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ABSTRACT main approaches, to reduce the complexity: One approach is

The Gabor transformation with a Gaussian window has seyaased on recursive filters (see e.g. [6]), which lead to a com-
eral advantages over classical short time transformasiocis ~ Plexity in the order ofO(XV). Its main disadvantage is, that -
as the windowed FFT and Wavelets. It allows for perfec@ non-causal recursive filter has to be used. This is possi-
localization in time and frequency according to the absolut ble in image processing, where the whole image is available,
bound expressed by the Heisenberg uncertainty principie. F but not for real-time audio processing. The other approsch i
thermore the time-frequency resolution can be chosen as deased on the FFT (see e.g. [7]), with a complexity in the order
sired. This is bought dearly by the necessity of oversargplinof O(NlogN). Its disadvantage is, that the possible window
and very large windows resulting in high computational andengths are restricted, as will be discussed later in thiepa
storage costs. To overcome this disadvantages the FFT c&#/r approach uses the FFT, but extends its usage to arbitrary
be used as an underlying technique to speed up the comptyindow lengths.
tation for some rare dedicated time-frequency resolutitms
this paper the use of the FFT is extended to allow choosing.2. Outline
the t|me-frequengy resolution arbltrarlly, by introdugianly \We start with some fundamentals about the Gabor transforma-
a small computational overhead. With the same approach we . . L
fon in section 2 and discuss how much oversampling is nec-
show, how to use the FFT to compute the Gabor transforma- .
! : essary and how large the window has to be for perfect recon-
tion on non-separable lattices. The speed-up factors aver & ; . : .
optimized DFT approach range frarb to 100 struction. In section 3 we extend the technique of computing
' the Gabor transformation by the use of the FFT (Fast Fourier
Transform) for some rare fixed window lengths to arbitrary
1. INTRODUCTION window lengths. Section 4 presents results of performance

ime-f ‘ _ | local " measurements between a DFT and a FFT implementation for
Time-frequency transformations reveal local propertiea o 46,5 window lengths and summarizes the main results.
signal. The kind of properties, however, which are revealed

depend strongly on the window and the window length. Mul-
tiwindow techniques are therefore used, to find the besthmatc
ing window length for a given task (see e.g. [1]). In compar-
ison the human ear has a time frequency resolution, whic
closely reaches the physical limit expressed in the HeisernFhe Gabor transformation splits up a time functigim) in its
berg principle. It is also capable of adapting its curremeti  time-frequency representation(z, f). In the case of a sepa-
frequency resolution to the current content of the signal irrable lattice, the Gabor transformation is defined as fatow
accordance to the Heisenberg principle (see [2]). With pur a From a single prototype or windowing functig(¥), which is
proach we lower the computational cost of adapting the wintocalized in time and frequency, a Gabor system ., (¢) is
dow to the most suitable time-frequency resolution. derived by time shift: and frequency shifi (see [8]):

2. GABOR TRANSFORMATION

%.1. Fundamentals of the Gabor transfor mation

1 1 Related Work gna,mb(t) = eQﬂ—jmbtg(t - na), n,m S Z7 a, b S Ra (1)

The Gabor ransfomation (3) s relted t he MLT (o £ 2101 12 e e ftice constants e Sabar oytem
ulated lapped transform) [4], which has many applications i mation is than expressed as follows:

audio processing. The MLT is also restricted to very dedi-

cated window lengths and does not use a Gaussian window. o
The Gabor transformation has like the DFT a complex- Cnm = X (na, mb) = / 2(t)Gna,mp(t) dt. (2
ity in the order ofO(N?) (see e.g. [5]). There exist two
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cnm are called the Gabor coefficients oft). The inverse achieved by the Gaussian as dual window-function again. To
transformation or Gabor expansion is calculated with the wi ensure perfect reconstruction some restrictions are igtpos
dow functiory(¢), which is called dual window aj(¢). With  on the choice of lattice constantsandb as discussed in the
the Gabor system,,, ms(t) defined analogously to equation following section.

(1) the Gabor expansion is defined as follows (see [9]):

.I'(t) :% Z Z Cnm')/na,mb(t) (3)

n=—00 m=—00 In his original paper ([3]) Dennis Gabor suggested to choose
. - ) ab = 1 which is called critical sampling. This choice has
with L = >~ _ . [y(ka)|”. The theory of the Gabor trans- jmpjicit influence on the shape of the dual window. In fact
formation leads to the result, that the window functigii§  ith the Balian-Low theorem it can be shown, that in this
and~(t) and the lattice constantsandb must fulfill certain ¢ase the dual window extends to infinity and is not localized
requirements in order to assure the invertibility. The appr 5t g)| (see [12]). The solution is to choosk < 1, which is
ate choices are discussed in the following two sections. FQkferred to as the oversampled case. It leads to betteidedal
use in digital signal processing formulas (2) and (3) hav®to qy3| windows and numerically stable analysis and synthesis
discretized, using sums instead of integrals and sums & fini  \ve therefore have to determine an appropriate oversam-
length, which is discussed in the last section of this ctapte jing factor forab < 1. In the literature normally the cases of
rational oversamplingap = %, p,q € Nandp < ¢) and in-

teger oversamplingp = % g € N) are discussed. Bastiaans

2.3. Choice of lattice constantsand over sampling factor

2.2. The Gaussian window

The Gaussian window function is given as: [9] proposes to takeb = % for which the ideal dual window
) of the Gaussian is getting very close to a Gaussian window.
_ 1 —3,7 He mentions that for increasing values,dhe resemblance of
g(t) = e i (4) Aadule : . .
\2mo? the Gaussian window and its dual window further increases.

In simple empirical hearing tests we found that an oversam-
and has the following advantageous propettisee e.g. [6]):  pling factor starting ath — 1 avoids hearable differences be-
tween an original and a reconstructed sound in case of using
the same Gaussian window for analysis and syntheSisis
holds for speech and for full bandwidth music. An oversam-
e Localized shape, i.e. only one local and global maxi-pling factor ofq = 5 is therefore the necessary and sufficient

mum with strict decay in time and frequency direction. accuracy for high quality audio processing.

The uncertainty principle of Heisenberg says that the prod- In the following, if necessary we name b for the crit-

uct of temporal and frequency extent of a window functionICaI sampled Case”“’.bc”t a}nd for the oyersampled case
has a total lower limit. If the extents are defined in terms 01?0””’ Dover- lThe .res#ltl?g:a(tjtlc.:e ?nd hOXV |tTcrc])vers thert]"”rée'd
standard deviations of the window function and of its Faurie | ca-€Ncy piain IS ifustrated in igure =. € gray shade

transformation respectively, it can be expressed with dhe f circles indicate the extent of a single Gaussian windowén th
lowing inequality (see [10])_’ time-frequency plain expressed in its standard deviatigns

ando. To ensure the same overlapping of the Gaussians in

e Minimal extent in the time frequency plane according
to the Heisenberg uncertainty principle.

1 [ irecti :
oo > = (5) time and frequency direction, we therefore have to set
47
. . . . Ot o Gerit o Gover 7
The “=" is only reached for the Gaussian window function or b b )
f crit over

(see e.g. [11]), which therefore has the minimal possible ex
tent in the time-frequency plane. Its Fourier transforewati \wjth o, 5.... = L this holds for:
has the same Gaussian shape as the time function itself: K

1 -iL 1 over = I Doper = - 8)
G(f) = e 7% withoy = ——. 6 »Dover
(f) N = ® Vi Vi

With formula (6) and formula (7) we can solve:
The dual windowy(t) should also be localized in time and

frequency to preserve the local influence of the Gabor coeffi- 1 \/E 1 \/3 ©)
. . . . op = 2o = e
cients on the result of the inverse transformation. Thiseist b Vi T iz Va
1These properties imply, that the Gaussian window extendsfitaity
and is never truncated. See section 2.4 for a discussionwdtouncate, in 2Sound examples can be found at:  http://www.informatik.uni

order to preserve these properties. augsburg.de/"boogaart/.



2 _ e wherel = \/q Sty lg(ka)|® andm € [0, M — 1]. We

still have to determine.,; and N respectively, which corre-

spond as mentioned to the truncation of the Gaussian window.
t 3 We have chosen empirical listening tests to find an appropri-
m+1 : H

ate truncation. The goal was to get a reproduced sound with
no hearable difference from the original sound. We define the
declineD of the Gaussian window from the maximum to the
cut expressed B as:

a it aover
- D = 20log g?t(o) dB. (13)
Fig. 1. Coverage of the time-frequency plain for the separable . _ et
case: The gray shaded circles indicate the extent of a (1) sifror a givenD we get with (4):
gle Gaussian window expressed in its standard deviatipns
andoy. (2) the critical sampled case and (3) the oversampled tour = 1/ 20N (10%)% (14)

case.

In our implementation high values f@ (up to200dB) have
As we will in the following always choosg and determine been tested ii0dB increments, but values dP > 30dB

the other values, we write further witlh = %: have shown to be completely sufficient for high quality au-
dio*.
o — 1 1 or =Ly (10) Remark: Storing the Gabor coefficients is very efficient
t — O f — . . . . . .
VAamq b 4m independent of the time-frequency resolution. A discestiz

t time signal of duratiort,,,, needsN® = t4,, f, real sample

With an oversampling factor af = 5 and these formulas, i 4
values. The Gabor coefficients need

is feasible to take the Gaussian windg) as its own dual

window ~(t) = ¢(¢). One still has the freedom to choose c taur fB
A . S . . N, = -0 = tdur.qu (15)
eithera.,;; or b..;, i.e. to choose an appropriate window Gabor PR
length for the current task.
complex or
2.4. Discretization and Truncation Ngabor —9. Ngabor = 2aur [BY (16)

The formulas (2) and (3) are for a continuous representatlorneal and imaginary values combined for storage. That is for

of z(t) and calculate sums and integrals over infinity. There- torage of the Gabor transformatioi _ 4+ NRvalues
fore they have to be discretized and the sums and integrazsre needed, independent of the currear?ﬁime frequencyuresol
have to be truncated in order to be implemented. This CoMme: = This c,an be further enhanced by settifig — 20k
sponds to bandlimiting and samplingt) and to truncating with.f < f./2 y o &
g(t). z(t) is sampled with the sampling frequengy. With B she

T =1/fs andk € Z xz(t) becomese(kT"). To fulfill the

sampling theorem, the bandwidfty of z(kT) has to fulfill 3. COMPUTING THE GABOR TRANSFORMATION
fB < fs/2 (see e.g. [5P. We defineM e N as the number BY MEANSOF FFT

of frequency bands witd/ = [%bofv—T} With ¢.,; half the
window length, we defin@/ € N with N = t.,. f; = “ as
half the window length in samples. The Gabor transformatiorrhe FFT allows fast implementations of the DFT (Discretized
can then be implemented as: Fourier Transform) for all cases, where the DFT length is a
N—1 power of 2. We use similar naming conventions as for the
Cm = X (na, mb) = 1 Z e(kT)g:, , (kT)  (11) _G_abor transformation before, in order to stress the similar

' ities. We therefore useM as the DFT length. The DFT

3.1. Fundamentalsof the FFT

k=—N
o length is the number of input samples and output frequency
with its inverse: values of the DFT. The DFT is than defined as (see [5]):
1 [Fet] M1 M1
kD) =7 D D Comnam(T)  (12) X(mb)= Y a(kT)e 2mimkzin (17)
n:LkaatcutJ m=0 k=—M
SFor HiFi audio typical values ar¢s = 44.1kHz (CD) or higher and 4Sound examples can be found at:  http://www.informatik.uni

fB =20kHz. augsburg.de/"boogaart/.



and the IDFT (inverse DFT) is defined as: be realized by overlapped adding of subsequent IFFT’s. The
upper half ofX (mb) is reconstructed by a flipped, conjugate
7 dmjmk gk complex ofc,, .
(kT) = Z X (mb)e™ . (18) Calculating the Gabor transformation by means of the FFT
m=0 reduces the computational load greatly. As the FFT only ex-
with m e [0,2M — 1]. If z(kT) is real, which of course is ists for ded|cated lengths, these forces the use of only some

always the case for audio signals, the upper halk@fnb)  bover = 3i7. They are moreover dependent on the sampling
is the flipped, conjugate complex of the lower halfxtmb)  frequencyf; of the original signal. If for some reason a differ-

(see e.g [5]). Itis therefore sufficient, to store only theiea ~ €Ntboue, iS Needed the only possible solution up to now was
X (mb) for m € [0, M — 1] and reconstruct the other values to calculate a much more time consuming DFT. Moreover this
for inverse transformation. In case of the FFT and the IFFTONly works for the Gabor transformation on a separable lat-

the formulas stay the same with the added constraint, teat tHice, but not on a non-separable lattice as illustrated réig
DFT/FFT length is a power of 2. 2. The non-separable case is sometimes preferred, betause i

is more effective in covering the time- frequency plane.rgve
3.2. Fast Gabor transformation for selected window lengths second vector of frequency values is shﬁted—legf— and the
lattice gets a hexagonal structure. The shifted frequency v
We now want to show, how the FFT can be used to computtrs can not be calculated with the FFT in the classical way.
the Gabor transformation. We therefore have to consider the
window function and have to adapt the output of the FFT, so
that it matches the lattice of the Gabor transformation. 4 f
For afixed time, e.gn = 0 the Gabor transformation (11) 1 2
can be written as:

2M—1

N-1
1 .
Com =) I(kT)zg(kT)e*Q’fﬂmbwkT. (19)  boe Bover

. I ) :

The window can be understood as part of the signal. We there- s i
fore define a new signél(kT) = z(kT)+g(kT) and get with

f -~ aover -~ aover
bover = 2]61 andT = - Separable lattice Non-separable lattice
N—-1 . .
B . —omimk oL, Fig. 2. Coverage of the time-frequency plane for (1) the sep-
Com = kZNI(kT)e o (20)  arable lattice and (2) the non-separable lattice. In (2) the

shifted frequency vectors can not be calculated with the FFT
Now we have to have a look on the window length and the
number of frequency bands which have to be identically for

the FFT. So eithef/ or IV have to be changed. We therefore 3.3, Fast Gabor transformation for arbritrary window lengths

determineN =ty fs:
e These hard restrictions can be soften by allowing some com-

putational overhead. An overhead is generally acceptéble i
oln ( 02 ) the oyerall execution o_iuration is still Iower thar_1 that of @D
[s . (1) Itis common practice to zero pad a given signal to a power
4tq  bover of two boundary, if a DFT shall be calculated fast. By this
action, the frequency spacing of the resulting values is als
With D = 30dB andq = 5 we getN = 0.46891;— = In  modified. We follow a very similar idea. By extending the
case of the FFTV is no more rounded and becomes exactlywindow from a FFT boundary &M to a broader window

N =/2In (102—’%) orfs =

M = 5 = 055 I= ThatisN < M. ltis therefore at the FFT boundargM = 2M - 2" (y € N), the density
pOSS|bIe ’to extend the wmdow length2d/ > 2N and to  of frequency values is increased. Instead®f, = 2}‘1\5{ we
compute the Gabor transformation as follows: geti)over _ fs bozuner Because of the frequency-shape of
M1 the window, which is not altered by altering the FFT length,
Com = Z jj(kT)efmrjmk;W _ (22) the frequency values can now be downsampled by a factor
Py k €N,k < 2" to get Aoper = Kboper- Figure 3 explains the
scenario.

This formula can be realized through a windowed FFT of For inverse transformation, the skipped values have to be
z(kT) everyaower. The inverse Gabor transformation canreconstructed. Again the upper half &{mb) is the flipped,
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Two implementations of the Gabor transformation are com-
pared, one based on the DFT and the other based on the FFT.
Both implementations are highly optimized by making use of
the SIMD instructions of current CPUs. The test signal was
a mono audio file of 252.4ec at 48k H » with 32 bit float-

ing point precision. The compuations where performed on
a AMD Opteron processor with 2@ Hz. The computation
times in seconds on the y-axis are plotted agdinst on the
x-axis. The horizontal line denotes the length of the file in
seconds and therefore represents the realtime border.ms ca
be seen in figure 4 the FFT approach outperforms the DFT

Fig. 3. This illustrates the downsampling cases. The verticahpproach. Table 1 shows hadw;.;; has to be translated into

arrows mark in each ca$g,.,. (1) shows a FFT with length
2M and the correspondirtg,.-. (2) shows a FFT with length
2M = 2M - 2. The blue circles mark a possible frequency|
vector for the non-separable lattice with the same lattize ¢
stants. (3) shows a FFT with leng2ti/ = 2/ - 22. The blue

circles mark a frequency vector generated by downsamplin
with factor3. This alters the lattice constants. The resulting

the relevant parameters of the transformations.

frequency vector with adapted ando s is shown.

conjugate complex of,,,. The complex frequency signal

has to be sampled up by the factoand convoluted with the
reconstruction filter, which is the frequency represeatatif

the Gaussian window. A convolution in the frequency do
main corresponds to a (much more efficient) multiplicatio

in the time domain. The convolution is therefore replaced by

a multiplication with the time representation of the Gaassi
window in the time domain.

4. RESULTS

Figure 4 shows the data of the performance measurements.

4001
3754
3501

W FFT
& DFT
325 vRT
300
275
2503
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175
1501
125+
1009
754
50
25

0 T T —T T T T T T —T T T
209 196 183 170 157 144 131 117 104 98 91 85 78 72 65 58 52

FFT DFT
berit n | down sec|| wlen sec || speed-up
209,6( 9 1| 299 339| 107,36 35,91
g196,5| 13 15| 80,88|| 363 | 111,42 1,38
183,4 || 12 7| 27,2| 389 118,42 4,35
170,3| 13 13| 52,4 417 125,73 2,4
157,2|| 11 3| 7,75|| 453 135,84 17,53
144,1| 13 11| 45,37|| 493 | 150,84 3,32
131,01 12 5| 14,2|| 543 160,63 11,31
117,9| 13 9| 39,12|| 603| 175,87 4,5
104,8| 10 1| 3,11 679| 202,12 64,99
98,2 | 14 15| 84,9| 725 209,62 2,47
L, 91,7 13 7| 31,8| 777 229,33 7,21
85,1| 14 13 | 56,64 || 835 | 244,23 4,31
78,6 || 12 3 8,5 905 | 263,43 30,99
72,0| 14 11| 48,88|| 987 | 280,03 5,73
65,5| 13 51 17,02|| 1087 | 306,75 18,02
58,9 | 14 9| 41,77 1207 | 348,11 8,33
52,4 | 11 1| 3,27| 1359| 380,7 116,42
Table 1.

Discussion: For the FFT the cases = 9, n = 10 and
n = 11 are optimal, because of minimal length and no need
of downsampling. Speed-up factors around 100 have been
measured. They correspond to the standard Gabor transfor-
mation with FFT implementation of the typical FFT lengths
of 512, 1024 and 2048 samples and the corresponding fre-
quency spacing. The in-between cases are successively fill-
ing the intervals in between using our exceeded length and
downsampling approach. They have smaller speed-up values
compared to the DFT approach of down to 2.5. See table 1
for the exact values. The DFT times are strictly monotoric in
creasing with the window length. The monotony is preserved
for all interim values (see table 1).

The FFT approach outperforms the DFT approach for many

Fig. 4. Comparison of computation times in seconds on theyindow lengths. The finer the window length is choosen, the

y-axis overb..;; on the x-axis. RT denotes the length of the

smaller are the the speed-up factors. Also the longer the win

file in seconds (realtime-border). As can be seen the FFfow becomes, the better the FFT performs even on very fine

approach outperforms the DFT approach.

window length rasters.
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