its current_executlon and without
global states that satisfjnu, which returns a corresponding/nterference, the current process terminates. N
abstract state). In the stack exampléys maps a linked list We capture this intuitive argument using an additional

representation of the stack to a finite algebraic fistof its Teflexive and transitive relatiorl/' C gstate x gstate to
data values. describe interference freedom (“unchanged”). To prové-loc

freedom, one has to do two process-local termination proofs
Abs(Top, H,[]) i< Top = null

Abs(Top. H,v+ St) > Top # null A Top € H for each data structure operatio_n. F_irst, termi_nation.mith
A H[Top].val = v U-interference and second, termination after violatingn a
A Abs(H|[Top].nxt, H, St) step:

To prove linearizability, one has to show that each concrete o (o y(gs’, Gs”) — © last)
operation from COP, non-atomically refines a corresponding © (- U(GS, GS’) — < last)

abstract operation, which is defined in a further generic Pr9ogether, the process-local proof obligation for lockefiem,

cedure AOP. In the case study, AOP is the non-determinis&ggain) based on properties;, © 1, andy 4. from Theorem
choice between an abstract push or pop, or a sequence of merg 45 follows (cf. [8], [10] for details).

skip steps for the scan and reset operations, which leave the CORn; LS, G5, Out)
n; ) , Yut),
stack unchanged. O( LS" = LS A R(LS', GS', GS) @)
AOP(In; St, Out) { A Inv(LS, GS) A Inv(LS’, GS")), Idle(LS)
APUSH In; St) Vv APop(; St, Out) V' skip*} FO (O UGS, Gs") v - U(GS, GS') — © last)



Theorem 3 (Decomposition of Lock-Freedom)n a setting in | Pred | Name Property
which the preconditions of Theorem 1 and proof obligation (¥ Pt OHazardy. A OTop # null
hold for a reflexive and transitive relatio/, the concurrent — OTop € H ) HPR(Id) = OTop
i - Pri VreRL r#nul Are HA
systemSPAWN is lock-free. = reach(Top, v, H)
V1. VERIFYING THE STACK WITH HAZARD POINTERS o | Frod | T dups(RL)
. . : . rm | OHazardp. A OSucc — — reach(Top, OTop, H
The introduced reduction theory can be applied to verify ¢ ;;M P U;Cc ~ ITIEZC U(Nap - ;Ip/\ )
. . . Pn - uce — ew nu ew
_the sta(_:k, co_nS|der|ng _two repre_sentanve processes ohiy. — reach(Top, UNew, H)
is possible, since a retired locatiencan only be freed by jche ou 3 St. Abs(Top, H, St)
process, which has removedrom the stack and then retired o 1d > MAXID — RL = [ A Idle(L9)
. R . [ —
it. Thus when a process is in its hazardous code region, ither '
at most one other process which could free its critical @sint Oisn | ishazard(LS, LSQ)
Ot disj(RL, RLq)
A. Central Properties of Hazard Pointers Siri OHazardy. A OSucc — OTop ¢ RLq
Two central invariant properties of the hazard pointefsy,; Orm gg{awrdzg :;\ OSucc A OHazardgpe N OSuccq
method ensure that heap access errors do not occur in haz- — OTop # OTopg
ardous code regions and in deallocation steps respectively Onri | = USucc — UNew ¢ Rlg
Otn OHazardye N = USuccq — OTop # UNewgq
HPR 14 € H (8) Onn = USucc A = USuccq — UNew # UNewq
c _ Pt OHazardy,' A OTop’ # null
RL = (H LDS) (9) — H"[OTO[)I] p— HI[OTop/]
According to (8), each validated hazard pointer is in the B opn — USucc’ — H"'[UNew'] = H'[UNew’]
application’s heap at all times, i.e., it is never freed (cf. Prp | HPR"(Id") = HPR'(Id')
(2)). This central propertyi cqrrelates with GC where one may o | el ponoleak(LS, GS, LS', GS')
assume that a heap locatioris not concurrently freed if it is . R
just referenced by a pointer in some operation. With hazard

pointers, one can make the same assumptioni# covered TABLE I: Formal verification conditions for the stack with
by avalidatedhazard pointer. hazard pointers and under GC (bold script).
Before a process validates a locatiom, however, it can be

concurrently freed by another procesand arbitrarily reused
even ifp has already set its hazard pointerrtaThis happens B. Memory-Safety and ABA-Prevention of the Extended Stack

when HPR, := r is executed after the location has been Properties (8) - (11) are specialized to verification condi-
retired by g, and ¢ has passeg’s hazard pointer entry in tions which ensure memory-safety and ABA-avoidance for
its current traversal of/PR. the extended stack from Figure 2. To improve readability,

Property (9) ensures that retired locations are in the applie have summarized all conditions in Table I, where column
cation’s heap, but not in the lock-free data structure. Hiais Pred contains the (structural) predicate which subsumes the
two major consequences. First, deallocation steps are aafeproperties from colummMame the properties in bold script
they do not affect locations which are not in the applicaionare the verification conditions of the stack under GC, which
heap. Second, succeeding validations (a location i€fl5 we have simply reused, due to the aforementioned relation
at that time) imply that the validated location is currenlyt between hazard pointers and GC.
retired, hence not a deallocation candidate of any curean.s  Absence of Access ErrorsThe stack-specific counterpart

Two further central properties of hazard pointers ensuae trof generic property (8) ensures that the snapshot pointer is
no ABA problem occurs. allocated (and covered by a validated hazard pointer) in the
hazardous code region of pop.j. The stack-specific version
of (9) implies that retired locations are allocated andailig;

if under GC:H"(r) = H'(r) then (11) from the stack ¢,;), where a standard reachability predicate

if € HPRyaia : H"(r) = H'(r) checks whether a locationis in the stackreach(Top, r, H).
(10) states that if a location is covered by a validated hazardTogether, verification conditiong; and ¢,; ensure that no
pointer, then it is not reused, i.e., it is not reinsertechimdlata heap access errors occur in pop and scan.
structure which averts the ABA problem. This property i®als To sustainy, at all times in every possible execution, the
related to GC, where a heap location is not reused as longvatidated hazard pointe©Top = HPR(Id) used in a pop
it is referenced in some operation. Hence, the environmesgeration of procesg (OHazard,. holds, Id is the process
assumption (11) holds: if the contents of a heap locati@ne identifier of p) must not be freed by any procegsThe worst
not concurrently changed in an environment with GC, therase is thag has retiredO Top, just traverseg/ PR, but has not
they also remain unchanged wheiis covered by a validated yet collected it OTop € RLqg — PLq). Theng must not have
hazard pointer. passed the entry gf yet (Lidg < Id) and if it has reachegd's

if - € HPR,qiq then r ¢ NEW (10)



entry, it must storeD Top in the local variablel.hpq to ensure The full guarantee€ of each process includes all rely condi-
that it is collected. Invarianishazard encodes this criterion tions R, to ensure that guarantee steps are rely steps for other
precisely: processes (cf. (4)).

ishazard (LS, LSQ) — . The Main Proof The main effort of thel case study

is to prove the rely-guarantee proof obligation (5) -
sustainment of the verification conditions during steps of
each operation. We proceed by case analysis over €O

— : - - {Scan, Pop, Push, Reset}. The proof resembles a Hoare-style
To sustain invariani,; at all times, we must establish thatproof of a sequential program. We usé- induction for loops
retired lists are always duplicate free and pairwise dmjoignq consecutively, symbolically execute each programestat

(9nod, 0r1). Otherwise, a retired list might contain a freeqnent in @ according to Section IV. Only major arguments
location after a deallocation step. Furthermore, thredcbas o outlined.

heap-disjointness properties are necessary: removetidosa
(which are subsequently retired) must be disjoint from tHeemma 1 (O —).
stack and they must not be concurrently retired, plus, aencu Op, LS.id < MAXID, Idle(LS), Inv(LS, GS),
rently removed locations must be disjoint, (., 3¢, drm)- LS.id # LSQ.id, Inv(LSQ, GS), Disj(LS, LSQ)
To ensure that heap access faults do not occur in push either, t Rext —— Geat
we claim that new cells that have not been inserted yet, are proof: Op = Scan’ It is rather subtle to establish the

always allocatedy,,) and never (concurrently) retired,{), symmetric version ofishazard (ishazard(LSQ,LS)) when
hence never freed. _ ~ the current process switches to the next hazard pointey entr
Absence of LeaksThe hazard pointers method avoidgjine S7). This step must not miss a validated hazard pointer
memory leaks, i.e., all heap locations are either in the-foe& OTopg of the other processg if the current process has
data structure or owned by a process. In terms of the stagkiired, but not yet collected it({Topq € RL — PL). If the
this heap-global property is defined as snapshotLhp (of the current HPR entry) is not null, we
noleak(LSf, GS) < know from previous symbolic execution that it is L. If
V r € H. reach(Top,r, H) vV 3 p. owns(r, LSf(p)) the current iteration examineg the symmetric version of
where a process owns its new, removed and retired locationg,q.qrd before this step implies thathp = OTopg, i.e., the
owns(r, LS): « validated hazard pointer has just been collected in theentirr
(= USuce A UNew = r) i ;
V (OHazardpe N OSucc N OTop =1) V r € RL iteration (OTopq < .PL)' . . .
In the deallocation step (line S10), the symmetric version

We decompose the absence of leaks to a process-local 98f7shazard ensures that the validated shapshot location of the

antee conditiorpvnoleak, .which guarantees that each ProcesSiher process is not freecb(). The proof is by contradiction:
step preserves ownership of a referemce if the other process is in its hazardous code region and its

if OHazard,. N OTop € (RLq — PLg) N Scang then
if BefIncgp. then Lidg < Id V (Lidg = Id A Lhpg = OTop)
elseLidq < Id

;{’/mol@ak}(;i , GS, IfST’ GS')P}HV L snapshot pointer is iR L— PL, then (the symmetric version of)
o g s vrf:;ch(( Tog' 7. })[/) 5“’;55:(7" L)S,) ishazard before this step implies that the current process must

ABA-Prevention The stack-specific version of propertWOF have finished its traversal. Howeve_r, the current p@@s
(10) ensures that the validated snapshot pointer in poptis H?);\t/ISAi(echondlsEaE ‘lloip [erejclj\jll A(;c(echhmcally, the conttaic
reused, thus it is disjoint from (other) new celi,). The 'S VARP + T = qdf A )('j . lidati
specialization of (11) yields a rely condition which ensure OP = Pop: In the succeeding hazard pointer validation step

that the snapshot’s contents are immutable in the hazard§iies ©10 / O11),: and ishazard can be established, since
code region of pop/). Hence, an ABA problem does notthe hazard pointer is in the data structure, hence allocatdd

occur between the execution of lines 012 and 013. An ABRC! concurrently retired.

problem is avoided in push as well, since the contents of alMMmediately after removal of the snapsh@top from the
new cell remain unchanged according to rely condijignTo stack (line 013),’ we knoyv fronp,, that it can not be n the
maintain this rely for the other process, when the curreshpuCUTent process’ retired lisk L. Hence, we can establishy;
process updates the new cell's next reference (line U8), n@@@in in the retiring step (line O16), since ba#¥op and RL
cells must be disjointé,,,). are local. _ _

Finally, two simple verification conditions ensure that a OP = Push: The allocation step (lines U3 / U4) resets the
process’ hazard pointer entry is not concurrently modifidgPntents of a new cell. However, it does not affect allocated
(pnpy) and that illegal processes are irrelevapt;). We note locations and.thus neither rely.condmpg nor p; of the other
that all structural predicates from Table |, except f2isj, are Process are violated. We additionally establisNew ¢ RLin
defined as the conjunction of their subproperties. To ensyjfis Step which allows to prove disjointness of retired tmes
symmetry of the disjointness predicate, we use the follgwirfoM the data structures,), when the new cell is added to
stronger definition. the stack (line U9). _ _

Disj(LS, LSQ) e disj(LS, LSQ) A disj(LSQ, LS) _Op = Reset: The rt_-:-set of a hazard pointer entry is _safe,
disj (LS, LSQ) 1o Sisn A - A Snn ’ since it happens outside of the hazardous code region in pop.



B substantially extended in [23], while our approach integga
. N correctness and liveness analysis in one logical framework
C. Linearizability and Lock-Freedom of the Stack Interactive Verifications As );ar as we kngw, there is no
Preservation of Linearizability The actual proof of lin- interactive (mechanized) verification of a lock-free altjon
earizability (proof obligation (6)) is not described in reor with hazard pointers. [24] describes an automata-baseuf pro
detail, since it resembles our former proof under garbage linearizability of a lock-free queue, considering thesde
collection [8], [9]. It distinguishes between the four pés advanced reclamation technique of modification countels [4
concrete operations. In case of the hazard pointer opegtiqo verify the dequeue operation which has a conditional
scan and reset, each concrete step refines an abstractegkip fhearization point that depends on system behavior, baokw
In particular, the deallocation step (lines S9 / S10) doés ngimulation is used, while we have verified linearizabiliand
affect the stack, as retired locations are disjoint fromstaek |ock-freedom) without additional techniques (cf. [9], [LO
(ri)- Manual Proofs Michael himself [6] gives a semantic ver-
The extended pop operation still has one linearizationtpoiffication condition which ensures safe memory reclamation
in line O5 if the stack is empty, or else in line O13 if thefor an arbitrary lock-free algorithm with hazard pointers.
CAS succeeds. Rely, ensures that the next reference of thghis global condition requires the existence of a time in the
snapshot cell and its value are immutable. Thus the suegesgfast from which a hazardous location is safely covered by a
CAS corresponds to an abstract pop, returning the corregfzard pointer. Our concrete verification of the stack fdlyma

value. In case of a push operation, the linearization paint fesembles Michael's arguments, while avoiding both global
the successful CAS. Rely, ensures that the initial value of reasoning and reasoning about the past.

the new cell and its next reference are immutable. Hence, theThere are two formal pen and pencil proofs of a Treiber-
successful CAS corresponds to an abstract push of the idvolge stack with hazard pointers. Parkinson et al. [7] apply
value. concurrent separation logic (CSL) to verify the stack, &ing

Preservation of Lock-Freedom According to (7), the on heap-modular reasoning and fractional permissionsir The
proof of lock-freedom requires termination proofs for eacBentral correctness argument states that after a hazamtepoi
data structure operation if environment behavior is refd covers a location, it can not be removed from the stack and
according toU and if a step violated/. We determine the then reinserted (which avoids the ABA problem). They use
unchanged relation as identity over the top-of-stack jgoint history variables to capture this property, while we ensure
ABA avoidance by directly claiming immutability of cell
contents in a simple rely condition).

It is then relatively simple (compared to [10], where we Fu et al. [25] verify the stack in a new program logic
prove lock-freedom of a more complicated lock-free queu&r history (HLRG), which extends previous work by Feng
to show that the push and pop operations terminate. Sireteal. [26]. It provides temporal operators of the past only
the scan operation is wait-free, we can prove its terminati@and evaluates state assertions in the last state of an execut
without U. Thus their logic is inherently limited to finite executions.
Their operation “retireNode(t)” is not lock-free, sincedibes
not complete when locatiohis covered by a hazard pointer
Termination of the first scan loop uses well-founded indarcti and the associated process fails. However, the combination
over the term MAXID- Lid which decreases in every iterationtemporal logic, rely-guarantee reasoning and separatigic |
Similarly, termination of the second loop follows with ariS & promising approach that is relevant for our future work.

U(GSo, GS1) 1 Top, = Top,

Scan(; LS, GS), O LS" = LS' - < last

inductive argument over the number of retired locations. Both related formal verifications [7], [25] view the stack as
an implementation of a lock-free memory allocator whicteint
VII. RELATED WORK AND COMPARISON grates hazard pointers in its access operations, abstydaim

Related approaches that have been used to verify lodell data. In contrast, we abstract from the underlying nmgmo
free algorithms, can be classified according to their degrakocator and focus on a lock-free data-stack implemeonati
of automation as follows. in an environment without garbage collection. HLRG and CSL

Automatic Approaches No current automatic techniqueare based on separation logic and use abstract code apnetati
proves correctness or lock-freedom, without assuming GC.in their verification, while we use refinement (separating

Model Checking is good at quickly finding bugs in concureoncrete from abstract code). They benefit from the implicit
rent algorithms [20]. Yet it only checks short executions dfeatment of different heap locations by the separating con
a few processes and thus possibly provides counterexampjesction operator, while we have to encode some disjoirstnes
but not full proofs. Shape Analysis in contrast proves liiea properties explicitely. Their verification considers mewro
ability in systems with an unbounded number of processsafety and structural invariance of the free-stack onlyeyTh
[21]. prove neither linearizability nor lock-freedom of the dtac

An automatic approach for verifying linearizability is &gk Their proofs use global conditions which quantify over all
by Vafeiadis et al. [22] based on rely-guarantee reasomag gorocesses, without exploiting the symmetry of the reclémnat
separation logic (RGSep). To verify lock-freedom, RGSep technique.
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