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Asymptotic goodness-of-fit tests for the Palm mark

distribution of stationary point processes with correlated

marks

Lothar Heinrich1 Sebastian Lück2 Volker Schmidt2

March 16, 2011

Abstract

We consider spatially homogeneous marked point patterns in an unboundedly expand-

ing convex sampling window. Our main objective is to identify the distribution of the

typical mark by constructing an asymptotic χ2-goodness-of-fit test. The corresponding

test statistic is based on a natural empirical version of the Palm mark distribution and

a smoothed covariance estimator which turns out to be mean-square consistent. Our

approach does not require independent marks and allows dependences between the mark

field and the point pattern. Instead we impose a suitable β-mixing condition on the un-

derlying stationary marked point process which can be checked for a number of Poisson-

based models and, in particular, in the case of geostatistical marking. Our method

needs a central limit theorem for β-mixing random fields which is proved by extending

Bernstein’s blocking technique to non-cubic index sets and seems to be of interest in its

own right. By large-scale model-based simulations the performance of our test is studied

in dependence of the model parameters which determine the range of spatial correlations.

Keywords : empirical Palm mark distribution, reduced factorial moment

measures, β-mixing point process, central limit theorem, Bernstein’s block-

ing technique, smoothed covariance estimation, χ2-goodness-of-fit test

MSC 2000 : Primary 62 G 10, 60 G 55; Secondary 60 F 05, 62 G 20

1 Introduction

Marked point processes (MPPs) are versatile models for the statistical analysis of data
recorded at irregularly scattered locations. The most simple marking scenario is independent
marking, where marks are given by a sequence of independent and identically distributed
random elements, which is also independent of the underlying point pattern of locations. A
more complex class of models considers a so-called geostatistical marking, where the marks
are determined by the values of a random field at the given locations. Although the random
field usually exhibits intrinsic spatial correlations, it is assumed to be independent of the
location point process (PP). However, in many real datasets interactions between locations
and marks occur. Moreover, many marked point patterns arising in models from stochastic
geometry such as edge centers in (anisotropic) Voronoi-tessellations marked by orientation or
PPs marked by nearest-neighbour distances do not fit the setting of geostatistical marking.
Statistical tests for independence between marks and points are e.g. discussed in [8, 9, 23, 25].

1Institute of Mathematics, University of Augsburg, D-86135 Augsburg, Germany
2Institute of Stochastics, Ulm University, D-89069 Ulm, Germany
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Asymptotic goodness-of-fit tests of stationary point processes

A frequent approach to investigate dependences in marked point patterns is based on mark
variogram and mark covariance functions. Recently, asymptotic normality of empirical ver-
sions of these functions with applications to mark correlation analysis has been studied in
[10, 11, 14]. The main goal of this paper is to investigate estimators of the Palm mark
distribution P o

M in point patterns exhibiting correlations between different marks as well as
between marks and locations. The probability measure P o

M can be interpreted as the distri-
bution of the typical mark which denotes the mark of a randomly chosen point of the pattern.
For any mark set C we consider the scaled deviations Zk(C) =

√
|Wk|

(
(P̂ o

M )k(C)−P o

M (C)
)

as measure of the distance between P o

M and an empirical Palm mark distribution (P̂ o

M )k .
Under appropriate strong mixing conditions we are able to prove asymptotic normality of the
scaled deviation vector Zk = (Zk(C1), . . . , Zk(C`))

T when the observation window Wk with
volume |Wk| grows unboundedly in all directions as k → ∞. The proof relies on Bernstein’s
blocking method, see e.g. [4, 21], which so far has been applied only to sequences of cubic
or cubelike windows Wk, see e.g. [11, 12]. By means of some convex-geometric arguments it
turns out that the blocking method is indeed applicable to any increasing sequence of convex
observation windows Wk with unboundedly growing inball radii. In addition we discuss con-
sistent estimators for the covariance matrix of the Gaussian limit of Zk. This enables us to
construct asymptotic χ2-goodness-of-fit tests for the Palm mark distribution P o

M . By means
of computer simulations we study the convergence of first and second type errors of the tests
for growing observation windows in relation to the range of dependence of the MPP. In this
way we demonstrate the practicability of the tests in analysis of real data. A promising field
of application of our testing methodology could be the directional analysis of random sur-
faces. Based on our results one can e.g. consider Cox processes on the boundary of Boolean
models, marking them with the local outer normal direction and testing for a hypothetical
directional distribution. This allows to identify the rose of directions of the surface process
associated with the Boolean model and represents an alternative to a Monte-Carlo test for
the rose of direction suggested in [2]. The occurring marked point patterns differ basically
from the setting of independent and geostatistical marking, for which functional central limit
theorems (CLTs) and corresponding tests have been derived in [16, 22]. Our paper is orga-
nized as follows. Section 2 introduces basic notation and definitions. In Section 3 we present
our main results, which are proved in Section 4. In Section 5 we briefly discuss some models
satisfying the assumptions needed to prove our asymptotic results. In the final Section 6 we
study the performance of the proposed tests by large-scale simulations.

2 Stationary marked point processes

An MPP XM =
∑

n≥1 δ(Xn,Mn) is a random locally finite counting measure acting on the Borel

sets of Rd×M with atoms (Xn,Mn) , where the marks Mn belong to some Polish mark space
M endowed with the Borel σ-algebra B(M). Throughout we assume that XM is simple, i.e.
all locations Xn in R

d have multiplicity 1 regardless which mark they have. Mathematically
spoken, XM is a measurable mapping XM : Ω −→ NM from some probability space (Ω,A,P)
into the set NM of counting measures ϕ(·) on B(Rd × M) satisfying ϕ(B × M) < ∞ for
all bounded B ∈ B(Rd) , where NM is endowed with the smallest σ-algebra NM containing
all sets of the form {ϕ ∈ NM : ϕ(B × C) = j} for j ≥ 0, bounded B ∈ B(Rd) , and
C ∈ B(M) . In what follows we only consider stationary MPPs, which means that the
distribution PXM

(·) = P(XM ∈ (·)) of XM on NM is invariant under location shifts of the
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Asymptotic goodness-of-fit tests of stationary point processes

atoms, i.e.,

XM
D
=
∑

n≥1

δ(Xn−x,Mn) for all x ∈ R
d .

Provided that XM is stationary and the intensity λ = EXM ([0, 1)d × M) is finite we have
EXM (B ×C) = |B|EXM ([0, 1)d ×C) for all bounded B ∈ B(Rd) and C ∈ B(M) , where | · |
denotes d-dimensional Lebesgue measure.

2.1 Palm mark distribution

For a stationary MPP XM the probability measure P o

M on B(M) defined by

P o

M (C) =
1

λ
EXM ([0, 1)d × C) , C ∈ B(M) , (2.1)

is called the Palm mark distribution of XM . It can be interpreted as the conditional distri-
bution of the mark of an atom of XM located at the origin o . A random element M0 in M

with distribution P o

M is called typical mark of XM .

Definition 2.1. An increasing sequence {Wk} of convex and compact sets in R
d such that

%(Wk) = sup{r > 0 : B(x, r) ⊂ Wk for some x ∈ Wk} → ∞ as k → ∞ is called a convex
averaging sequence (briefly CAS). Here B(x, r) denotes the closed ball (w.r.t. the Euclidean
norm ‖ · ‖) with midpoint at x ∈ R

d and radius r ≥ 0 .

Some results from convex geometry applied to CAS {Wk} yield the following inequalities

1

%(Wk)
≤ Hd−1(∂Wk)

|Wk|
≤ d

%(Wk)
and 1− |Wk ∩ (Wk − x)|

|Wk|
≤ d ‖x‖

%(Wk)
(2.2)

for ‖x‖ ≤ %(Wk) , where Hd−1(∂Wk) is the surface content (i.e. (d−1)-dimensional Hausdorff
measure) of the boundary ∂Wk , see [3] and [16] for details.

If XM is ergodic (for a precise definition see [5], pp. 194), the individual ergodic theorem
applied to MPPs (see Theorem 12.2.IV and Corollary 12.2.V in [5]) provides the P− a.s.
limits

λ̂k =
XM (Wk ×M)

|Wk|
P−a.s.−→
k→∞

λ and (P̂ o

M )k(C) =
XM (Wk × C)

XM (Wk ×M)

P−a.s.−→
k→∞

P o

M (C) (2.3)

for any C ∈ B(M) and an arbitrary CAS {Wk} .

2.2 Factorial moment measures and the covariance measure

For any integer m ≥ 1, the mth factorial moment measure α
(m)
XM

of the MPP XM is defined

on B((Rd ×M)m) by

α
(m)
XM

( m
×
i=1

(Bi × Ci)
)
= E

∑ 6=

n1,...,nm≥1

m∏

i=1

(
1IBi

(Xni
)1ICi

(Mni
)
)
, (2.4)

where the sum
∑ 6=

n1,...,nm≥1 runs over all m−tuples of pairwise distinct indices n1, . . . , nm ≥ 1

for bounded Bi ∈ B(Rd) and Ci ∈ B(M) , i = 1, . . . ,m. We also need the mth factorial
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Asymptotic goodness-of-fit tests of stationary point processes

moment measure α
(m)
X of the unmarked PP X(·) = XM ((·) ×M) =

∑
n≥1 δXn(·) defined on

B((Rd)m) by

α
(m)
X

(
m
×
i=1

Bi

)
= α

(m)
XM

( m
×
i=1

(Bi ×M)
)

for bounded B1, . . . , Bm ∈ B(Rd) .

The stationarity of XM implies that α
(m)
X is invariant under diagonal shifts, which allows to

define the mth reduced factorial moment measure α
(m)
X,red uniquely determined by the following

desintegration formula

α
(m)
X

(
m
×
i=1

Bi

)
= λ

∫

B1

α
(m)
X,red

( m
×
i=2

(Bi − x)
)
dx . (2.5)

We need a condition of weak dependence between parts of X defined over distant Borel sets

which can be expressed by the (factorial) covariance measure γ
(2)
X on B((Rd)2) defined by

γ
(2)
X

(
B1 ×B2

)
= α

(2)
X

(
B1 ×B2

)
− λ2 |B1| |B2| .

The reduced covariance measure γ
(2)
X,red : B(Rd) → [0,∞] is in general a signed measure

defined by (2.5) with γ
(2)
X instead of α

(2)
X , which means that

γ
(2)
X,red(B) = α

(2)
X,red(B)− λ |B| for bounded B ∈ B(Rd) .

For more details on factorial moment measures and measures related with them we refer to
Chapters 8 and 12 in [5].

2.3 m-point Palm mark distribution

For fixed mark sets C1, . . . , Cm ∈ B(M) , m ≥ 1 , the mth factorial moment measure α
(m)
XM

defined by (2.4) can be regarded as a measure on the Borel sets B((Rd)m) depending on
C1, . . . , Cm. This new measure is absolutely continuous w.r.t. the mth factorial moment

measure α
(m)
X . Thus, the Radon-Nikodym theorem (cf. [7], p.90) implies the existence

of a density P x1,...,xm

M (C1 × · · · × Cm), which is uniquely determined for α
(k)
X -almost all

(x1, . . . , xm) ∈ (Rd)m, such that for any B1, . . . , Bm ∈ B(Rd),

α
(m)
XM

( m
×
i=1

(Bi × Ci)
)
=

∫
m
×
i=1

Bi

P x1,...,xm

M

(
m
×
i=1

Ci

)
α
(m)
X (d(x1, . . . , xm)). (2.6)

Since the mark space M is Polish, this Radon-Nikodym density can be extended to a regular
conditional distribution of the mark vector (M1, . . . ,Mm) given that the corresponding atoms
X1, . . . ,Xm are located at pairwise distinct points x1, . . . , xm, i.e.,

P x1,...,xm

M (C) = P((M1, . . . ,Mm) ∈ C | X1 = x1, . . . ,Xm = xm) for C ∈ B(Mm) .

This means that the mapping (x1, . . . , xm, C) 7→ P x1,...,xm

M (C) is a stochastic kernel , i.e.,
P x1,...,xm

M (C) is B((Rd)m)-measurable in (x1, . . . , xm) ∈ (Rd)m for fixed C ∈ B(Mm) and a
probability measure in C ∈ B(Mm) for fixed (x1, . . . , xm) ∈ (Rd)m. For details we refer to
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[18], p.164. The regular conditional distribution P x1,...,xm

M (C) for C ∈ B(Mm) is called the m-
point Palm mark distribution of XM . This stochastic kernel is only of interest for m−tuples
(x1, . . . , xm) of pairwise distinct points xi ∈ R

d , i = 1, ...m. In case of a stationary simple
MPP XM it can be shown that

P x1,...,xm

M (C) = P o,x2−x1...,xm−x1

M (C) for C ∈ B(Mm) , m ≥ 1

and any x1, . . . , xm ∈ R
d with xi 6= xj for i 6= j . In this way the Palm mark distribution

defined in (2.1) can be considered as one-point Palm mark distribution.

The following result is crucial to prove asymptotic properties of variances estimators of the
empirical mark distribution. It generalizes an analoguous result stated for unmarked PPs in
[17] to MPPs by involving the notion m-point Palm mark distribution for m = 2, 3, 4 . The
proof is just a slight extension of the one of Lemma 5 in [17] by using the relation (2.6) for
m = 2, 3, 4 . The details are left to the reader.

Lemma 2.1. Let XM =
∑

n≥1 δ(Xn,Mn) be an MPP satisfying E
(
XM (B ×M)

)4
< ∞ for all

bounded B ∈ B(Rd), and let f : Rd ×R
d ×M

2 7→ R be a Borel-measurable function such that

the second moment of
∑ 6=

p,q≥1 | f(Xp,Xq,Mp,Mq) | exists. Then,

Var
( ∑6=

p,q≥1

f(Xp,Xq,Mp,Mq)
)

(2.7)

=

∫

(Rd)2

∫

M
2

f(x1, x2, u1, u2)
[
f(x1, x2, u1, u2)+f(x2, x1, u2, u1)

]
P x1,x2

M

(
d(u1, u2)

)
α
(2)
X

(
d(x1, x2)

)

+

∫

(Rd)3

∫

M
3

f(x1, x2, u1, u2)
[
f(x1, x3, u1, u3) + f(x3, x1, u3, u1)

+ f(x2, x3, u2, u3) + f(x3, x2, u3, u2)
]
P x1,x2,x3

M

(
d(u1, u2, u3)

)
α
(3)
X

(
d(x1, x2, x3)

)

+

∫

(Rd)4

∫

M
4

f(x1, x2, u1, u2)f(x3, x4, u3, u4)
[
P x1,x2,x3,x4

M

(
d(u1, u2, u3, u4)

)
α
(4)
X

(
d(x1, x2, x3, x4)

)

− P x1,x2

M

(
d(u1, u2)

)
P x3,x4

M

(
d(u3, u4)

)
α
(2)
X

(
d(x1, x2)

)
α
(2)
X

(
d(x3, x4)

)]
.

2.4 β-mixing coefficient and covariance inequality

For any B ∈ B(Rd), let AXM
(B) denote the sub-σ-algebra of A generated by the restriction

of the MPP XM to the set B ×M. For any B,B′ ∈ B(Rd) a natural measure of dependence
between AXM

(B) and AXM
(B′) can be formulated in terms of the β−mixing (or absolute

regularity, respectively weak Bernoulli) coefficient

β
(
AXM

(B),AXM
(B′)

)
=

1

2
sup

{Ai},{A′
j}

∑

i,j

∣∣ P(Ai ∩A′
j) − P(Ai)P(A

′
j)
∣∣ , (2.8)

where the supremum is taken over all finite partitions {Ai} and {A′
j} of Ω such that Ai ∈

AXM
(B) and A′

j ∈ AXM
(B′) for all i, j , see e.g. [6], [12] or [26]. It should be noticed that the
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supremum in (2.8) does not change if the sets Ai and A′
j belong to semi-algebras generating

AXM
(B) and AXM

(B′), respectively. To express the degree of dependence of the MPP XM

for disjoint sets Ka = [−a, a]d and Kc
a+b = R

d\Ka+b, where b ≥ 0, we consider non-increasing

functions β∗
XM

, β∗∗
XM

: [12 ,∞) → [0,∞) such that

β
(
AXM

(Ka),AXM
(Kc

a+b)
)
≤





β∗
XM

(b) for 1
2 ≤ a ≤ b ,

ad−1 β∗∗
XM

(b) for 1
2 ≤ b ≤ a .

(2.9)

A stationary MPP XM is called β-mixing or absolutely regular, respectively weak Bernoulli if
both β-mixing rates β∗

XM
(r) and β∗∗

XM
(r) tend to 0 as r → ∞. By standard measure-theoretic

approximation arguments it is easily seen that any stationary β-mixing MPP XM is mixing
in the usual sense and therefore also ergodic, see Lemma 12.3.II and Proposition 12.3.III
in [5] Vol. II pp. 206. In order to prove CLTs we need further conditions on the decay of
the β-mixing rates β∗

XM
(r) and β∗∗

XM
(r) on the right-hand side (rhs) of (2.9). For this we

formulate

Condition β(δ): There exists some δ > 0 such that E
(
XM ( [0, 1]d ×M )

)2+δ
< ∞ ,

∫ ∞

1
rd−1

(
β∗
XM

(r)
)δ/(2+δ)

dr < ∞ and r2d−1β∗∗
XM

(r) −→
r→∞

0 .

The following type of covariance bound in terms of the β−mixing coefficient (2.8) was first
stated in [26].

Lemma 2.2. Let Y and Y ′ denote the restrictions of the MPP XM to B ×M and B′ ×M

for some B,B′ ∈ B(Rd) , respectively. Furthermore, let Ỹ and Ỹ ′ be independent copies of Y
and Y ′, respectively. Then, for any NM ⊗NM− measurable function f : NM × NM → [0,∞)
and for any η > 0

∣∣Ef(Y, Y ′)− Ef(Ỹ , Ỹ ′)
∣∣ ≤ 2β(AXM

(B),AXM
(B′))

η
1+η

× max
{(

Ef1+η(Y, Y ′)
) 1

1+η ,
(
Ef1+η(Ỹ , Ỹ ′)

) 1
1+η

}
. (2.10)

If f is bounded, then (2.10) remains valid for η = ∞ . In the particular case f(y, y′) =
f1(y) f2(y

′) and η = δ/2 for δ > 0, the Cauchy-Schwarz inequality applied to the expectations
on the rhs of (2.10) yields

∣∣Cov
(
f1(Y ), f2(Y

′)
) ∣∣ ≤ 2 ‖ f1(Y ) ‖2+δ ‖ f2(Y ′) ‖2+δ

(
β(AXM

(B),AXM
(B′)

) δ
2+δ , (2.11)

where ‖Z ‖q = (E|Z|q)1/q is the Lq−norm (q ≥ 1) of a random variable Z .

3 Results

3.1 Central limit theorem

We consider a sequence of set-indexed empirical processes {Yk(C) , C ∈ B(M) } defined by

Yk(C) =
1√
|Wk|

∑

n≥1

1IWk
(Xn)

(
1IC(Mn)−P o

M (C)
)
=
√

|Wk| λ̂k

(
(P̂ o

M )k(C)−P o

M(C)
)
, (3.1)

6



Asymptotic goodness-of-fit tests of stationary point processes

where {Wk} is a CAS of observation windows in R
d. We will first state a multivariate

CLT for the joint distribution of Yk(C1), . . . , Yk(C`). For this, let ‘
D−→’ denote convergence

in distribution and N`(a,Σ) be an `-dimensional Gaussian vector with expectation vector
a ∈ R

` and covariance matrix Σ = (σij)
`
i,j=1.

Theorem 3.1. Let XM be a stationary MPP with λ > 0 satisfying Condition β(δ). Then

Yk =
(
Yk(C1), . . . , Yk(C`)

)> D−→
k→∞

N`(o`,Σ) for any C1, . . . , C` ∈ B(M) , (3.2)

where o` = (0, . . . , 0)> and the asymptotic covariance matrix Σ = (σij)
`
i,j=1 is given by the

limits
σij = lim

k→∞
EYk(Ci)Yk(Cj). (3.3)

The above result can also be stated in terms of the empirical set-indexed process {Zk(C), C ∈
B(M)}, where

Zk(C) = ( λ̂k )
−1Yk(C) =

√
|Wk|

(
(P̂ o

M )k(C)− P o

M (C)
)
.

In other words, as refinement of the ergodic theorem (2.3), we derive asymptotic normality of
a suitably scaled deviation of the ratio-unbiased empirical Palm mark probabilities (P̂ o

M )k(C)
from P o

M (C) defined by (2.1) for any C ∈ B(M) . Since Condition β(δ) ensures the ergodicity
of XM , the first limiting relation in (2.3) combined with Slutsky’s lemma yields the following
result as a corollary of Theorem 3.1.

Corollary 3.2. The conditions of Theorem 3.1 imply the CLT

Zk = (Zk(C1), . . . , Zk(C`))
> D−→

k→∞
N`(o`, λ

−2 Σ) .

3.2 β-mixing and integrability conditions

In this subsection we give a condition in terms of the mixing rate β∗
XM

(r) which implies finite

total variation of the reduced covariance measure γ
(2)
X,red and a certain integrability condition

(3.5) which expresses weak dependence between any two marks located at far distant sites.
Both of these conditions are needed to get the asymptotic unbiasedness resp. L2-consistency
of some estimators for the asymptotic covariances (3.3).

Note that the total variation measure |γ(2)X,red| of γ
(2)
X,red is defined as sum of the positive part

γ
(2)+
X,red and negative part γ

(2)−
X,red of the Jordan decomposition of γ

(2)
X,red, i.e.,

γ
(2)
X,red = γ

(2)+
X,red − γ

(2)−
X,red and |γ(2)X,red| = γ

(2)+
X,red + γ

(2)−
X,red ,

where the positive measures γ
(2)+
X,red and γ

(2)−
X,red are mutually singular, see [7], p.87.

Lemma 3.1. Let XM be a stationary MPP satisfying

E
(
XM ( [0, 1]d ×M )

)2+δ
< ∞ and

∫ ∞

1
rd−1

(
β∗
XM

(r)
)δ/(2+δ)

dr < ∞ for some δ > 0 .

Then γ
(2)
X,red has finite total variation on R

d , i.e.,

|γ(2)X,red|(Rd) < ∞ . (3.4)

Furthermore, for any C1, C2 ∈ B(M)
∫

Rd

∣∣∣P o,x
M (C1 × C2)− P o

M (C1)P
o

M (C2)
∣∣∣α(2)

X,red(dx) < ∞ . (3.5)

7
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3.3 Representation of the asymptotic covariance matrix

In Theorem 3.1 we stated conditions for asymptotic normality of the random vector Yk.
Clearly, (2.1) and (3.1) immediately imply that EYk(C) = 0 for any C ∈ B(M). The following
theorem gives a representation formula for the asymptotic covariance matrix Σ .

Theorem 3.3. Let XM be a stationary MPP satisfying (3.5) and let {Wk} be a CAS. Then,
the limits in (3.3) exist and take the form

σij = λ
(
P o

M (Ci ∩ Cj)− P o

M (Ci)P
o

M (Cj)
)
+ λ

∫

Rd

(
P o,x
M (Ci ×Cj) (3.6)

− P o,x
M (Ci ×M)P o

M (Cj)− P o,x
M (Cj ×M)P o

M (Ci) + P o

M (Ci)P
o

M (Cj)
)
α
(2)
X,red(dx) .

In particular, if XM is an independently MPP, then

σij = λ
(
P o

M (Ci ∩Cj)− P o

M (Ci)P
o

M (Cj)
)
. (3.7)

3.4 Estimation of the asymptotic covariance matrix

In Section 6 we will exploit the normal convergence (3.2) for statistical inference of the typi-
cal mark distribution. More precisely, assuming that the asymptotic covariance matrix Σ is
invertible, we consider asymptotic χ2-goodness-of-fit tests, which are based on the distribu-
tional limit

Y>
k Σ̂

−1
k Yk

D−→
k→∞

χ2
` .

which is an immediate consequence of (3.2) and Slutsky’s lemma, given that Σ̂k is a consistent

estimator for Σ. Here we use the notation Yk =
(
Yk(C1), . . . , Yk(C`)

)>
(see (3.1)) and the

random variable χ2
` is χ2-distributed with ` degrees of freedom. In the following we will

discuss several estimators for Σ. Our first observation is that the simple plug-in estimator

Σ̂
(0)
k =

(
Yk(Ci)Yk(Cj)

)`
i,j=1

for Σ is useless, since the determinant of Σ̂
(0)
k vanishes. Instead

of Σ̂
(0)
k we take the edge-corrected estimator Σ̂

(1)
k =

(
(σ̂

(1)
ij )k

)`
i,j=1

with

(σ̂
(1)
ij )k =

1

|Wk|
∑

p≥1

1IWk
(Xp)

(
1ICi∩Cj

(Mp)− P o

M (Ci)P
o

M (Cj)
)

(3.8)

+
∑ 6=

p,q≥1

1IWk
(Xp)1IWk

(Xq)
(
1ICi

(Mp)− P o

M (Ci)
)(
1ICj

(Mq)− P o

M (Cj)
)

|(Wk −Xp) ∩ (Wk −Xq)|
.

As an alternative, which can be implemented in a more efficient way, we neglect the edge

correction and consider the naive estimator Σ̂
(2)
k =

(
(σ̂

(2)
ij )k

)`
i,j=1

for Σ with

(σ̂
(2)
ij )k =

1

|Wk|
∑

p≥1

1IWk
(Xp)

(
1ICi∩Cj

(Mp)− P o

M (Ci)P
o

M (Cj)
)

+
1

|Wk|
∑ 6=

p,q≥1

1IWk
(Xp)1IWk

(Xq)
(
1ICi

(Mp)− P o

M (Ci)
) (

1ICj
(Mq)− P o

M (Cj)
)
.

8
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Theorem 3.4. Let XM be a stationary MPP satisfying (3.5) and let {Wk} be a CAS. Then

(σ̂
(1)
ij )k is an unbiased estimator, whereas (σ̂

(2)
ij )k is an asymptotically unbiased estimator for

σij , i, j = 1, ..., ` .

Remark: In general, neither (σ̂
(1)
ij )k nor (σ̂

(2)
ij )k are L2-consistent estimators for σij, even if

stronger moment and mixing conditions are supposed.

According to Lemma 3.1, the integrability condition (3.5) in Theorems 3.3 and 3.4 can be
replaced by the stronger Condition β(δ). In order to obtain an L2-consistent estimator, we
introduce a smoothed version of the unbiased estimator in (3.8), which is based on some
kernel function and a sequence of bandwidths depending on the CAS {Wk}.
Condition (wb): Let w : R 7→ R be a non-negative, symmetric, Borel-measurable kernel
function satisfying w(x) −→ w(0) = 1 as x → 0 . In addition, assume that w(·) is bounded
by mw < ∞ and vanishes outside B(o, rw) for some rw ∈ (0,∞). Further, associated with
w(·) and some given CAS {Wk}, let {bk} be a sequence of positive bandwidths such that

%(Wk)

2 d rw |Wk|1/d
≥ bk −→

k→∞
0 , bdk |Wk| −→

k→∞
∞ and b

3
2
d

k |Wk| −→
k→∞

0 . (3.9)

Theorem 3.5. Let {Wk} be an arbitrary CAS and w(·) be a kernel function with an associated
sequence of bandwidths {bk} satisfying Condition (wb). If the MPP XM satisfies

E
(
XM ( [0, 1]d ×M )

)4+δ
< ∞ and

∫ ∞

1
rd−1

(
β∗
XM

(r)
)δ/(4+δ)

dr < ∞ (3.10)

for some δ > 0 , then

E
(
σij − (σ̂

(3)
ij )k

)2 −→
k→∞

0 ,

where (σ̂
(3)
ij )k is a smoothed covariance estimator defined by

(σ̂
(3)
ij )k =

1

|Wk|
∑

p≥1

1IWk
(Xp)

(
1ICi∩Cj

(Mp)− P o

M (Ci)P
o

M (Cj)
)

+
∑ 6=

p,q≥1

1IWk
(Xp) 1IWk

(Xq)
(
1ICi

(Mp)− P o

M (Ci)
)(

1ICj
(Mq)− P o

M (Cj)
)

|(Wk −Xp) ∩ (Wk −Xq)|
w
(‖Xq −Xp‖

bk|Wk|1/d
)
.

Remark: The full strength of condition (3.10) on the β-mixing rate β∗
XM

(r) introduced in
(2.9) is only necessary to prove the consistency result of the preceding Theorem 3.5. However,
the β-mixing rate β∗

XM
(r) in Condition β(δ), which is needed to prove (3.4) and (3.5) as well

as Theorem 3.1, can be defined by the slightly smaller non-increasing β-mixing rate function

β∗
XM

(r) = β
(
AXM

(Ka),AXM
(Kc

a+r)
)

for r ≥ a = 1/2 . (3.11)

Moreover, in order to prove Theorem 3.1, condition β(δ) relying on the β-mixing coefficient
considered in (2.8) with β∗

XM
(r) and β∗∗

XM
(r) given in (3.11) and (2.9), respectively, can be

relaxed by using the slightly smaller α-mixing coefficient

α
(
AXM

(B),AXM
(B′)

)
= sup{

∣∣P(A ∩A′)− P(A)P(A′)
∣∣ : A ∈ AXM

(B), A′ ∈ AXM
(B′)}

9



Asymptotic goodness-of-fit tests of stationary point processes

instead of (2.8). The corresponding α-mixing rates α∗
XM

(r) and α∗∗
XM

(r) are then defined
in analogy to (3.11) and (2.9), respectively. A covariance inequality for the α-mixing case
similar to (2.11) can be found in [6], see [15] for an improved version. Despite of the subtle
differences between the discussed mixing conditions, we prefer to present our results under
the unified assumptions of Condition β(δ) and (3.10) with β∗

XM
(r) as defined in (2.9). It

seems to be difficult to identify models where these differences are relevant.

4 Proofs

4.1 Proof of Theorem 3.1

By the Cramér-Wold technique, the multivariate CLT stated in (3.2) is equivalent to

s>Yk = s1 Yk(C1) + . . . + s` Yk(C`)
D−→

k→∞
N1(0 , σ

2) with σ2 = s>Σ s (4.1)

for any s = (s1, . . . , s`)
> ∈ R

` 6= o` .

To prove (4.1) we extend Bernstein’s classical blocking method for weakly dependent random
fields over a cubic index set of Zd, see e.g. [4], [12] or [21], to β−mixing fields indexed by
elements of Hk = {z ∈ Z

d : Ez ⊂ Wk} , where Ez = [−1/2, 1/2)d + z for z ∈ Z
d and {Wk} is

an arbitrary CAS. The proof of (4.1) is divided into four steps.

Step 1. Bounds and asymptotics for the variance of the sum

In view of (3.1) we may write

s>Yk =
1√
|Wk|

(
Vk + V ′

k

)
, where Vk =

∑

z∈Hk

Uz and V ′
k =

∑

z∈∂Hk

U (k)
z

with

U (k)
z =

∑

n≥1

1IEz∩Wk
(Xn) g(Mn) , Uz =

∑

n≥1

1IEz(Xn) g(Mn) for z ∈ Z
d ,

∂Hk = {z ∈ Z
d \ Hk : |Ez ∩ Wk | > 0 } and g(Mn) =

∑`
i=1 si

(
1ICi

(Mn) − P o
XM

(Ci)
)
.

Clearly, EU
(k)
z = EUz = 0 and max{|U (k)

z |, |Uz |} ≤ c(s)XM (Ez × M) for z ∈ Z
d , since

|g(Mn)| ≤ c(s) = |s1|+ · · ·+ |s`| . Hence, by stationarity of XM and Condition β(δ),

max{‖U (k)
z ‖2+δ , ‖Uz ‖2+δ} ≤ c(s) ‖XM ([0, 1)d ×M)‖2+δ for z ∈ Z

d .

In the following we use the maximum norm |z| = max1≤i≤d |zi| to express the distance of
z = (z1, ..., zd) ∈ Z

d to the origin o. By applying the covariance inequality (2.11) together
with Condition β(δ) , we obtain

Var(V ′
k) =

∑

y,z∈∂Hk

EU (k)
y U (k)

z ≤
∑

y,z∈∂Hk

E |U (k)
y U (k)

z | ≤ #∂Hk

∑

z∈Zd

E |U (k)
o U (k)

z |

≤ 2 c(s)2 ‖XM ([0, 1)d ×M)‖22+δ #∂Hk

∑

z∈Zd

(
β
(
AXM

(Eo),AXM
(Ez)

) ) δ
2+δ

10
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≤ 2 c(s)2 ‖XM ([0, 1)d ×M)‖22+δ #∂Hk

(
1 +

∑

z 6=o

(
β∗
XM

(|z| − 1)
) δ

2+δ

)

≤ 2 c(s)2 ‖XM ([0, 1)d ×M)‖22+δ #∂Hk

(
1 + 2 d

∑

n≥0

(2n + 3)d−1
(
β∗
XM

(n)
) δ

2+δ

)

≤ c1 #∂Hk,

(4.2)

for some constant c1 = c1(s, d, δ) > 0 where the relation #{z ∈ Z
d : |z| = n} = (2n + 1)d −

(2n−1)d ≤ 2 d (2n+1)d−1 has been used. A simple geometric argument shows that each unit
cube Ez hitting the boundary ∂Wk is contained in the annulus ∂Wk ⊕ B(o,

√
d) implying

that

#∂Hk ≤ |∂Wk ⊕B(o,
√
d)| ≤ 2

(
|Wk ⊕B(o,

√
d)| − |Wk|

)
.

Steiner’s formula (cf. [24], p. 600) applied to the convex body Wk reveals that the volume
|Wk ⊕ B(o,

√
d)| − |Wk| does not decrease when Wk is replaced by a larger convex body,

e.g. by d3/2 Rk from relation (4.8) below, where the hyper-rectangle Rk has edge lengths

a
(k)
1 , . . . , a

(k)
d . Replacing additionally B(o,

√
d) by the cube [−

√
d,
√
d]d we get

|Wk ⊕B(o,
√
d)| − |Wk| ≤ |d3/2 Rk ⊕ [−

√
d,
√
d]d| − |d3/2 Rk|

= 2 d(3d−2)/2
d∑

i=1

a
(k)
1 · · · a(k)i−1

(
a
(k)
i+1 +

2

d

)
· · ·
(
a
(k)
d +

2

d

)

≤ 2d−1 d(3d−2)/2 Hd−1(∂Rk), if min
1≤i≤d

a
(k)
i ≥ 2

d
.

Hence, since (4.8) implies Hd−1(∂Rk) ≤ Hd−1(∂Wk) and d3/2 min1≤i≤d a
(k)
i ≥ 2 %(Wk) , it

follows that #∂Hk ≤ 2d d(3d−2)/2 Hd−1(∂Wk) if %(Wk) ≥
√
d , which in turn by combining

(2.2), (4.2) and the inclusion #Hk ≤ |Wk| ≤ #Hk +#∂Hk implies that

Var(V ′
k)

|Wk|
≤ c2

Hd−1(∂Wk)

|Wk|
≤ c2 d

%(Wk)
−→
k→∞

0 and
#Hk

|Wk|
−→
k→∞

1 (4.3)

for any CAS {Wk} . Thus, by a standard Slutsky argument, (4.1) is equivalent to

Vk√
#Hk

D−→
k→∞

N1(0 , σ
2) . (4.4)

The technique used above to estimate Var(V ′
k) will in the following be applied to show that

σ2 = lim
k→∞

Var(s>Yk) = lim
k→∞

Var(Vk)

#Hk
=
∑

z∈Zd

E (Uo Uz) . (4.5)

The series on the rhs of (4.5) converges absolutely as immediate consequence of the estimate

Var(Vk) ≤ #Hk

∑

z∈Zd

|E (Uo Uz) | ≤ c1 #Hk ,

11
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where the positive constant c1 is the same as in (4.2). The Cauchy-Schwarz inequality and
the previous estimates of Var(Vk) and Var(V ′

k) show that

∣∣∣∣Var(s
>Yk)−

Var(Vk)

|Wk|

∣∣∣∣ ≤ 2
|Cov(Vk, V

′
k)|

|Wk|
+

Var(V ′
k)

|Wk|
≤ 2c1

√
#Hk #∂Hk

|Wk|
+

c1#∂Hk

|Wk|

proving the second equality in (4.5). To prove the third equality in (4.5) we use the identity

Var(Vk)

#Hk
=

1

#Hk

∑

y,z∈Hk

E (Uo Uz−y) =
∑

z∈Zd

#(Hk ∩ (Hk − z))

#Hk
E (Uo Uz)

and the geometric inequality (following from the very definition of Hk and ∂Hk)

#(Hk ∩ (Hk − z) ) ≤ |Wk ∩ (Wk − z) | ≤ #(Hk ∩ (Hk − z) ) + #∂Hk +#∂(Hk − z)

for z ∈ Z
d . This fact combined with (2.2) and (4.3) shows that

#(Hk ∩ (Hk − z))

#Hk
−→
k→∞

1 for any fixed z ∈ Z
d

proving the third equality in (4.5) by applying the dominated convergence theorem.

Step 2. Passage to bounded random variables by truncation

For any fixed a > 0 we define the random field {Uz(a) , z ∈ Hk} of the truncated (and

centered) random variables and the sum Vk(a) by

Uz(a) = Uz1I{|Uz |≤a} − E
(
Uz1I{|Uz |≤a}

)
and Vk(a) =

∑

z∈Hk

Uz(a) (4.6)

so that, for any z ∈ Hk ,

|Uz(a) | ≤ 2 a and
(
E|Uz − Uz(a) |2+δ

) 1
2+δ = ‖Uo − Uo(a) ‖2+δ −→

a→∞
0 .

By quite the same arguments as used in Step 1 based on the covariance inequality (2.11) and
Condition β(δ) , we find that

Var
(
Vk − Vk(a)

)
≤ 2#Hk ‖Uo − Uo(a) ‖22+δ

(
1 + 2 d

∑

n≥0

(2n + 3)d−1
(
β∗
XM

(n)
) δ

2+δ

)

for k ≥ 1 . Hence, by Slutsky’s lemma, the weak limits of Vk/
√
#Hk and Vk(a)/

√
#Hk as

k → ∞ are arbitrarily close whenever a > 0 is large enough. It therefore remains to prove
the CLT in (4.4) for the bounded random variables in (4.6), i.e., for any fixed a > 0 ,

Vk(a)√
#Hk

D−→
k→∞

N1

(
0 , σ2(a)

)
with σ2(a) =

∑

z∈Zd

EUo(a)Uz(a) . (4.7)

12
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Step 3. Adaptation of Bernstein’s blocking method to non-cubic index sets

We start with some preliminary considerations. A well-known result from convex geometry
first proved by F. John, see e.g. [1], asserts that there exists a unique ellipsoid Ek (called
John ellipsoid) of maximal volume contained in Wk with midpoint c(Ek) and semi-axes of

lengths e
(k)
1 , . . . , e

(k)
d such that Ek ⊆ Wk ⊆ c(Ek) + d ( Ek − c(Ek) ) .

Further, it is easy to determine a unique hyper-rectangle Rk centered at the origin o cir-

cumscribed by Ek − c(Ek) with edge-lengths a
(k)
i = 2 e

(k)
i /

√
d for i = 1, . . . , d such that

Ek − c(Ek) ⊆
√
dRk and finally

Rk ⊆ Ek − c(Ek) ⊆ Wk − c(Ek) ⊆ d ( Ek − c(Ek) ) ⊆ d3/2 Rk . (4.8)

Since the MPP XM observed in the CAS {Wk} is stationary, we may assume that c(Ek) = o
and without loss of generality let the edge lengths of Rk be arranged in ascending order

a
(k)
1 ≤ · · · ≤ a

(k)
d (possibly after renumbering of the edges). Note that Rk is not necessarily

in a position parallel to the coordinate axes. But there is an orthogonal matrix Ok such that

Ok Rk =
d
×
i=1

[
−a

(k)
i

2
,
a
(k)
i

2

]
. (4.9)

Let {pk} and {qk} be two sequences of positive integers (which will be specified later) satis-
fying pk ≥ qk −→

k→∞
∞ and qk/pk −→

k→∞
0. We define two types of pairwise disjoint cubes

P (k)
y = P

(k)
o + (2 pk + qk + 1) y and Q(k)

y = Q
(k)
o + (2 pk + qk + 1) y for y ∈ Z

d ,

where P
(k)
o = {−pk, . . . , 0, . . . , pk}d and Q

(k)
o = {−pk, . . . , 0, . . . , pk + qk}d for k ≥ 1 .

Now, we describe how to modify Bernstein’s blocking method in order to prove the CLT stated
in (4.7). For the family of block sums

V (k)
y (a) =

∑

z∈P
(k)
y ∩Hk

Uz(a) for y ∈ Gk = {z ∈ Z
d : P (k)

z ∩Hk 6= ∅}

we shall show in Step 4 that

1√
#Hk

∑

y∈Gk

V (k)
y (a)

D−→
k→∞

N1

(
0 , σ2(a)

)
(4.10)

by assuming the mutual independence of the random variables V
(k)
y (a) , y ∈ Gk , which can

be justified by Condition β(δ) and

1√
#Hk

(
Vk(a)−

∑

y∈Gk

V (k)
y (a)

)
P−→

k→∞
0 . (4.11)

Next, we specify the choice of pk and qk in dependence on the edge lengths of Rk and
the supposed decaying rate of β∗∗

XM
(r) . In view of %(Wk) −→ ∞ and (4.8) it follows that

min{a(k)1 , . . . , a
(k)
d } −→ ∞ as k → ∞ . Note that the choice pk = bεk |Wk|1/2dc as in case

of a cubic observation window with a certain null sequence {εk} , see [12], does not always

13
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imply (4.10) and (4.11) if at least one of the first d− 1 ordered edge lengths of Rk increases

very slowly to infinity. So one has to choose pk large enough but much smaller than a
(k)
d . For

this purpose put rk(s) = ( a
(k)
s+1 · . . . · a

(k)
d )1/(2d−s) for each s ∈ {0, 1, . . . , d − 1} . Because of

r2d−1 β∗∗
XM

(r) −→ 0 as r → ∞, there exist non-increasing sequences εk(s) of positive numbers
such that

εk(s) −→
k→∞

0, εk(s) rk(s) −→
k→∞

∞, and
(rk(s))

2d−1

εk(s)
β∗∗
XM

(εk(s) rk(s)) −→
k→∞

0 . (4.12)

Let εk = max{εk(0), . . . , εk(d−1)} and pk(s) = ε
1/(2d−s)
k rk(s) and select sk to be the smallest

number in {0, 1, ..., d − 1} such that a
(k)
s+1 ≥ 2 pk(s) + 1 for k ≥ k0 , where k0 is a sufficiently

large positive integer. Thus, we define the integer sequences pk and qk by

pk = bpk(sk)c = bε1/(2d−sk)
k rk(sk)c and qk = bεk rk(sk)c for k ≥ k0 . (4.13)

Further, we need lower and upper bounds for the number Nk of cubes Q̃
(k)
y = [−pk − 1

2 , pk +

qk +
1
2)

d + (2 pk + qk + 1) y hitting Hk , i.e., Nk = #{y ∈ Z
d : Q̃

(k)
y ∩Hk 6= ∅} . For this put

N
(k)
j (c, w) = #{y ∈ Z

d : Q̃
(k)
y ∩ (L

(k)
j (c) + w) 6= ∅} for w ∈ R

d and some real c > 0 , where

L
(k)
j (c) = OT

k {(x1, . . . , xd) ∈ R
d : −c a

(k)
j /2 ≤ xj ≤ c a

(k)
j /2 , xi = 0 for i 6= j} . The

following rough estimates of N
(k)
j (c, w) from below and above can be obtained by elementary

geometric arguments:

⌊ c a
(k)
j /

√
d

2 pk + qk + 1

⌋
+ 1 ≤ N

(k)
j (c, w) ≤ d

( ⌊ c a
(k)
j

2 pk + qk + 1

⌋
+ 2

)
for any w ∈ R

d .

Hence, by (4.8) and (4.9) the minimal number N
(k)
min and the maximal number N

(k)
max of cubes

Q̃
(k)
y hitting Hk satisfy the inequality

d∏

j=1

(⌊ a
(k)
j /(2

√
d)

2 pk + qk + 1

⌋
+ 1

)
≤ N

(k)
min ≤ Nk ≤ N (k)

max ≤ dd
d∏

j=1

( ⌊ d3/2 a
(k)
j

2 pk + qk + 1

⌋
+ 2

)
.

In view of the above choice of s = sk and (4.13), the number Nk allows the estimate

c3
a
(k)
sk+1 · · · a

(k)
d

pd−sk
k

≤ Nk ≤ c4
a
(k)
sk+1 · · · a

(k)
d

pd−sk
k

for all k ≥ k0 (4.14)

with positive constants c3, c4 only depending on the dimension d . Combining the obvious
fact that #Gk ≤ Nk with (4.12), (4.13) and (4.14) (with pk ≥ 1 and εk ≤ 1) we arrive at

#Gk pd−1
k β∗∗

XM
(qk) ≤ c4

(rk(sk))
2d−1

ε
1/2d
k

β∗∗
XM

(qk) −→
k→∞

0 .

Likewise, by (4.8) and a
(k)
i ≤ 2 pk + 3 for i = 1, ..., sk ,

pd−sk
k√
#Hk

sk∏

j=1

a
(k)
j ≤ c5

(
pk

rk(sk)

)(2d−sk)/2

≤ c5
√
εk −→

k→∞
0 . (4.15)
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Finally, we show that
1

#Hk

∑

y∈Gk

#(P (k)
y ∩Hk) −→

k→∞
1 , (4.16)

which, by the results of Step 1, is equivalent to

1

|Wk |
∑

y∈Zd

∣∣ ( Q̃(k)
y \ P̃ (k)

y

)
∩Wk

∣∣ −→
k→∞

0 , (4.17)

where P̃
(k)
y = [−pk − 1

2 , pk + 1
2 )

d + (2pk + qk + 1) y for y ∈ Z
d . To estimate the volume of

the space in Wk outside the union of cubes P̃
(k)
y we introduce equidistant slices S

(k)
ij in R

d of
thickness qk and distance 2pk + 1 defined by

S
(k)
ij =

{
(y1, . . . , yd) ∈ R

d : (2j + 1)
(
pk +

1

2

)
+ j qk ≤ yi < (2j + 1)

(
pk +

1

2

)
+ (j + 1) qk

}

for i = 1, ..., d and j ∈ Z
1 . By (4.8), (4.9) and the choice of pk and qk it might happen that,

for at most sk coordinates i ∈ {1, ..., d}, S(k)
ij ∩Wk = ∅ for all intergers j . For the remaining

coordinates i ∈ {1, ..., d} there exist sequences of integers nk(i) (at least one of them tends to

infinity as k → ∞) such that S
(k)
ij ∩Rk 6= ∅ for |j| ≤ nk(i) (and S

(k)
ij ∩Rk = ∅ for |j| > nk(i))

and
1

|Rk |
∑

|j|≤nk(i)

∣∣S(k)
ij ∩ d3/2 Rk

∣∣ ≤ c6
qk
pk

for k ≥ k0 ,

where c6 depends only on d. This estimate and the evident inequalities |Rk | ≤ |Wk | and

∑

y∈Zd

∣∣ ( Q̃(k)
y \ P̃ (k)

y

)
∩Wk

∣∣ ≤
d∑

i=1

∑

j∈Z1

∣∣S(k)
ij ∩ d3/2 Rk

∣∣

show that the lhs of (4.17) is bounded by a constant multiple of qk/pk so that (4.16) is finally
proved by (4.13).

Step 4. Approximation by sums of independent random variables

For brevity put Pk =
⋃

y∈Gk
(P

(k)
y ∩Hk) . Again by applying the covariance inequality (2.11)

and Condition β(δ) to the stationary random field {Uz(a), z ∈ Hk} (with |Uz(a)| ≤ 2 a and
thus δ = ∞), we find in analogy to (4.2) that

1

#Hk
E

(
Vk(a)−

∑

y∈Gk

V (k)
y (a)

)2
=

1

#Hk

∑

y,z∈Hk\Pk

E
(
Uy(a)Uz(a)

)

≤ 8 a2
(
1 + 2 d

∑

n≥0

(2n + 3)d−1 β∗
XM

(n)
) #(Hk \ Pk)

#Hk
.

From (4.16) it is immediately clear that the ratio in the latter line disappears as k → ∞,
which confirms (4.11). Thus, in view of Slutsky’s lemma, it remains to prove (4.10). We will

do this under the assumption of mutual independence of the block sums V
(k)
y (a), y ∈ Gk . For

this reason we show that the characteristic function E exp{it Vk(a)} differs from the product∏
y∈Gk

E exp{it V (k)
y (a)} uniformly in t ∈ R

1 by certain sequences tending to zero as k → ∞ .
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Setting nk = #Gk we may write

ξj = exp{it V (k)
yj (a)} for yj ∈ Gk with j = 1, . . . , nk .

Using the algebraic identity

E

nk∏

j=1

ξj −
nk∏

j=1

Eξj =

nk−1∑

j=1

Eξ1 · · ·Eξj−1

(
Eξjξj+1 · · · ξnk

− Eξj E
(
ξj+1 · · · ξnk

) )

and |ξj | ≤ 1 for j = 1, ..., nk we get

∣∣∣E exp{it Vk(a)} −
∏

y∈Gk

E exp{it V (k)
y (a)}

∣∣∣ ≤
nk−1∑

j=1

∣∣∣Cov(ξj , ξj+1 · · · ξnk
)
∣∣∣ .

By the stationarity of XM we may assume that the real as well as the imaginary part of ξj is
measurable w.r.t. the σ−algebra AXM

(Kpk+1/2) and the product ξj+1 · · · ξnk
is measurable

w.r.t. AXM
(Rd \Kpk+qk+1/2). By applying the covariance inequality (2.11) with δ = ∞ (to

the real and imaginary part of ξj resp. ξj+1 · · · ξnk
) and using (2.9) we find that

∣∣∣Cov(ξj , ξj+1 · · · ξnk
)
∣∣∣ ≤ 8β

(
AXM

(Kpk+1/2),AXM
(Rd \Kpk+qk+1/2)

)

≤ 8 (pk + 1/2)d−1 β∗∗
XM

(qk) .

Since nk = #Gk ≤ Nk it follows with (4.14) that

sup
t∈R1

∣∣∣E exp{it Vk(a)} −
∏

y∈Gk

E exp{it V (k)
y (a)}

∣∣∣ ≤ 8nk ( pk + 1/2 )d−1 β∗∗
XM

(qk) −→
k→∞

0 .

The latter relation and the Berry-Esseen bound in the CLT for independent random variables
(which can be expressed by the third-order Lyapunov ratio, see e.g. [4], p. 204, and references
therein) reveal that (4.10) holds if

L
(k)
3 (a) =

1

(σ2
k(a))

3/2

∑

y∈Gk

E|V (k)
y (a) |3 −→

k→∞
0 and

σ2
k(a)

#Hk
−→
k→∞

σ2(a) , (4.18)

where σ2(a) is defined by (4.7) and σ2
k(a) =

∑
y∈Gk

E(V
(k)
y (a) )2 coincides with the variance

of Vk(a) in case of independent block sums V
(k)
y (a), y ∈ Gk .

It is easily seen that |V (k)
y (a) | ≤ 2 a#(P

(k)
y ∩ Hk) ≤ 2 a (2pk + 1)d−sk

∏sk
i=1(d

3/2 a
(k)
i + 1)

and therefore

L
(k)
3 (a) ≤ 2 a

sk∏

i=1

(
d3/2a

(k)
i + 1

) (2 pk + 1)d−sk

(σ2
k(a))

3/2

∑

y∈Gk

E(V (k)
y (a) )2 ≤ c7

2 a pd−sk
k

(σ2
k(a))

1/2

sk∏

i=1

a
(k)
i

with some positive constant c7 only depending on d . In combination with (4.15) the second

relation in (4.18) for σ2(a) > 0 yields L
(k)
3 (a) −→

k→∞
0. Hence, the first part of (4.18) is proved.

To accomplish the proof of (4.18) we remember that σ2(a) is the asymptotic variance (4.5)
with Vk(a) from (4.6) instead of Vk. Taking into account (4.16) or (4.17) we may replace

16
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Vk(a) by the reduced sum
∑

y∈Gk
V

(k)
y (a) so that the second part of (4.18) is a consequence

of

1

#Hk

∣∣∣E
( ∑

y∈Gk

V (k)
y (a)

)2
− σ2

k(a)
∣∣∣ ≤ c8 a

2 #Pk

#Hk

∑

n≥qk

(2n + 3)d−1 β∗
XM

(n) −→
k→∞

0 .

Here we have again used the notation Pk and the standard covariance estimates from the
very beginning of Step 4. Summarizing all Steps 1 - 4 completes the proof of Theorem 3.1.

2

4.2 Proof of Lemma 3.1

By definition of the signed measures γ
(2)
X and γ

(2)
X,red in Section 2.2 and using algebraic induc-

tion, for any bounded Borel-measurable function g : (Rd)2 → R
1 we obtain the relation

λ

∫

Rd

∫

Rd

g(x, y) γ
(2)
X,red(dy) dx =

∫

(Rd)2

g(x, y − x) γ
(2)
X (d(x, y)). (4.19)

Let H+,H− be a Hahn decomposition of Rd for γ
(2)
X,red, i.e.,

γ
(2)+
X,red(·) = γ

(2)
X,red(H

+ ∩ (·)) and γ
(2)−
X,red(·) = −γ

(2)
X,red(H

− ∩ (·)) .

We now apply (4.19) for g(x, y) = 1IEo
(x) 1IH+∩Ez

(y) , where Ez = [−1
2 ,

1
2)

d + z for z ∈ Z
d .

Combining this with the definition of the (reduced) second factorial moment measures α
(2)
X

and α
(2)
X,red of the unmarked PP X =

∑
i≥1 δXi

, see (2.5) for m = 2, and

γ
(2)
X (A×B) = α

(2)
X (A×B)− λ2 |A| |B| for all bounded A,B ∈ B(Rd) ,

leads to

λ γ
(2)
X,red(H

+ ∩Ez) =

∫

(Rd)2

1IEo
(x)1IH+∩Ez

(y − x)α(2)(d(x, y)) − λ2 |Eo| |H+ ∩ Ez|

= E

∑ 6=

i,j≥1

1IEo
(Xi)1IH+∩Ez

(Xj −Xi)− EX(Eo)EX(H+ ∩ Ez).

Since o /∈ H+ ∩ Ez for z ∈ Z
d with |z| ≥ 2 we may continue with

λ γ
(2)
X,red(H

+ ∩ Ez) = E

∑

i≥1

δXi
(Eo)X

(
(H+ ∩ Ez) +Xi

)
− EX(Eo)EX(H+ ∩ Ez)

= Ef(Y, Y ′
z)− Ef(Ỹ , Ỹ ′

z ) for |z| ≥ 2 , (4.20)

where
f(Y, Y ′

z) =
∑

i≥1

δXi
(Eo)X

(
(H+ ∩ Ez) +Xi

)
≤ X

(
Eo

)
X
(
Ez ⊕ Eo

)
(4.21)

with Y (·) = ∑i≥1 δXi

(
(·) ∩ Eo

)
resp. Y ′

z(·) =
∑

j≥1 δXj

(
((·) ∩ Ez) ⊕ Eo

)
being restrictions

of the stationary PP X =
∑

i≥1 δXi
to Eo resp. Ez ⊕ Eo = [−1, 1)d + z . Further, let Ỹ and

17
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Ỹ ′
z denote copies of the PPs Y and Y ′

z , respectively, which are assumed to be independent
implying that Ef(Ỹ , Ỹ ′

z ) = EX(Eo)EX(H+ ∩ Ez) . Since Y is measurable w.r.t. AX(Eo),
whereas Y ′ is AX(Rd\[−(|z|−1), |z|−1]d)-measurable, we are in a position to apply Lemma 2.2
with β

(
AX(Eo),AX(Rd\[−(|z|−1), |z|−1]d

)
≤ β∗

XM
(|z|− 3

2) for |z| ≥ 2. Hence, the estimate
(2.10) together with (4.20) and (4.21) yields

∣∣λ γ(2)X,red(H
+ ∩ Ez)

∣∣ ≤ 2
(
β∗
XM

(|z| − 3

2
)
) η

1+η
(
max

{
Ef1+η(Y, Y ′

z) , Ef
1+η(Ỹ , Ỹ ′

z )
}) 1

1+η
,

where the maximum term on the rhs has the finite upper bound 2d(1+η)
E(X(Eo))

2+2η for
δ = 2 η > 0 in accordance with our assumptions. This is seen from (4.21) using the Cauchy-
Schwarz inequality and the stationarity of X giving

Ef1+η(Y, Y ′
z) ≤

(
E(X(Eo)

2+2η)E(X([−1, 1]d)2+2η)
)1/2

≤ 2d(1+η)
E(X(Eo)

2+2η)

and the same upper bound for Ef1+η(Ỹ , Ỹ ′
z) . By combining all the above estimates with

λ γ
(2)
X,red(H

+ ∩ [−3
2 ,

3
2 )

d) ≤ 3d EX2(Eo) we arrive at

λ γ
(2)
X,red(H

+) ≤ 3d EX2(Eo) + 2d+1
(
E(X(Eo))

2+δ
) 2

2+δ
∑

z∈Zd:|z|≥2

(
β∗
XM

(|z| − 3

2
)
) δ

2+δ
.

By the assumptions of Lemma 3.1 the moments and the series on the rhs are finite and the

same bound can be derived for −λ γ
(2)
X,red(H

−) which shows the validity of (3.4).

The proof of (3.5) resembles that of (3.4). First we extend the identity (4.19) to the (reduced)
second factorial moment measure of the MPP XM defined by (2.4) and (2.6) for m = 2 which
reads as follows:

λ

∫

Rd

∫

Rd

g(x, y)P o,x
M (C1 × C2)α

(2)
X,red(dy)dx =

∫

(Rd)2

g(x, y − x)P x,y
M (C1 × C2)α

(2)
X

(
d(x, y)

)

= E

∑6=

i,j≥1

g(Xi,Xj −Xi)1IC1(Mi)1IC2(Mj) .

For the disjoint Borel sets G+ and G− defined by

G+(−) =
{
x ∈ R

d : P o,x
M (C1 × C2) ≥ (<)P o

M (C1)P
o

M (C2)
}

we replace g(x, y) in the above relation by g±(x, y) = 1IEo
(x) 1IE±

z
(y) , where E±

z = G±∩Ez for

|z| ≥ 2 , and consider the restricted MPPs Yo(·) = XM

(
(·) ∩ (Eo ×C1)

)
, Y ′

z,±(·) = XM

(
(·) ∩

((E±
z ⊕ Eo) × C2)

)
and their copies Ỹo and Ỹ ′

z,± , which are assumed to be stochastically
independent. Further, in analogy to (4.21), define

f(Yo, Y
′
z,±) =

∑

i≥1

δ(Xi,Mi)(Eo × C1)XM

(
(E±

z +Xi)× C2

)
≤ X

(
Eo

)
X
(
Ez ⊕ Eo

)
.

It is rapidly seen that, for |z| ≥ 2 ,

Ef(Yo, Y
′
z,±) = λ

∫

E±
z

P o,x
M (C1 × C2)α

(2)
X,red(dx) and

Ef(Ỹo, Ỹ
′
z,±) = EXM (Eo ×C1)EXM

(
E±

z ×C2

)
= λ2 P o

M (C1)P
o

M (C2) |E±
z |

18



Asymptotic goodness-of-fit tests of stationary point processes

and in the same way as in the foregoing proof we find that, for |z| ≥ 2 ,

|Ef(Yo, Y
′
z,±)− Ef(Ỹo, Ỹ

′
z,±) | ≤ 2d+1

(
EX(Eo)

2+δ
) 2

2+δ
(
β∗
XM

(|z| − 3

2
)
) δ

2+δ .

Finally, the decomposition α
(2)
X,red(·) = γ

(2)
X,red(·) + λ | · | together with the previous estimate

leads to

λ

∫

Ez

∣∣∣P o,x
M (C1 × C2)− P o

M (C1)P
o

M (C2)
∣∣∣α(2)

X,red(dx) = Ef(Yo, Y
′
z,+)− Ef(Ỹo, Ỹ

′
z,+)

−
(
Ef(Yo, Y

′
z,−)− Ef(Ỹo, Ỹ

′
z,−)

)
− λP o

M (C1)P
o

M (C2)
(
γ
(2)
X,red(E

+
z )− γ

(2)
X,red(E

−
z )
)

≤ 2d+2
(
E(X(Eo)

2+δ)
) 2

2+δ
(
β∗
XM

(|z| − 3

2
)
) δ

2+δ + λ |γ(2)X,red|(Ez) for |z| ≥ 2 .

Thus, the sum over all z ∈ Z
d is finite in view of our assumptions and the above-proved

relation (3.4) which completes the proof of Lemma 3.1. 2

4.3 Proof of Theorem 3.3

It suffices to show (3.6), since independent marks imply that P o,x
M (C1×C2) = P o

M (C1)P
o

M (C2)
for x 6= o and any C1, C2 ∈ B(M) so that the integrand on the rhs of (3.6) disappears which
yields (3.7) for stationary independently MPPs. By the very definition of Yk(C) we obtain
that

Cov
(
Yk(Ci), Yk(Cj)

)
=

1

|Wk|
E

∑

p≥1

1IWk
(Xp)

(
1ICi

(Mp)− P o

M (Ci)
)(
1ICj

(Mp)− P o

M (Cj)
)

+
1

|Wk|
E

∑

p,q≥1

6=
1IWk

(Xp)1IWk
(Xq)

(
1ICi

(Mp)− P o

M (Ci)
)(
1ICj

(Mq)− P o

M (Cj)
)
. (4.22)

Expanding the difference terms in the parentheses leads to eight expressions which, up to
constant factors, take either the form

E

∑

p≥1

1IWk
(Xp)1IC(Mp) = λ|Wk|P o

M (C) or E

∑

p,q≥1

6=
1IWk

(Xp)1IWk
(Xq)1ICi

(Mp)1ICj
(Mq)

=

∫

(Rd)2

1IWk
(x)1IWk

(y)P o,y−x
M (Ci × Cj)α

(2)
X (d(x, y)) = λ

∫

Rd

P o,y
M (Ci × Cj) γk(y)α

(2)
X,red(dy) ,

where y 7→ γk(y) = |Wk ∩ (Wk− y)| denotes the set covariance function of Wk . Summarizing
all these terms gives

Cov
(
Yk(Ci), Yk(Cj)

)
= λ

(
P o

M (Ci ∩Cj)− P o

M (Ci)P
o

M (Cj)
)
+ λ

∫

Rd

γk(x)

|Wk|
(
P o,x
M (Ci × Cj)

− P o

M (Ci)P
o,x
M (Cj ×M)− P o

M (Cj)P
o,x
M (Ci ×M) + P o

M (Ci)P
o

M (Cj)
)
α
(2)
X,red(dx) .

The integrand in the latter formula is dominated by the sum
∣∣P o,x

M (Ci × Cj)− P o

M (Ci)P
o

M (Cj)
∣∣+
∣∣P o,x

M (Cj ×M)− P o

M (Cj)
∣∣+
∣∣P o,x

M (Ci ×M)− P o

M (Ci)
∣∣ ,

which, by (3.5), is integrable w.r.t. α
(2)
X,red . Hence, (3.6) follows by (2.2) and Lebesgue’s

dominated convergence theorem. 2
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4.4 Proof of Theorem 3.4

We again expand the parentheses in the second term of the estimator (σ̂
(1)
ij )k defined by

(3.8) and express the expectations in terms of P o,y
M and α

(2)
X,red. Using the obvious relation

γk(y) =
∫
Rd 1IWk

(x)1IWk
(y + x) dx we find that, for any Ci, Cj ∈ B(M) ,

E

∑6=

p,q≥1

1IWk
(Xp)1IWk

(Xq)1ICi
(Mp)1ICj

(Mq)

|(Wk −Xp) ∩ (Wk −Xq)|
=

∫

(Rd)2

1IWk
(x)1IWk

(y)P x,y
M (Ci × Cj)

γk(y − x)
α
(2)
X (d(x, y))

= λ

∫

Rd

P o,y
M (Ci ×Cj)

γk(y)

∫

Rd

1IWk
(x)1IWk

(y + x) dxα
(2)
X,red(dy) = λ

∫

Rd

P o,y
M (Ci × Cj)α

(2)
X,red(dy) .

As in the proof of Theorem 3.3 after summarizing all terms we obtain that

E(σ̂
(1)
ij )k = λ

(
P o

M (Ci ∩Cj)− P o

M (Ci)P
o

M (Cj)
)
+ λ

∫

Rd

(
P o,x
M (Ci × Cj)

− P o,x
M (Ci ×M)P o

M (Cj)− P o,x
M (Cj ×M)P o

M (Ci) + P o

M (Ci)P
o

M (Cj)
)
α
(2)
X,red(dx) ,

which, by comparing with (3.6), yields that E(σ̂
(1)
ij )k = σij . The asymptotic unbiasedness of

(σ̂
(2)
ij )k is rapidly seen by the equality E(σ̂

(2)
ij )k = Cov

(
Yk(Ci), Yk(Cj)

)
= EYk(Ci)Yk(Cj) ,

which follows directly from (4.22), and (3.3). 2

4.5 Proof of Theorem 3.5

Since E
(
σij − (σ̂

(3)
ij )k

)2
= Var(σ̂

(3)
ij )k +

(
σij − E(σ̂

(3)
ij )k

)2
we have to show that

E(σ̂
(3)
ij )k −→

k→∞
σij and Var(σ̂

(3)
ij )k −→

k→∞
0 . (4.23)

For notational ease, we put m(u, v) =
(
1ICi

(u)−P o

M (Ci)
)(
1ICj

(v)−P o

M (Cj)
)
, ak = bk|Wk|1/d ,

rk(x, y) =
1IWk

(x)1IWk
(y)

γk(y − x)
w

(‖y − x‖
ak

)
and τk =

∑

p,q≥1

6=
rk(Xp,Xq)m(Mp,Mq) .

Hence, together with (2.3) and (3.1) we may rewrite (σ̂
(3)
ij )k as follows:

(σ̂
(3)
ij )k =

1√
|Wk|

Yk(Ci ∩ Cj) + λ̂k

(
P o

M (Ci ∩ Cj)− P o

M (Ci)P
o

M (Cj)
)
+ τk . (4.24)

Using the definitions and relations (2.4) - (2.6) and
∫
Rd rk(x, y + x)dx = w

(
‖y‖/ak

)
we find

that the expectation E τk can be expressed by
∫

(Rd×M)2

rk(x, y)m(u, v)α
(2)
XM

(
d(x, u, y, v)

)
= λ

∫

Rd

∫

M
2

m(u, v)P o,y
M

(
d(u, v)

)
w
(‖y‖
ak

)
α
(2)
X,red

(
dy
)
.

20



Asymptotic goodness-of-fit tests of stationary point processes

The inner integral
∫
M2 m(u, v)P o,y

M

(
d(u, v)

)
coincides with the integrand occurring in (3.6)

and this term is integrable w.r.t. α
(2)
X,red due to (3.5) which in turn is a consequence of (3.10)

as shown in Lemma 3.1. Hence, by Condition (wb) and the dominated convergence theorem,
we arrive at

E τk −→
k→∞

λ

∫

Rd

∫

M
2

m(u, v)P o,y
M

(
d(u, v)

)
α
(2)
X,red

(
dy
)
= σij −λ

(
P o

M (Ci ∩Cj)−P o

M (Ci)P
o

M (Cj)
)
.

The definitions of λ̂k and Yk(·) by (2.3) and (3.1), respectively, reveal that E λ̂k = λ and
EYk(Ci ∩ Cj) = 0 . This combined with the last limit and (4.24) proves the first relation of
(4.23). To verify the second part of (4.23) we apply the Minkowski inequality to the rhs of
(4.24) which yields the estimate

(
Var (σ̂

(3)
ij )k

)1/2 ≤ |Wk|−1/2
(
Var Yk(Ci ∩ Cj)

)1/2
+
(
Var λ̂k

)1/2
+
(
Var τk

)1/2
.

The first summand on the rhs tends to 0 as k → ∞ since EY 2
k (C) has a finite limit for any

C ∈ B(M) as shown in Theorem 3.3 under condition (3.5). The second summand is easily
seen to disappear as k → ∞ if (3.4) is fulfilled, see e.g. [12], [16] or [17]. Condition (3.10)
implies both (3.4) and (3.5), see Lemma 3.1. Therefore, it remains to show that Var τk −→ 0
as k → ∞ .

For this purpose we employ the variance formula (2.7) stated in Lemma 2.1 in the special

case f(x, y, u, v) = rk(x, y)m(u, v) . In this way we get the decomposition Var τk = I
(1)
k +

I
(2)
k + I

(3)
k , where I

(1)
k , I

(2)
k and I

(3)
k denote the three multiple integrals on the rhs of (2.7)

with f(x, y, u, v) replaced by the product rk(x, y)m(u, v) . We will see that the integrals I
(1)
k

and I
(2)
k are easy to estimate only by using (3.4) and (3.5) while in order to show that I

(3)
k

goes to 0 as k → ∞, the full strength of the mixing condition (3.10) must be exhausted.
Among others we use repeatedly the estimate

1

γk(aky)
≤ 2

|Wk|
for y ∈ B(o, rw) , (4.25)

which follows directly from (2.2) and the choice of {bk} in (3.9). The definition of I
(1)
k together

with (4.25) and α
(2)
X,red(dx) = γ

(2)
X,red(dx) + λdx yields

|I(1)k | ≤ 2

∫

(Rd)2

(
rk(x1, x2)

)2
α
(2)
X

(
d(x1, x2)

)
= 2λ

∫

Rd

1

γk(y)
w2
(‖y‖
ak

)
α
(2)
X,red(dy)

≤ 4λ

|Wk|
(
m2

w |γ(2)X,red|(Rd) + λadk

∫

Rd

w2(‖y‖)dy
)
−→
k→∞

0 ,

where the convergence results from Condition (wb) and (3.10), which implies |γ(2)X,red|(Rd) <
∞ by virtue of Lemma 3.1. Analogously, using besides (4.25) and Condition (wb) the relations

w
(‖x‖

ak

)
≤ mw 1I[−dakrwe,dakrwe]d(x) and Wk ⊆

⋃

z∈Hk

Ez with Hk = Hk ∪ ∂Hk,
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with the notation introduced at the beginning of the proof of Theorem 3.1, we obtain that

|I(2)k | ≤ 4

∫

(Rd)3

rk(x1, x2) rk(x1, x3) α
(3)
X

(
d(x1, x2, x3)

)

≤ 16m2
w

|Wk|2
∑

z∈Hk

α
(3)
X

(
(Ez ⊕ [−dakrwe, dakrwe]d)× (Ez ⊕ [−dakrwe, dakrwe]d)× Ez

)
.

Since the cube Ez ⊕ [−dakrwe, dakrwe]d decomposes into (2dakrwe + 1)d disjoint unit cubes

and α
(3)
X (Ez1 × Ez2 × Ez3) ≤ E(X(Eo))

3 by Hölder’s inequality, we may proceed with

|I(2)k | ≤ 16m2
w

|Wk|2
#Hk (2dakrwe+ 1)2d E(X(Eo))

3 ≤ c9 b
2d
k |Wk| −→

k→∞
0 .

Here we have used the moment condition in (3.10), (4.3), and the assumptions (3.9) imposed
on the sequence {bk} .

In order to prove that I
(3)
k vanishes as k → ∞ we first evaluate the inner integrals over the

product m(u1, u2)m(u3, u4) with m(u, v) =
(
1ICi

(u) − P o

M (Ci)
)(
1ICj

(v) − P o

M (Cj)
)

so that

I
(3)
k can be written as linear combination of 16 integrals taking the form

Jk =

∫

(Rd)2

∫

(Rd)2

rk(x1, x2) rk(x3, x4)
[
P x1,x2,x3,x4

M (
4
×
r=1

Dr)α
(4)
X

(
d(x1, x2, x3, x4)

)

− P x1,x2

M (D1 ×D2)P
x3,x4

M (D3 ×D4)α
(2)
X

(
d(x1, x2)

)
α
(2)
X

(
d(x3, x4)

)]

=

∫
4
×

r=1
(Rd×Dr)

rk(x1, x2) rk(x3, x4)
(
α
(4)
XM

− α
(2)
XM

× α
(2)
XM

)(
d(x1, u1, ..., x4, u4)

)
,

where the mark sets D1,D3 ∈ {Ci,M} and D2,D4 ∈ {Cj ,M} are fixed in what follows and

the signed measure α
(4)
XM

− α
(2)
XM

× α
(2)
XM

on B((Rd × M)4)
(
and its total variation measure

∣∣α(4)
XM

−α
(2)
XM

×α
(2)
XM

∣∣ ) come into play by virtue of the definition (2.6) for the m−point Palm
mark distribution in case m = 2 and m = 4 .

As |z1 − z2| > dakrwe (where, as above, |z| denotes the maximum norm of z ∈ Z
d) implies

‖x2 − x1‖ > akrw and thus rk(x1, x2) = 0 for all x1 ∈ Ez1 , x2 ∈ Ez2 , we deduce from (4.25)
together with Condition (wb) that

|Jk| ≤
4m2

w

|Wk|2

(
2 dakrwe∑

n=0

+
∑

n>2 dakrwe

)
∑

(z1,z2)∈Sk

∑

(z3,z4)∈Sk,n(z1)

Vz1,z2,z3,z4 , (4.26)

where Sk = {(u, v) ∈ Hk×Hk : |u−v| ≤ dakrwe} , Sk,n(z) = {(z1, z2) ∈ Sk : min
i=1,2

|zi−z| = n}

and Vz1,z2,z3,z4 =
∣∣α(4)

XM
− α

(2)
XM

× α
(2)
XM

∣∣(×4
r=1(Ezr ×Dr)

)
for any z1, ..., z4 ∈ Z

d .

Obviously, for any fixed z ∈ Hk, at most 2 (2 dakrwe + 1)d (4 dakrwe + 1)d pairs (z3, z4) be-

long to
⋃2 dakrwe

n=0 Sk,n(z) and the number of pairs (z1, z2) in Sk does not exceed the product
#Hk (2 dakrwe+ 1)d. Finally, remembering that ak = bk |Wk|1/d and using the evident
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estimate Vz1,z2,z3,z4 ≤ 2 E(X(Eo))
4 together with (4.3) and Condition (wb), we arrive at

4m2
w

|Wk|2
∑

(z1,z2)∈Sk

2 dakrwe∑

n=0

∑

(z3,z4)∈Sk,n(z1)

Vz1,z2,z3,z4 ≤ c10
#Hk

|Wk|2
(
bdk |Wk|

)3 −→
k→∞

0 .

It remains to estimate the sums on the rhs of (4.26) running over n > 2 dakrwe. For the signed

measure α
(4)
XM

− α
(2)
XM

× α
(2)
XM

we consider the Hahn decomposition H+,H− ∈ B((Rd ×M)4)

yielding positive (negative) values on subsets of H+(H−). Recall that Ka = [−a, a]d. For
fixed z1 ∈ Hk, z2 ∈ Hk ∩ (Kdakrwe + z1) and (z3, z4) ∈ Sk,n(z1), we now consider the
decompsition Vz1,z2,z3,z4 = V +

z1,z2,z3,z4 + V −
z1,z2,z3,z4 with

V ±
z1,z2,z3,z4 = ±

(
α
(4)
XM

− α
(2)
XM

× α
(2)
XM

)(
H± ∩

4
×
r=1

(Ezr ×Dr)
)
.

Since (z3, z4) ∈ Sk,n(z1) means that z3 ∈ Hk ∩
(
Kc

n + z1
)
, where Kc

a = R
d \ Ka , and

z4 ∈ Hk ∩
(
Kdakrwe + z3

)
∩
(
Kc

n + z1
)
, we define MPPs Yk and Y ′

n as the restrictions of XM

to (Kdakrwe+1/2 + z1)×M and (Kc
n−1/2 + z1)×M , respectively. Let furthermore Ỹk and Ỹ ′

n

be copies of Yk and Y ′
n which are independent.

Next we define functions f+(Yk, Y
′
n) and f−(Yk, Y

′
n) by

f±(Yk, Y
′
n) =

∑ 6=

p,q≥1

∑6=

s,t≥1

1I±(Xp,Mp,Xq,Mq,X
′
s,M

′
s,X

′
t,M

′
t) ,

where 1I±(· · · ) denote the indicator functions of the sets H± ∩
4
×
r=1

(Ezr ×Dr) so that we get

V ±
z1,z2,z3,z4 = Ef±(Yk, Y

′
n)− Ef±(Ỹk, Ỹ

′
n) for (z1, z2) ∈ Sk , (z3, z4) ∈ Sk,n(z1) .

Hence, having in mind the stationarity of XM , we are in a position to apply the covariance
inequality (2.10), which provides for η > 0 and n > 2 dakrwe that

V ±
z1,z2,z3,z4 ≤ 2

(
β
(
A(Kdakrwe+1/2 + z1),A(Kc

n−1/2 + z1)
) ) η

1+η

×
(
E
( 2∏

r=1

XM (Ezr ×Dr)
)2+2η

E
( 4∏

r=3

XM (Ezr ×Dr)
)2+2η

) 1
2+2η

≤ 2
(
β∗
XM

(n− dakrwe − 1)
) η

1+η
(
E(X(Eo))

4+4η
) 1

1+η . (4.27)

In the last step we have used the Cauchy-Schwarz inequality and the definition (2.9) of the
β-mixing rate β∗

XM
. Finally, setting η = δ/4 with δ > 0 from (3.10) the estimate (4.27)

enables us to derive the following bound of that part on the rhs of (4.26) connected with the
series over n > 2 dakrwe:

c11
#Hk

|Wk|2
(2dakrwe+ 1)2d

∑

n>2dakrwe

(
(2n + 1)d − (2n − 1)d

)(
β∗
XM

(n− dakrwe − 1)
) δ

4+δ .

Combining ak = bk|Wk|1/d and (4.3) with condition (3.10) and the choice of {bk} in (3.9), it
is easily checked that the latter expression and thus Jk tend to 0 as k → ∞ . This completes
the proof of Theorem 3.5. 2
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5 Examples

5.1 m-dependent marked point processes

A stationary MPP XM is called m-dependent if, for any B,B′ ∈ B(Rd), the σ−algebras
AXM

(B) and AXM
(B′) are stochastically independent if inf{|x − y| : x ∈ B, y ∈ B′} > m

or, equivalently,

β
(
AXM

(Ka),AXM
(Kc

a+b)
)
= 0 for b > m and a > 0 .

In terms of the corresponding mixing rates this means that β∗
XM

(r) = β∗∗
XM

(r) = 0 if r >
m . For m-dependent MPPs XM it is evident that Condition β(δ) in Theorem 3.1 is only
meaningful for δ = 0 , that is, E(X([0, 1]d))2 < ∞ . This condition also implies (3.4) and
(3.5). Likewise, the assumption (3.10) of Theorem 3.5 reduces to E(X([0, 1]d))4 < ∞ which

suffices to prove the L2-consistency of the empirical covariance matrix Σ̂
(3)
k .

5.2 Geostatistically marked point processes

Let X =
∑

n≥1 δXn be an unmarked simple PP on R
d and M = {M(x), x ∈ R

d} be a

measurable random field on R
d taking values in the Polish mark space M. Further assume that

X and M are stochastically independent over a common probability space (Ω,A,P). An MPP
XM =

∑
n≥1 δ(Xn,Mn) with atoms Xn of X and marks Mn = M(Xn) is called geostatistically

marked. Equivalently, the random counting measure XM ∈ NM can be represented by means
of the Borel sets M−1(C) = {x ∈ R

d : M(x) ∈ C} (if C ∈ B(M)) by

XM (B × C) = X(B ∩M−1(C)) for B × C ∈ B(Rd)× B(M) . (5.1)

Obviously, if both the PP X and the mark field M are stationary then so is XM and vice
versa. Furthermore, the m−dimensional distributions of M coincide the m−point Palm mark
distributions of XM . The following Lemma allows to estimate the β−mixing coefficient (2.8)
by the sum of the corresponding coefficients of the PP X and the mark field M .

Lemma 5.1. Let the MPP XM be defined by (5.1) with an unmarked PP and a random mark
field M being stochastically independent of each other. Then, for any B,B′ ∈ B(Rd) ,

β
(
AXM

(B),AXM
(B′)

)
≤ β

(
AX(B),AX(B′)

)
+ β

(
AM (B),AM (B′)

)
, (5.2)

where the σ−algebras AX(B),AX(B′) and AM (B),AM (B′) are generated by the restriction
of X and M , respectively, to the sets B ,B′.

To sketch a proof for (5.2), we regard the differences ∆(Ai, A
′
j) = P(Ai ∩A′

j)− P(Ai)P(A
′
j)

for two finite partitions {Ai} and {A′
j} of Ω consisting of events of the form

Ai =
k⋂

p=1

{XM (Bp × Cp) ∈ Γp,i} , A′
j =

⋂̀

q=1

{XM (B′
q × C ′

q) ∈ Γ′
q,j} with Γp,i,Γ

′
q,j ⊆ Z

d
+ ,

with pairwise disjoint bounded Borel sets B1, ..., Bk ⊆ B and B′
1, ..., B

′
` ⊆ B′. Making use of

(5.1) combined with the independence assumption yields the identity

∆(Ai, A
′
j) =

∫

Ω

∫

Ω

(
PAX(B)⊗AX (B′) − PAX(B) × PAX(B′)

)
(Ai ∩A′

j) dPAM (B)⊗AM (B′)

+

∫

Ω

∫

Ω

PAX(B)(Ai)PAX(B′)(A
′
j) d
(
PAM (B)⊗AM (B′) − PAM (B) × PAM (B′)

)
,
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which by (2.8) and the integral form of the total variation confirms (5.2).

5.3 Cox processes on the boundary of Boolean models

Let Ξ =
⋃

n≥1(Ξn + Yn) be a Boolean model, see e.g. [20] , governed by some stationary

Poisson process
∑

n≥1 δYn in R
d with intensity λ > 0 and a sequence {Ξn}n≥1 of independent

copies of some random convex, compact set Ξ0 called typical grain (where we may assume that
o ∈ Ξ0). With the radius functional ‖Ξ0‖ = sup{‖x‖ : x ∈ Ξ0}, the condition E‖Ξ0‖d < ∞
ensures that Ξ is a well-defined random closed set. We consider a marked Cox process XM ,
where the unmarked Cox process X =

∑
n≥1 δXn is concentrated on the boundary ∂Ξ of

Ξ with random intensity measure being proportional to the (d − 1)-dimensional Hausdorff
measure Hd−1 on ∂Ξ. As marks Mn we take the outer unit normal vectors at the points
Xn ∈ ∂Ξ, which are (a.s.) well-defined for n ≥ 1 due to the assumed convexity of Ξ0. This
example with marks given by the orientation of outer normals in random boundary points
may occur rather specific. However, this way our asymptotic results may be used to construct
asymptotic tests for the fit of a Boolean model to a given dataset w.r.t. its rose of directions.
For instance, if the typical grain Ξ0 is rotation-invariant (implying the isotropy of Ξ), then
the Palm mark distribution P o

M of the stationary MPP XM =
∑

n≥1 δ(Xn,Mn) is the uniform

distribution on the unit sphere S
d−1 in R

d. We will now discuss assumptions ensuring that
Condition β(δ) and (3.10) hold, which are required for our CLT (3.2) and the consistent
estimation of the covariances (3.3), respectively. Using slight modifications of the proofs for
Lemmas 5.1 and 5.2 in [13] one can show that for a, b > 0

β
(
AXM

(Ka),AXM
(Kc

a+b)
)
≤ λ 2d+2

(
3 +

4a

b

)d−1

E
(
‖Ξ0‖d1I{‖Ξ0‖ ≥ b/4}

)
.

According to (2.9) we may thus define the β-mixing rates β∗
XM

(r) and β∗∗
XM

(r) for r ≥ 1
2 by

β∗
XM

(r) = c12 E
(
‖Ξ0‖d1I{‖Ξ0‖ ≥ r/4}

)
≥ sup

1/2≤a≤r
β
(
AXM

(Ka),AXM
(Kc

a+r)
)
,

β∗∗
XM

(r) =
c12
rd−1

E
(
‖Ξ0‖d1I{‖Ξ0‖ ≥ r/4}

)
≥ sup

a≥r
a−(d−1) β

(
AXM

(Ka),AXM
(Kc

a+r)
)
,

where c12 = λ2d+27d−1 .

It is easily seen that E‖Ξ0‖2d < ∞ implies r2d−1β∗∗
XM

(r) −→
r→∞

0. Moreover, E‖Ξ0‖2d(p+δ)/δ+ε <

∞ for some ε > 0 ensures
∫∞
1 rd−1

(
β∗
XM

(r)
)δ/(2p+δ)

dr < ∞ for p ≥ 0. Since the random
intensity measure of X on Eo and thus also X(Eo) has moments of any order by virtue of
E‖Ξ0‖d < ∞ , the parameter δ > 0 in Condition β(δ) and (3.10) can be chosen arbitrarily
large. This results in the following lemma.

Lemma 5.2. For the above-defined stationary marked Cox process XM on the boundary of
a Boolean model Ξ with typical grain Ξ0 the assumptions of the Theorems 3.1 and 3.5 are
satisfied whenever

E‖Ξ0‖2d+ε < ∞ for some ε > 0 . (5.3)

Remark: The marked Cox process XM is m−dependent if ‖Ξ0‖ is bounded by some con-
stant. By using approximation techniques with truncated grains as suggested in [13], pp.
299-302, it can be shown that (5.3) is just needed for ε = 0 . Moreover, the statistical
analysis of roses of directions via marked Cox processes applies also in case of non-Boolean
β−mixing fibre processes, see e.g. [12] for Voronoi tessellations.
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6 Simulation study

6.1 Moving average model in R
2

In this section we introduce an m-dependent MPP model, which was used for our simulations
since it allows to control the range of spatial dependence for a fixed Palm mark distribution.
The locations of this MPP are given by a homogeneous Poisson process

∑
n≥1 δXn in R

2. Each

point is marked by a direction in the upper half S1+ of the unit circle. In order to construct
the Palm mark distribution, we consider the projected normal distribution PN2(a,κ) on
S
1. By definition, Y ∼ PN2(a,κ) means that Y = Z

‖Z‖ for some Gaussian random vector

Z ∼ N2(a,κ) in R
2 with an invertible covariance matrix κ. Note that PN2(o, σ

2I2) is
the uniform distribution on S

1 for all σ2 > 0, where I2 is the identity matrix. Formulas

for the density of a projected normal distribution can be found in [19]. Let {M (1)
n }n≥1

be iid N2(o,κ)-distributed random vectors. The stability of the normal distribution w.r.t.
convolution yields

M (2)
n =

∑∞
i=1 M

(1)
i 1I{‖Xi−Xn‖≤ρ}∥∥∥

∑∞
i=1 M

(1)
i 1I{‖Xi−Xn‖≤ρ}

∥∥∥
∼ PN2(o,κ),

for any ρ ≥ 0 controlling the range of dependence. The marks of our model are finally defined

as the axial versions Mn = M
(2)
n 1I

S
+
1
(M

(2)
n )−M

(2)
n 1I

S
−

1
(M

(2)
n ) of the averages M

(2)
n , i.e., points

on the lower half-circle S
1
− are rotated by π. Due to the moving average approach defining the

preliminary marks {M (2)
n }, we call the MPP XM =

∑
n≥1 δ(Xn,Mn) the moving average model

(MAM). The MAM is clearly m-dependent, where the range of dependence is controlled by
the averaging parameter ρ.

6.2 Tests

By simulations of the MAM we investigated the performance of the asymptotic χ2-goodness-
of-fit test, which is based on the test statistic

Tk = Y>
k Σ̂

−1
k Yk

D−→
k→∞

χ2
` .

If (Σ̂)k is chosen as the L2-consistent estimator (σ̂
(3)
ij )k, and (P o

M )0 denotes a hypothetical

Palm mark distribution, the hypothesis H0 : P
o

M = (P o

M )0 is rejected, if Tk > χ2
`,1−α, where α

is the level of significance, and χ2
`,1−α denotes the 1−α-quantile of the χ2

` -distribution. This
test will be referred to as ‘test for the typical mark distribution’ (TMD). The construction of

(σ̂
(3)
ij )k involves the sequence of bandwidths {bk}. By setting

bk = c|Wk|−
3
4d for some constant c > 0, (6.1)

condition (wb), for the L2-consistency of (σ̂
(3)
ij )k, is clearly satisfied. The constant c is crucial

for test performance, as discussed below. This choice of c can be avoided if Σ is not estimated
from the data to be tested but incorporated into H0. This means, we specify an MPP as
null model, such that Σ0 is either theoretically known or otherwise can be approximated by
Monte-Carlo simulation. By means of the combined null hypothesis H0 : P o

M = (P o

M )0 and
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Σ = Σ0, the test exploits not only information on the distribution of the typical mark but
additionally considers asymptotic effects of spatial dependence. The test can thus be used to
investigate if a given point pattern differs from the MPP null model w.r.t. the Palm mark
distribution. We will therefore refer to it as ‘test for mark-oriented goodness of model fit’

(MGM). By the strong law of large numbers and the asymptotic unbiasedness of (σ̂
(2)
ij )k, a

strongly consistent Monte-Carlo estimator for Σ0 in an MPP model XM is given by

Σ̂k,n =
1

n

n∑

j=1

(σ̂
(2)
ij )k(X

(j)
M ),

where X
(1)
M , . . . ,X

(n)
M are independent realizations of XM . Thus, for large k and n the test

statistic Tk,n = Y>
k Σ̂

−1
k,nYk has an approximate χ2

` distribution. If α is the level of signif-

icance, the MGM test rejects H0, if Tk,n > χ2
`,1−α. The estimator Σ̂k,n can also be used

to construct a test for the typical mark distribution if independent replications of a point

patterns are to be tested. In that case X
(1)
M , . . . ,X

(n)
M are the replications. Note that for

replicated point patterns, H0 does not incorporate an assumption on Σ and hence the cor-

responding test differs from the MGM test. The edge-corrected unbiased estimator (σ̂
(1)
ij )k

was not used for the Monte-Carlo estimates in our simulation study, since (σ̂
(2)
ij )k can be

computed more efficiently.

6.3 Model parameters

The MAM was simulated on the observation window W1500 = [−1500, 1500]2 . The expected
number of points was set to EX(W1500) = 3125. The asymptotic behavior of the test was
studied by considering smaller observation windows corresponding to an expected number
of 300, 600, . . . , 3000 points. Spatial stochastic dependence of marks was varied by the
parameter ρ ∈ {0, 50, . . . , 300}. In the MAM, marks of points with distance no larger than
2ρ in general exhibit stochastic dependence. If, on the contrary, two points are separated
by more than 2ρ, their marks are independent. Thus, ρ = 0 corresponds to independent
marking. Deviations of the projected normal distribution from the uniform distribution
on S

1
+ were controlled by varying κ21 ∈ {0, 0.1, 0.2, 0.4, 0.8}, where κ12 = 0 represents the

uniformly distributed case. The parameter κ11 = κ22 = 1 was kept constant. The bins
C1, . . . , C` ∈ B(S1+) for the χ2-goodness-of-fit test were chosen as

Ci =

{
(cos θ, sin θ)T : θ ∈

[
(i− 1)

π

`+ 1
, i

π

`+ 1

)}
, i = 1, . . . , `.

We will discuss the case ` = 8, where the bins had a width of 20◦. Simulations for ` = 17 did
not reveal different general effects.

6.4 Simulation results

All simulation results are based on 10000 model realizations per scenario. Type II errors were
computed for realizations where κ12 6= 0, which means that the mark distribution was not
uniform on S

1
+, whereas H0 : P o

M = U(S1+) hypothesized a uniform Palm mark distribution
on S

1
+ (corresponding to κ12 = 0).

27



Asymptotic goodness-of-fit tests of stationary point processes

The performance of the MGM test is visualized in Tab. 1. Empirical type I errors of the
MGM test were close to the theoretical levels of significance for α = 0.025, 0.05, and 0.1
with maximum deviations of around 0.015. They were hardly affected by the dependence
parameter ρ. Type II errors increased with ρ. Under independent marking (ρ = 0) as well
as for ρ = 50, error levels were close to 0 for κ12 ∈ {0.2, 0.4, 0.8}. However, for an extreme
range of dependence (ρ = 300) even for a strong deviation of the data from a uniform Palm
mark distribution (κ12 = 0.4), rejection rates were only between 30 and 40%. For ρ = 300
the range of dependence corresponds to 20% of the sidelength of W .
Experiments with the TMD test revealed that the choice of the bandwidth parameter c in
(6.1) is critical for test performance (Tab. 3). Whereas large values of c result in small type
I errors, they decrease the power of the test. On the other hand, small values for c lead
to superior power but increase type I errors (Tab. 3). The empirical errors in Fig. 2 were
computed for c = 50 which yielded a reasonable compromise with respect to the two error
types. In comparison to the MGM test the TMD test exhibits a higher sensitivity of empirical
type I errors for varying values of κ12, i.e., w.r.t. deviations from the uniform distribution
on S

1
+. Moreover, type II errors of the TMD test were up to 20% higher than for the MGM

test.
Tab. 3 and Fig. 1 illustrate test performance w.r.t. the mean number of points in W and
the dependence parameter ρ. The simulation experiments were conducted for α = 0.05.
For power analysis, the tested data was simulated for κ12 = 0.4, and thus the Palm mark
distribution strongly differed from the uniform distribution on S

1 of H0. At a mean number of
3000 observed points, H0 was reliably rejected by the TMD test once ρ ≤ 150 (for c = 50). For
ρ ≤ 100 already 2000 expected points were sufficient to reject H0 for almost all realizations.
The MGM test required around 500 points less than the TMD test in order to achieve
comparable rejection rates (Fig. 1).
In summary, our simulation results indicate that the MGM test outperforms the TMD test
especially with respect to power. This result is plausible since the additional information
incorporated into H0 by specification of a model covariance matrix can be expected to result
in a more specific test. It seems difficult to derive a general rule of thumb relating the required
size of the observation window to the dependence structure of the data and the intensity of
the point pattern. However, Fig. 1 and Tab. 3 provide an idea on the practical requirements
for asymptotic testing.
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Table 1: Empirical errors of types I and II for the MGM test.
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Table 2: Empirical errors of types I and II for the TMD test (c = 50).

31



Asymptotic goodness-of-fit tests of stationary point processes

Type I error Type II error

c = 20

mean number of points

ty
pe

 I 
er

ro
r

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0  1000  2000  3000

ρ
0
50
100
150
200
250
300

mean number of points

ty
pe

 II
 e

rr
or

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0  1000  2000  3000

ρ
0
50
100
150
200
250
300

c = 30

mean number of points

ty
pe

 I 
er

ro
r

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0  1000  2000  3000

ρ
0
50
100
150
200
250
300

mean number of points
ty

pe
 II

 e
rr

or

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0  1000  2000  3000

ρ
0
50
100
150
200
250
300

c = 40

mean number of points

ty
pe

 I 
er

ro
r

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0  1000  2000  3000

ρ
0
50
100
150
200
250
300

mean number of points

ty
pe

 II
 e

rr
or

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0  1000  2000  3000

ρ
0
50
100
150
200
250
300

c = 50

mean number of points

ty
pe

 I 
er

ro
r

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0  1000  2000  3000

ρ
0
50
100
150
200
250
300

mean number of points

ty
pe

 II
 e

rr
or

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0  1000  2000  3000

ρ
0
50
100
150
200
250
300

c = 60

mean number of points

ty
pe

 I 
er

ro
r

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0  1000  2000  3000

ρ
0
50
100
150
200
250
300

mean number of points

ty
pe

 II
 e

rr
or

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0  1000  2000  3000

ρ
0
50
100
150
200
250
300

Table 3: Empirical errors of types I and II for the TMD test plotted against the mean
number of points in the observation window (κ12 = 0.4, ` = 8, and α = 0.05). Different
colors correspond to different values of the dependence parameter ρ.
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(a) Type I error
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(b) Type II error

Figure 1: Empirical errors of types I and II for the MGM test plotted against the mean
number of points in the observation window (κ12 = 0.4, α = 0.5). Different colors correspond
to different values of the dependence parameter ρ.
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