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ABSTRACT

The Gabor transformation with a Gaussian window has sev-
eral advantages over classical short time transformationssuch
as the windowed FFT and Wavelets. It allows for perfect
localization in time and frequency according to the absolute
bound expressed by the Heisenberg uncertainty principle. Fur-
thermore the time-frequency resolution can be chosen as de-
sired. This is bought dearly by the necessity of oversampling
and very large windows resulting in high computational and
storage costs. To overcome this disadvantages the FFT can
be used as an underlying technique to speed up the compu-
tation for some rare dedicated time-frequency resolutions. In
this paper the use of the FFT is extended to allow choosing
the time-frequency resolution arbitrarily, by introducing only
a small computational overhead. With the same approach we
show, how to use the FFT to compute the Gabor transforma-
tion on non-separable lattices. The speed-up factors over an
optimized DFT approach range from2.5 to 100.

1. INTRODUCTION

Time-frequency transformations reveal local properties of a
signal. The kind of properties, however, which are revealed
depend strongly on the window and the window length. Mul-
tiwindow techniques are therefore used, to find the best match-
ing window length for a given task (see e.g. [1]). In compar-
ison the human ear has a time frequency resolution, which
closely reaches the physical limit expressed in the Heisen-
berg principle. It is also capable of adapting its current time-
frequency resolution to the current content of the signal in
accordance to the Heisenberg principle (see [2]). With our ap-
proach we lower the computational cost of adapting the win-
dow to the most suitable time-frequency resolution.

1.1. Related Work

The Gabor transformation ([3]) is related to the MLT (Mod-
ulated lapped transform) [4], which has many applications in
audio processing. The MLT is also restricted to very dedi-
cated window lengths and does not use a Gaussian window.

The Gabor transformation has like the DFT a complex-
ity in the order ofO(N2) (see e.g. [5]). There exist two

main approaches, to reduce the complexity: One approach is
based on recursive filters (see e.g. [6]), which lead to a com-
plexity in the order ofO(N). Its main disadvantage is, that
a non-causal recursive filter has to be used. This is possi-
ble in image processing, where the whole image is available,
but not for real-time audio processing. The other approach is
based on the FFT (see e.g. [7]), with a complexity in the order
of O(NlogN). Its disadvantage is, that the possible window
lengths are restricted, as will be discussed later in this paper.
Our approach uses the FFT, but extends its usage to arbitrary
window lengths.

1.2. Outline

We start with some fundamentals about the Gabor transforma-
tion in section 2 and discuss how much oversampling is nec-
essary and how large the window has to be for perfect recon-
struction. In section 3 we extend the technique of computing
the Gabor transformation by the use of the FFT (Fast Fourier
Transform) for some rare fixed window lengths to arbitrary
window lengths. Section 4 presents results of performance
measurements between a DFT and a FFT implementation for
various window lengths and summarizes the main results.

2. GABOR TRANSFORMATION

2.1. Fundamentals of the Gabor transformation

The Gabor transformation splits up a time functionx(t) in its
time-frequency representationX(t, f). In the case of a sepa-
rable lattice, the Gabor transformation is defined as follows:
From a single prototype or windowing functiong(t), which is
localized in time and frequency, a Gabor systemgna,mb(t) is
derived by time shifta and frequency shiftb (see [8]):

gna,mb(t) = e2πjmbtg(t − na), n, m ∈ Z, a, b ∈ R, (1)

a and b are called the lattice constants. The Gabor system
covers the whole time-frequency plane. The Gabor transfor-
mation is than expressed as follows:

cnm = X(na, mb) =

+∞
∫

−∞

x(t)g∗na,mb(t) dt. (2)



cnm are called the Gabor coefficients ofx(t). The inverse
transformation or Gabor expansion is calculated with the win-
dow functionγ(t), which is called dual window ofg(t). With
the Gabor systemγna,mb(t) defined analogously to equation
(1) the Gabor expansion is defined as follows (see [9]):

x(t) =
1

L

∞
∑

n=−∞

∞
∑

m=−∞

cnmγna,mb(t) (3)

with L =
∑∞

k=−∞ |γ(ka)|2. The theory of the Gabor trans-
formation leads to the result, that the window functionsg(t)
andγ(t) and the lattice constantsa andb must fulfill certain
requirements in order to assure the invertibility. The appropri-
ate choices are discussed in the following two sections. For
use in digital signal processing formulas (2) and (3) have tobe
discretized, using sums instead of integrals and sums of finite
length, which is discussed in the last section of this chapter.

2.2. The Gaussian window

The Gaussian window function is given as:

g(t) =
1

√

2πσ2
t

e
− 1

2
t2

σ2
t . (4)

and has the following advantageous properties1 (see e.g. [6]):

• Minimal extent in the time frequency plane according
to the Heisenberg uncertainty principle.

• Localized shape, i.e. only one local and global maxi-
mum with strict decay in time and frequency direction.

The uncertainty principle of Heisenberg says that the prod-
uct of temporal and frequency extent of a window function
has a total lower limit. If the extents are defined in terms of
standard deviations of the window function and of its Fourier
transformation respectively, it can be expressed with the fol-
lowing inequality (see [10]):

σtσf ≥ 1

4π
. (5)

The “=” is only reached for the Gaussian window function
(see e.g. [11]), which therefore has the minimal possible ex-
tent in the time-frequency plane. Its Fourier transformation
has the same Gaussian shape as the time function itself:

G(f) =
1

√

2πσ2
f

e
− 1

2

f2

σ2
f , with σf =

1

4πσt

. (6)

The dual windowγ(t) should also be localized in time and
frequency to preserve the local influence of the Gabor coeffi-
cients on the result of the inverse transformation. This is best

1These properties imply, that the Gaussian window extends toinfinity
and is never truncated. See section 2.4 for a discussion on how to truncate, in
order to preserve these properties.

achieved by the Gaussian as dual window-function again. To
ensure perfect reconstruction some restrictions are imposed
on the choice of lattice constantsa andb as discussed in the
following section.

2.3. Choice of lattice constants and oversampling factor

In his original paper ([3]) Dennis Gabor suggested to choose
ab = 1 which is called critical sampling. This choice has
implicit influence on the shape of the dual window. In fact
with the Balian-Low theorem it can be shown, that in this
case, the dual window extends to infinity and is not localized
at all (see [12]). The solution is to chooseab < 1, which is
referred to as the oversampled case. It leads to better localized
dual windows and numerically stable analysis and synthesis.

We therefore have to determine an appropriate oversam-
pling factor forab < 1. In the literature normally the cases of
rational oversampling (ab = p

q
, p, q ∈ N andp < q) and in-

teger oversampling (ab = 1

q
, q ∈ N) are discussed. Bastiaans

[9] proposes to takeab = 1

3
for which the ideal dual window

of the Gaussian is getting very close to a Gaussian window.
He mentions that for increasing values ofq the resemblance of
the Gaussian window and its dual window further increases.
In simple empirical hearing tests we found that an oversam-
pling factor starting atab = 1

5
avoids hearable differences be-

tween an original and a reconstructed sound in case of using
the same Gaussian window for analysis and synthesis2. This
holds for speech and for full bandwidth music. An oversam-
pling factor ofq = 5 is therefore the necessary and sufficient
accuracy for high quality audio processing.

In the following, if necessary we namea, b for the crit-
ical sampled caseacrit, bcrit and for the oversampled case
aover, bover. The resulting lattice and how it covers the time-
frequency plain is illustrated in figure 1. The gray shaded
circles indicate the extent of a single Gaussian window in the
time-frequency plain expressed in its standard deviationsσt

andσf . To ensure the same overlapping of the Gaussians in
time and frequency direction, we therefore have to set:

σt

σf

=
acrit

bcrit

=
aover

bover

. (7)

With aoverbover = 1

q
this holds for:

aover =
acrit√

q
, bover =

bcrit√
q

. (8)

With formula (6) and formula (7) we can solve:

σt =
1√
4π

√

a

b
,σf =

1√
4π

√

b

a
. (9)

2Sound examples can be found at: http://www.informatik.uni-
augsburg.de/˜boogaart/.



Fig. 1. Coverage of the time-frequency plain for the separable
case: The gray shaded circles indicate the extent of a (1) sin-
gle Gaussian window expressed in its standard deviationsσt

andσf . (2) the critical sampled case and (3) the oversampled
case.

As we will in the following always chooseb and determine
the other values, we write further withab = 1

q
:

σt =
1√
4πq

1

b
,σf =

√

q

4π
b. (10)

With an oversampling factor ofq = 5 and these formulas, it
is feasible to take the Gaussian windowg(t) as its own dual
window γ(t) = g(t). One still has the freedom to choose
either acrit or bcrit, i.e. to choose an appropriate window
length for the current task.

2.4. Discretization and Truncation

The formulas (2) and (3) are for a continuous representation
of x(t) and calculate sums and integrals over infinity. There-
fore they have to be discretized and the sums and integrals
have to be truncated in order to be implemented. This corre-
sponds to bandlimiting and samplingx(t) and to truncating
g(t). x(t) is sampled with the sampling frequencyfs. With
T = 1/fs andk ∈ Z x(t) becomesx(kT ). To fulfill the
sampling theorem, the bandwidthfB of x(kT ) has to fulfill
fB ≤ fs/2 (see e.g. [5])3. We defineM ∈ N as the number
of frequency bands withM = ⌈ 1

2

fs

bover
⌉. With tcut half the

window length, we defineN ∈ N with N = tcutfs = tcut

T
as

half the window length in samples. The Gabor transformation
can then be implemented as:

cnm = X(na, mb) =
1

L

N−1
∑

k=−N

x(kT )g∗na,mb(kT ) (11)

with its inverse:

x(kT ) =
1

L

⌈
kT+tcut

a
⌉

∑

n=⌊
kT−tcut

a
⌋

M−1
∑

m=0

cnmgna,mb(kT ) (12)

3For HiFi audio typical values arefs = 44.1kHz (CD) or higher and
fB = 20kHz.

whereL =
√

q
∑N−1

k=−N |g(ka)|2 andm ∈ [0, M − 1]. We
still have to determinetcut andN respectively, which corre-
spond as mentioned to the truncation of the Gaussian window.
We have chosen empirical listening tests to find an appropri-
ate truncation. The goal was to get a reproduced sound with
no hearable difference from the original sound. We define the
declineD of the Gaussian window from the maximum to the
cut expressed indB as:

D = 20log
g(0)

g(tcut)
dB. (13)

For a givenD we get with (4):

tcut =

√

2ln
(

10
D
20

)

σt. (14)

In our implementation high values forD (up to200dB) have
been tested in10dB increments, but values ofD ≥ 30dB
have shown to be completely sufficient for high quality au-
dio4.

Remark: Storing the Gabor coefficients is very efficient
independent of the time-frequency resolution. A discretized
time signal of durationtdur needsNR = tdurfs real sample
values. The Gabor coefficients need

NC

Gabor =
tdur

a

fB

b
= tdurfBq (15)

complex or

NR

Gabor = 2 · NC

Gabor = 2tdurfBq (16)

real and imaginary values combined for storage. That is for
storage of the Gabor transformationNR

Gabor = q · NR values
are needed, independent of the current time frequency resolu-
tion. This can be further enhanced by settingfB = 20kHz
with fB < fs/2.

3. COMPUTING THE GABOR TRANSFORMATION
BY MEANS OF FFT

3.1. Fundamentals of the FFT

The FFT allows fast implementations of the DFT (Discretized
Fourier Transform) for all cases, where the DFT length is a
power of 2. We use similar naming conventions as for the
Gabor transformation before, in order to stress the similar-
ities. We therefore use2M as the DFT length. The DFT
length is the number of input samples and output frequency
values of the DFT. The DFT is than defined as (see [5]):

X(mb) =
M−1
∑

k=−M

x(kT )e−2πjmk 1
2M (17)

4Sound examples can be found at: http://www.informatik.uni-
augsburg.de/˜boogaart/.



and the IDFT (inverse DFT) is defined as:

x(kT ) =

2M−1
∑

m=0

X(mb)e2πjmk 1
2M . (18)

with m ∈ [0, 2M − 1]. If x(kT ) is real, which of course is
always the case for audio signals, the upper half ofX(mb)
is the flipped, conjugate complex of the lower half ofX(mb)
(see e.g [5]). It is therefore sufficient, to store only the values
X(mb) for m ∈ [0, M − 1] and reconstruct the other values
for inverse transformation. In case of the FFT and the IFFT,
the formulas stay the same with the added constraint, that the
DFT/FFT length is a power of 2.

3.2. Fast Gabor transformation for selected window lengths

We now want to show, how the FFT can be used to compute
the Gabor transformation. We therefore have to consider the
window function and have to adapt the output of the FFT, so
that it matches the lattice of the Gabor transformation.

For a fixed time, e.g.n = 0 the Gabor transformation (11)
can be written as:

c0m =

N−1
∑

k=−N

x(kT )
1

L
g(kT )e−2πjmboverkT . (19)

The window can be understood as part of the signal. We there-
fore define a new signal̂x(kT ) = x(kT ) 1

L
g(kT ) and get with

bover = fs

2M
andT = 1

fs
:

c0m =

N−1
∑

k=−N

x̂(kT )e−2πjmk 1
2M . (20)

Now we have to have a look on the window length and the
number of frequency bands which have to be identically for
the FFT. So eitherM or N have to be changed. We therefore
determineN = tcutfs:

N =

√

2ln
(

10
D
20

)

σtfs =

√

√

√

√

2ln
(

10
D
20

)

4πq

fs

bover

. (21)

With D = 30dB andq = 5 we getN = 0.46891 fs

bover
. In

case of the FFTM is no more rounded and becomes exactly
M = 1

2

fs

bover
= 0.5 fs

bover
. That isN < M . It is therefore

possible, to extend the window length to2M > 2N and to
compute the Gabor transformation as follows:

c0m =

M−1
∑

k=−M

x̂(kT )e−2πjmk 1
2M . (22)

This formula can be realized through a windowed FFT of
x(kT ) everyaover . The inverse Gabor transformation can

be realized by overlapped adding of subsequent IFFT’s. The
upper half ofX(mb) is reconstructed by a flipped, conjugate
complex ofcnm.

Calculating the Gabor transformation by means of the FFT
reduces the computational load greatly. As the FFT only ex-
ists for dedicated lengths, these forces the use of only some
bover = fs

2M
. They are moreover dependent on the sampling

frequencyfs of the original signal. If for some reason a differ-
entbover is needed the only possible solution up to now was
to calculate a much more time consuming DFT. Moreover this
only works for the Gabor transformation on a separable lat-
tice, but not on a non-separable lattice as illustrated in figure
2. The non-separable case is sometimes preferred, because it
is more effective in covering the time-frequency plane. Every
second vector of frequency values is shifted bybover

2
and the

lattice gets a hexagonal structure. The shifted frequency vec-
tors can not be calculated with the FFT in the classical way.

Fig. 2. Coverage of the time-frequency plane for (1) the sep-
arable lattice and (2) the non-separable lattice. In (2) the
shifted frequency vectors can not be calculated with the FFT.

3.3. Fast Gabor transformation for arbritrary window lengths

These hard restrictions can be soften by allowing some com-
putational overhead. An overhead is generally acceptable if
the overall execution duration is still lower than that of a DFT.

It is common practice to zero pad a given signal to a power
of two boundary, if a DFT shall be calculated fast. By this
action, the frequency spacing of the resulting values is also
modified. We follow a very similar idea. By extending the
window from a FFT boundary at2M to a broader window
at the FFT boundary2Ṁ = 2M · 2η (η ∈ N), the density
of frequency values is increased. Instead ofbover = fs

2M
we

get ḃover = fs

2Ṁ
= bover

2η . Because of the frequency-shape of
the window, which is not altered by altering the FFT length,
the frequency values can now be downsampled by a factor
κ ∈ N, κ < 2η, to get äbover = κḃ0ver. Figure 3 explains the
scenario.

For inverse transformation, the skipped values have to be
reconstructed. Again the upper half ofX(mb) is the flipped,



Fig. 3. This illustrates the downsampling cases. The vertical
arrows mark in each casebover. (1) shows a FFT with length
2M and the correspondingbover. (2) shows a FFT with length
2Ṁ = 2M · 2. The blue circles mark a possible frequency
vector for the non-separable lattice with the same lattice con-
stants. (3) shows a FFT with length2Ṁ = 2M · 22. The blue
circles mark a frequency vector generated by downsampling
with factor3. This alters the lattice constants. The resulting
frequency vector with adaptedσt andσf is shown.

conjugate complex ofcnm. The complex frequency signal
has to be sampled up by the factorκ and convoluted with the
reconstruction filter, which is the frequency representation of
the Gaussian window. A convolution in the frequency do-
main corresponds to a (much more efficient) multiplication
in the time domain. The convolution is therefore replaced by
a multiplication with the time representation of the Gaussian
window in the time domain.

4. RESULTS

Figure 4 shows the data of the performance measurements.

Fig. 4. Comparison of computation times in seconds on the
y-axis overbcrit on the x-axis. RT denotes the length of the
file in seconds (realtime-border). As can be seen the FFT
approach outperforms the DFT approach.

Two implementations of the Gabor transformation are com-
pared, one based on the DFT and the other based on the FFT.
Both implementations are highly optimized by making use of
the SIMD instructions of current CPUs. The test signal was
a mono audio file of 252.4sec at 48kHz with 32 bit float-
ing point precision. The compuations where performed on
a AMD Opteron processor with 2.0GHz. The computation
times in seconds on the y-axis are plotted againstbcrit on the
x-axis. The horizontal line denotes the length of the file in
seconds and therefore represents the realtime border. As can
be seen in figure 4 the FFT approach outperforms the DFT
approach. Table 1 shows howbcrit has to be translated into
the relevant parameters of the transformations.

FFT DFT
bcrit n down sec wlen sec speed-up

209,6 9 1 2,99 339 107,36 35,91
196,5 13 15 80,88 363 111,42 1,38
183,4 12 7 27,2 389 118,42 4,35
170,3 13 13 52,4 417 125,73 2,4
157,2 11 3 7,75 453 135,84 17,53
144,1 13 11 45,37 493 150,84 3,32
131,0 12 5 14,2 543 160,63 11,31
117,9 13 9 39,12 603 175,87 4,5
104,8 10 1 3,11 679 202,12 64,99
98,2 14 15 84,9 725 209,62 2,47
91,7 13 7 31,8 777 229,33 7,21
85,1 14 13 56,64 835 244,23 4,31
78,6 12 3 8,5 905 263,43 30,99
72,0 14 11 48,88 987 280,03 5,73
65,5 13 5 17,02 1087 306,75 18,02
58,9 14 9 41,77 1207 348,11 8,33
52,4 11 1 3,27 1359 380,7 116,42

Table 1.

Discussion: For the FFT the casesn = 9, n = 10 and
n = 11 are optimal, because of minimal length and no need
of downsampling. Speed-up factors around 100 have been
measured. They correspond to the standard Gabor transfor-
mation with FFT implementation of the typical FFT lengths
of 512, 1024 and 2048 samples and the corresponding fre-
quency spacing. The in-between cases are successively fill-
ing the intervals in between using our exceeded length and
downsampling approach. They have smaller speed-up values
compared to the DFT approach of down to 2.5. See table 1
for the exact values. The DFT times are strictly monotonic in-
creasing with the window length. The monotony is preserved
for all interim values (see table 1).

The FFT approach outperforms the DFT approach for many
window lengths. The finer the window length is choosen, the
smaller are the the speed-up factors. Also the longer the win-
dow becomes, the better the FFT performs even on very fine
window length rasters.
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