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Figure 1: Stanford teams’ VW Touareg with 5 lasers and a video 

camera mounted on the roof.
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ABSTRACT 
The 2005 DARPA Grand Challenge is a 132 mile race through the desert with autonomous robotic vehicles. Lasers 
mounted on the car roof provide a map of the road up to 20 meters ahead of the car but the car needs to see further in 
order to go fast enough to win the race. Computer vision can extend that map of the road ahead but desert road is 
notoriously similar to the surrounding desert. The CART algorithm (Classification and Regression Trees) provided a 
machine learning boost to find road while at the same time measuring when that road could not be distinguished from 
surrounding desert. 
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1. INTRODUCTION 
The DARPA Grand Challenge took place near Primm, Nevada on October 8th, 2005.  The GPS (Global Positioning 
System) waypoints were delivered 2 hours before the race and programmed into the robotic vehicles. The winner of the 
race had to complete the course in 10 hours or less and with a time better than all the other entrants to win the $2m 
prize. The complete DARPA rules are found online at http://www.darpa.mil/grandchallenge/. The work for this paper 
was done in collaboration with the Stanford University Grand Challenge Team (http://www.stanfordracing.org/.) The 
Stanford team had the best time at 6 hours, 53 minutes, 11 minutes faster than the nearest competitor. 

There are a variety of technical challenges 
involved in an undertaking of this complexity. 
The purpose of this paper is to focus on how 
computer vision can reliably contribute to the 
teams’ effort by integrating the vision 
subsystem with the other sensors on the car. 

The core assumption for the vision subsystem is 
that the car uses a laser subsystem to reliably 
identify a drivable corridor and the obstacles in 
the close vicinity of the car. However, the laser 
system has limitations on how much of the road 
ahead can be mapped and thus limiting the car’s 
speed. Whenever a new obstacle comes up in 
the close vicinity or the drivable corridor is 

changing, the car must be slow enough so that either it can be brought to a complete halt in time in front of the obstacle 
or can follow a new drivable corridor. The computer vision subsystem receives a projection of the drivable corridor 
from the laser subsystem and matches similar pixels into the video image.  If the additional pixels extend that projection 
of the drivable corridor, the car can go at a much faster speed. 

More expensive lasers with greater range may be mounted on top of the car but as the range increases, the projective 
geometry makes the precision increasingly dependent on the accuracy of the pose estimation of the car. Any error in the 
pose estimation increases with the distance from the car.  For the purpose of this paper, the lasers are assumed to be 
accurate only up to 20m ahead of a moving car.   

Software Availability: The software for this paper is written as a C++ object that is running on Windows XP® and 
Linux (only Linux is available on the car.) Its portability is enabled through Intel’s Open Computer Vision library [2], 
freely available on the web at SourceForge.net. The source code for this paper is available at http://www.multimedia-



computing.de/Code/GrandChallenge/ together with 11 video examples of desert rides and 1000 randomly chosen and 
manually labeled ground truth images. The labeled images mark the street, the shadow of the car on the street as well as 
the car hood. This test set is used to evaluate the performance of the proposed methods. 

The latest edition of the OpenCV Library contains a number of machine learning algorithms, including Classification 
and Regression Trees (CART), used for this analysis. In case that this latest release is not yet available at publication 
time, users will have to replace the two functions for learning and classification by calls to some other machine learning 
library. The use of the Intel® Performance Primitives library [3] is optional but enhances the performance of the 
OpenCV library as does the use of Intel’s C++ compiler [7]. All these libraries and tools are available on Linux as well 
as Windows XP. 

2. BASIC METHODOLOGY 
As mentioned in the introduction the car is equipped with lasers in order to predict reliably a drivable, obstacle-free 
corridor in front of the car. We call this drivable corridor the laser brick. However, the laser subsystem can only predict 
the laser brick as far ahead as the projective geometry is accurate (see Figure 4 for an example of a laser brick). This is 
not sufficiently far for driving at fast speeds. Therefore a forward-looking camera is mounted on the car, which the 
vision system will use to extend the road path beyond the projection of the laser brick. 

Thus there are two kinds of input sources to the vision system (see Figure 2):  (1) the video and (2) the laser brick from 
the laser subsystem. The laser brick identifies a subset of the actual road pixels in the video. The probability of error is 
very low. On a set of 1000 randomly selected test images from 11 test videos, the average number of falsely labeled 
pixels was slightly less than 9%. In other words more than 91% of all pixels in the laser brick actually represent road. 
This is an error rate most learning algorithms can deal with. 

There are two principle ways of learning: discriminant learning or learning generative models. While generative models 
can explain the observed feature distribution, they usually have a lower classification performance than discriminant 
learners. Therefore, we made the design choice to use a discriminate learner. As we will see in the experimental results, 
the performance is significantly higher than a competitive generative model. 

All supervised discriminant learning algorithms 
require labeled positive and negative training 
examples. Therefore, based on the two input 
sources the vision system extracts samples of 
pixels labeled as road and non-road. At this step 
it is not required to label all pixels, but only 
those pixels of which we can assume with high 
probability that our labeling is correct. From 
these pixels we derive features on which a 
classifier is trained. For efficiency reasons (fast 
training at decent classification performance) 
and its tolerance to outliers CART is used [5], 
[10]. We will explore in the experimental results 
section how much performance we could gain 
using a non real-time learning algorithm such as 
Boosting [7]. 

CART trains on the features of the pixels labeled 
as road and non-road on a frame by frame basis 
to build a decision tree that will determine if 
each pixel in the image is road or non-road. 
Once the training is complete on a frame, all the pixels in the frame are predicted to be road or non-road using the 
decision tree that CART produced. A confusion metric will be used to test whether the result seems plausible or must be 
rejected for inconsistency. If it is plausible, the extrapolated road path or drivable corridor is refined by connected 
component analysis and reported back to the driving control program or planner. Otherwise an empty image is reported 
back indicating that the vision system was not able to provide any reliable information.  

Each pixel labeled either as
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Figure 2: Overview of the road segmentation approach. 



 
Figure 4: The darkened triangle of the area in 
front of the car is the projection of the laser data 
into the 2D image from the camera. It is called the 
laser brick. 

 
Figure 3: The road is often obscured by shadow.

This overall approach is summarized in Figure 2. We will see that shadow detection will play a crucial role in 
determining appropriate road and non-road pixels. Therefore, we first turn our focus to the problems that shadows cause 
and how shadow can be detected. 

2.1. Shadows 
Shadow Problem:  In image acquisition uneven lighting such as strong shadows under the bright California sun 
produce severe problems due to the limited dynamic range of CCD sensors. Either the camera’s gain control adapts to 
the bright, shadow-free parts or to the shady parts of the image whichever is larger. In the first case, shadow pixels are 
dark and show little structure.  In the second case, structure is clearly visible in the shaded areas but the bright parts are 
completely overexposed and all content is blurred. In neither case is the whole visual content of the scene captured; one 
part will always lack information (see Figure 3).  

A practical solution to the shadow problem is to assume that only the laser can see in shadow. This means that if the 
road is covered in shadow (as in Figure 3), then video cannot provide any benefit and the car must go slow. While this 
may seem restrictive, most shadow occurs in mountainous terrain where the car must go slow anyway.  

There are several ways to enhance the camera’s ability to see in 
shadows such as adding a second camera that overexposes 
well-lighted areas to gather a good color spectrum in the 
shadows or possibly clustering separately the pixels that are in 
shadow and later merging them with the well-lighted regions. 
However, these alternatives are not considered in this paper. 
The number of computers on board is limited and only so 
much capacity can be allocated to vision. Solving the problem 
of finding road when the road and surroundings are in full 
daylight is hard enough. 

Defining Shadows: Estimating what is shadow is pretty 
straightforward – it means applying a threshold value to a 
grayscale image. If the image contains a pixel below that 
threshold, it is considered too dark to have any valuable data 

and the pixel is added to the mask for shadow.  There is a secondary value to knowing where shadow occurs: it defines 
where land is. One of the more difficult regions to outline and mask off is the sky.  It is a safe assumption that there are 
no shadows in the sky (even dark clouds are well-illuminated) so when shadows are present, the accompanying pixels 
are likely to be land. 

One solution to finding the top of the land mass ahead of the 
car is to scan through the image from top to bottom counting 
pixels of shadow. As soon as there are a significant number 
of shadow pixels, the region above the scan contains both 
sky and horizon land. In steep hills it is possible to find 
shadows and not have all of the sky – look again at Figure 3 
with its steep hillside – but while not all the sky pixels may 
have been found, many pixels of sky and horizon land will 
be above the scan line. This horizon land will figure in the 
estimation of non-road later in the methodology. But there is 
a further complication with shadow: the area that the laser 
has defined as road may be in shadow. If this happens, then 
finding road is impractical because there must be some 
definition of road that is well-illuminated. The algorithm 
will have to skip any frame if too little of the laser brick in 
front of the car is well illuminated.   

 

 



 
Figure 5: The top mask is an initial estimate of non-road while the bottom mask defines road. 

2.2. Defining Road Samples 
The lasers mounted on top of the car (see Figure 1) are able to accurately scan the road ahead and build a 3D model for 
a limited distance. The lasers only scan in a single line on any pass but there are some 180 scans per second. An Inertial 
Measurement Unit (IMU) is used to compute the pitch and roll of the car while the scan lines are collected. The IMU 
information and the laser data are integrated and synchronized using carefully calibrated timing to flesh out the 3D 
model of the road. A description of the use of the lasers can be found in [8], but that reference does not include the 
calculation of the pitch and roll of the car. More information on the pitch and roll problem may be found at [9].  

The laser software produces a 3D map of the road ahead. The precise geometry of the camera mounted on the roof of 
the car coupled with that 3D laser map enables the laser software to project an approximate outline of the car’s expected 
path into the 2D image produced by the camera. Figure 4 shows what a typical projection of the laser path looks like. 
Note that the laser often marks as road the flat but rough area next to the road, even including some small plants.  
Whatever algorithm is used to find road must be robust in light of the fact that the quality of the data may vary for the 
labeled road and non-road regions. A small amount of noise up to 10% should always been assumed. 

The pixels labeled as the laser brick are used to identify road when building the decision tree with CART. Thus the laser 
brick provides the definition of road for the labeled input to the classification. Once road is defined, the opposite of road 
– non-road – must then be defined in order to train. 

2.3. Defining Non-Road Samples 
CART requires examples of both road and non-road to build a decision tree that separates road and non-road. So far, 
there is only a definition of road with the laser brick. There are a multitude of methods to define non-road and this is an 
area ripe for innovation and experimentation.   

The method that was used for this paper and software was to create an initial estimate of non-road using the horizon 
land. When the shadow mask was built, the first shadows scanning the image from top to bottom define the horizon 
land. Along the horizon, almost all the land mass is non-road and physically distant from the car. Note that even though 
the horizon land may be far in the distance, it may still be similar to the road in color and texture. Figure 5 shows an 
image with the masks for the non-road area as well as the laser brick. The basic shape of an initial estimate of non-road 
is a rectangle with horizon land at the bottom extending upwards to the top of the image. However, a gap in the horizon 
land centered on the laser brick is added because the road may extend to the horizon. In addition, the non-road mask is 
extended at the sides of the image to include non-road areas that are close to the car. The non-road mask should not 
extend any lower in the image than the top of the laser brick.   

Note that the sky is entirely included in the non-road mask.  Sky is just another non-road area. Any methodology must 
also handle images that do not have any sky and one of the benefits of this initial estimate of the non-road area is that 
there is no dependence on sky being present in the image. The method for finding the horizon land mass finds the sky 
because it starts including non-road at the top of the image and keeps including horizontal rows of pixels until a 
significant amount of shadow is found. The initial estimate of the non-road area may include some road. Just as the 
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Figure 6: The image on the left highlights the raw results of road prediction. There are many pixels similar to the 
road throughout the image. The image on the right shows the original image where the white box at the top 
indicates that too many non-road pixels were identified as road and that there is too much ambiguity in the image.   

definition of road from the laser may include some non-road colors and textures, the mask for the non-road will 
inevitably include some road. The classification learning algorithm needs to allow for some error in both masks. 

2.4. Confusion Metrics 
If the non-road mask includes a lot of road pixels (or hillside pixels that just happen to look like road), the classification 
will produce results that essentially indicate confusion or ambiguity. The definitions of road and non-road will be too 
similar to each other. There are 2 measures of this confusion that objectively decide that the image is ambiguous: (1) a 
lot of road in the laser brick is predicted to be non-road; or (2) a lot of the non-road mask is predicted to be road. If 
either of these conditions occurs, then the image contains too much ambiguity to segment properly. When ambiguity is 
detected, the algorithm does not produce a mask to extend the road beyond the laser brick. The thresholds for these 
measures are set empirically using the videos collected in the desert.   

Figure 6 shows a pair of images that demonstrate what confusion looks like. The raw prediction of road pixels on the 
left shows many pixels that are the same color as the road but are clearly not road. In the event that too much of the non-
road mask is predicted to be road, the vision algorithm will enter a confused state where the road is indeterminate. The 
mapper (a separate subsystem on the car) is collecting all the projections of road, so it is not a problem if no road is 
identified for a few images. But if there are no recent images that show where the road is, the vehicle must slow down 
enough so that its stopping distance is less than 20 meters. 

2.5. Refining Non-Road Mask 
If the previous frame was correctly segmented into road and non-road (without confusion), the prediction for non-road 
pixels from that previous frame is used as the estimate of non-road in the current frame. The motivation for this is to 
improve the estimate of non-road. The automated initial estimate of road is comparatively a crude estimate. The initial 
estimate of the road is only used to begin this cycle of progressively improving and tracking the definition of non-road. 
All of the work defining the initial estimate of the road is done only until the road is correctly segmented. While there 
will be differences between frames because of the motion of the car, this definition of non-road is often much better 
than the initial estimate and, as a result, CART will produce a better decision tree.   

2.6. Road Refinement 
Some conventional computer vision techniques are applied to the results of prediction for each pixel. The reason for this 
is to eliminate non-road areas that are similar to the road but not connected to the actual road as defined by the laser 
brick. The results are eroded and then restored with dilation. Then a flood fill is applied to the laser brick so that only 
road pixels attached to the laser brick are identified as road in the final results.   



 
Figure 7: The image on the left contains the raw results of prediction. The image on the 
right contains the identified road after erosion and flood fill have isolated the road pixels.   

Figure 7 shows the raw results of prediction after a typical frame has been processed. The frame on the right in Figure 7 
shows what happens after the erosion, dilation, and flood fill have taken place. Only those pixels connected to the laser 
brick are shown as road. 

3. CART MODEL AND ITS PERFORMANCE 
In Section 2 we have described our overall methodology together with how masks for road and non-road pixels for 
training are derived. We left out three important aspects:  
 

(1) What features should be extracted for the classifier? 
(2) Why did we choose CART over other classifiers? 
(3) How do we achieve real-time performance? 

In the following we will address these questions. 

3.1. Features 
There are many possible choices with respect to the features that can be derived from the pixels marked as road and 
non-road. Some examples are the mean and standard deviation for surrounding pixels (of varying sizes and shapes 
around the pixel of interest), canny edges [15], color correlation vectors [14] or Sobel derivatives (for texture), as well 
as simply just the red, green, and blue values for the pixel. After experimenting with the different choices, the simplest 
input – just RGB - produced results visually comparable to those mentioned above while requiring a lot less 
computation. Therefore RGB pixel colors were chosen as features. However, as we have found in our recent research 
and indicate in Subsection 3.5, the visual appearance has been misleading, and exploring more complex features may be 
very rewarding. We are exploring this direction in our current research, and therefore it is beyond the scope of this 
paper. 

3.2. CART Road Segmentation Performance 
All experiments were performed on a test set of 11 videos of a total duration of 47.5 minutes. The videos were taken in 
the Mohave Desert on two different days. From these videos 1000 frames were sampled randomly and manually labeled 
with the ground truth: Street pixels were marked with red, car shadow on the street with green, and the car hood if 
visible in the video with yellow. The test set with its ground truth can be downloaded at http://www.multimedia-
computing.de/ Code/GrandChallenge/. 

Laser Brick: First we analyzed the precision of the laser brick to understand the bottom line performance. Its road 
prediction was compared against the marked road in the ground truth (pure red and green pixels). The average recall (= 
[# of correctly detected road pixels] / [# of road pixels in ground truth]) was about 0.59, while the 1-precision (= false 
alarm rate = [# of detected road pixels - # of correctly detected road pixels] / [# of detected road pixels]) was about 
0.085. In other words, about 59% of all road pixels are marked by the laser brick at an error rate below 9%. At first sight 



59% looks high. However, distant road usually consists of only a few pixels, while the nearby road is spatially large in 
the image. Thus 59% only covers the road pixels very close to the car. In practice, an improvement by 10% in recall 
from the bottom line 59% of the laser brick often translates into extending the street more than twice as far. 

Drivable Corridor Predicted with CART: Figure 8 shows the 1-precision (= false alarm rate) vs. recall plot for 
different training sample sizes. CART-x1 stands for a positive and negative test set with about 600 samples each. 
Higher numbers such as CART-x3 indicates that the training size is three times higher if possible. On each frame a 
CART tree was trained. As can be seen from this graph, the best performance values are at about a road recall of 73% 
and a false alarm rate of 11.9%. On average this translates into 3077 wrongly labelled pixels at 360x240. Out of these 
1785 are coming from mistakes in the laser brick. Thus only 1292 wrongly labelled road pixels are added – fewer errors 
than produced by the laser brick. As we can also see from the graph, the sample set size does not have a large impact on 
the recall at a false alarm rate below 0.12. This is an important finding since it will allow us to tweak our approach for 
speed by reducing the sample size for learning.  

 
3.3. Real-Time Performance  

Sampling: For each image, CART is trained on the pixels for road and non-road and then CART classifies each pixel in 
the image. However, there are a lot of duplicate or near duplicate pixels that are input to training. Randomly sampling 
the input stream of pixels for any one image will produce an almost identical decision tree as one with all the pixels (see 
Figure 8). There is a limit to how low the number of input pixels to CART may go. The quality of the tree drops off if 
the sampling rate produces less than 1000 pixels for road and non-road each in total (i.e., less than 500 each). 

A chart showing the returns in speed-up from random sampling is given in Figure 9. 
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Figure 8: Recall vs. 1-Precision (=false alarm rate) plot of road segmentation with CART using different sample size 
(see ‘Sampling’ below for more details). CART-x1 stands for a positive and negative test set with about 600 samples 
each. Higher numbers such as CART-x3 indicates that the training size is three times larger if possible. The CART 
tree was re-trained every frame. As can be seen from this graph, the best performance values are at about a road 
recall of 73% and a false alarm rate of 11.9%. 



 
Tree Build Frequency:  It was also investigated how often the decision tree for CART should be rebuilt and what 
impact on the quality of the results it has. The algorithm in this paper is currently configured to rebuild the decision tree 
with every frame because colors may vary from frame to frame due to white balance or lighting changes. Rebuilding the 
decision tree on every frame may be more work than necessary as shown in the following table: 

 
Build Frequency (BF) Frame per Second 

1 7.6
2 8.8
5 9.7

10 9.8
100 10.1

The segmentation performance for various build frequencies is almost identical as shown in Figure 10.  However, for a 
small increase in the Build Frequency, there is a substantial increase in the frame rate because training is the most 
expensive part of the algorithm (video processed at 320x240). If a frame is ambiguous because too many road pixels 
appear in the non-road area, a CART tree is automatically built. Thus the effective build frequency might be higher than 
the specified one and therefore limits the build frequency going from BF=10 to BF=100.  

3.4. CART vs. Boosting 
We compared the prediction of the drivable corridor with CART against the prediction with GentleBoost – one of the 
best boosting algorithms [7]. Boosting with decision trees is generally known to be one of the best classification 
algorithms. However, since multiple weak learners are trained, training time was about 6 times slower and thus beyond 
our training time budget. As can be seen in Figure 11, a significant improvement could have been achieved if 
GentleBoost were in our time budget.  

This result is important since it indicates that the road / non-road samples contain more information than CART is able 
to extract from it given the limited CPU resources available in the car. However, as the computational resources go up 
in future, more sophisticated classification learners can be used to boost road segmentation performance.  
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Figure 9: The # of frames per second (fps) is dependent on the # of pixels used for training. The more pixels the 
fewer fps will be achieved. Results are for a Pentium M 1.4 GHz laptop without the Intel Performance Library. 
Input resolution was 320x240. 



 
 

3.5. CART vs. Distribution learner 
We also compared our discriminate learner against a generative road model using the same features, i.e., RGB color 
values (see Figure 12). The generative model is based on stochastic sampling. At every frame the color distribution for 
road pixels from the laser brick is calculated and pruned by removing rare colors. These colors are than added to a 
global color distribution estimate based on a simple rule: Colors which occurred frequently in the current road path but 
are not yet in the global distribution are added to the global distribution estimate with its current probability score. If a 
color from the current road path already occurred in the global color distribution estimate, its probability is updated by 
first order exponential smoothing. 
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Figure 11: Computationally more complex discriminant learner may boost the performance as shown here 
with GentleBoost. 
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Figure 10: There is no need to train a new CART tree every frame. As this graph shows, the Build Frequency (BF) 
can be significantly reduced without affecting the recall and false alarm rate in the left half of the graph. ‘BFx’ stands 
for retraining every x-th frame or build frequency x. 



Classification is performed by labeling all pixels as road pixels that can be explained by the global feature distribution 
estimate. The road pixels are then filtered (i.e., post-processed) in the same way as described under subsection 2.6 on 
road refinement. 

As can be seen from Figure 12, with the same features (just RGB color values), the generative model labeled DISTEST-
Colour in the graph is consistently below the performance of the CART learner at the false alarm rates below 0.125. 
Three different variants of the color features were used for the generative models by using only the 5, 6, or 7 most 
significant color bits of each color channel (labeled *_x5, *_x6 and *_x7 in Figure 12).  

 
The graph, however, also shows the performance for a more complex set of features than just the color value: the color 
correlation of each pixel with the 5th pixel to its left. The idea behind this feature is to capture that there is a high color 
correlation between same colors on the road, while this correlation might not exist for the non-road pixels. As can be 
seen, this slightly more complex feature boosted the performance significantly (see ‘DISTEST-Corr_x6; only the 6 most 
significant bits of each color component involved were taken). Thus, in future work more complex features should also 
be evaluated with CART learning. We didn’t initially investigate this field further because we didn’t have ground truth 
at that time of the decision about the features.  Visual inspection might have misled us that it didn’t make a difference.  

4. CONCLUSION  
We have shown how monocular vision enhances and extends the laser brick beyond the current 20 meter limit. The 
approach has been tested against a ground truth and we could experience an improvement in recall from 59% to 73% of 
road pixels at a low false alarm rate of 11.9% of which 8.5% were cause by errors in the laser brick from the laser 
subsystem. The CART training is the main contributor to processor overhead but a measured reduction in CART inputs 
or build frequency can target any desired frame rate. The algorithm has several features that allow a tradeoff between 
accuracy and speed allowing it to fit into a real-time environment driving an autonomous vehicle and achieve the target 
10 frames per second. 

5. FUTURE WORK 
In the future, we plan to investigate stereo cameras for measuring the distance to large objects ahead of the car more 
thoroughly. Cameras and software from Tyzx [11] and Point Grey [12] were evaluated as part of this effort to find road. 
More research in the use of these cameras, especially in measuring the error bound for objects in the field of view, could 
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distribution learning (DISTEST-Colour_x#). DISTEST-Corr_x6 shows that a slightly more complex feature can boost 
the segmentation performance. 



 
Figure 13: Stereo cameras can find distances to large objects. After identifying road in the left image using CART, 
the mean of the largest distance values produces a reasonable estimate of how far road extends in front of the car.  
In this example, the road extends over 28 meters ahead of the car. 

enhance the ability to detect obstacles. Some experiments with Tyzx showed that it could reliably find the distance to 
large objects (see Figure 13). For objects that are not as large as the road such as telephone poles or fence posts, the 
distance values were difficult to narrow down with precision. The distance map might have pixels that are all on the 
fence post but vary by 10 meters or more when viewed at 50 meters. The baseline of the stereo camera will determine 
how accurate the results are because of simple triangulation geometry – wider cameras are better. More work could be 
applied to isolate a better error estimate for use with obstacle detection 

Another area for future work is to define non-road in different ways.  It remains a rich area for innovation. There are 
numerous techniques that could be used to find non-road. The better the non-road definition, the better the decision trees 
for each frame will be. One such technique would be to train and predict twice on every frame, first to predict an 
estimate of the non-road, then train again with the refined non-road, and predict again for the final result. The cost of 
this approach was too high for this configuration of the hardware but may be enabled in some future platform. Another 
method for labeling non-road might define a feature vector for each pixel and use a Euclidean distance from the 
example pixels of road in the laser brick. This method would define non-road as those pixels whose feature vectors are 
farthest from the feature vectors for the road – in any of the directions of the n-dimensions of the feature vector.   

It should also be noted that only CART and GentleBoost were used to build classifiers for this paper. There are 
numerous other algorithms such as random forest and SVM that should be tested. The performance constraint 
eliminated some algorithms for use in the current hardware configuration but the quality of the results can be compared 
in an offline or batch mode and provide another measure to compare the different algorithms. 

Different and more complex features for each pixel value in the image should be explored as well as the use of an 
infrared camera, which can provide a novel feature vector to enhance the results. The cost of an infrared camera was 
high enough that no preliminary analysis could be done. 
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