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Abstract We propose axioms for Kleene modules (KM). These struc-
tures have a Kleene algebra K and a Boolean algebra B as sorts. The
scalar products are mappings K X B — B; they arise as algebraic ab-
stractions of relational image and preimage operations. KM is the basis
of algebraic variants of dynamic logics. We develop a calculus for KM and
discuss its relation to Kleene algebra with domain and to dynamic and
test algebras. As an example, we apply KM to the reachability analysis
in directed graphs.

Keywords: Idempotent semirings, Kleene algebra, propositional dy-
namic logic, dynamic and test algebra, image and preimage operation,
state transition systems, program development and analysis, graph algo-
rithms.

1 Introduction

Programs and state transition systems can be described in a bipartite world
in which propositions model static properties, and actions or events model the
dynamics. Propositions live in a Boolean algebra and actions in a Kleene algebra
with the regular operations of sequential composition, non-deterministic choice
and reflexive transitive closure. Propositions and actions cooperate via modal
operators that view actions as mappings on propositions in order to describe
state-change and via test operators that embed propositions into actions in order
to describe observations on states and to model the usual program constructs.
Most previous approaches show an asymmetric treatment of propositions and
actions. On the one hand, propositional dynamic logic (PDL) [T1] and its alge-
braic relatives dynamic algebras (DA) [T4I820] and test algebras (TA) [I8I20/24]
are proposition-based. DA has only modalities, TA has also tests. Most axiom-
atizations do not even contain explicit axioms for actions: their algebra is only
implicitly imposed via the definition of modalities. On the other hand, Kleene
algebra with tests (KAT) [I6] — Kleene algebra with an embedded Boolean al-
gebra — is action-based and, complementarily to DA, has only tests. Therefore,
action-based reasoning in DA and TA and proposition-based reasoning in KAT is
indirect and restricted. In order to overcome these rather artificial asymmetries
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and limitations, KAT has recently been extended to Kleene algebra with domain
(KAD) with equational axioms for abstract domain and codomain operations [9].
This alternative to PDL supports both proposition- and action-based reasoning
and admits both tests and modalities. The defining axioms of KAD, however, are
quite different from those of DA and TA. Therefore, what is the precise relation
between KAD and PDL and its algebraic relatives? Moreover, is the asymmetry
and the implicitness of the algebra of actions in DA and TA substantial?

We answer these two questions by extending the above picture with the

further intermediate structure KM of Kleene modules (cf. Figure [I).
/ KAD
/K AT
D\

B KA

TAn

M;

Figurel. Relations between algebraic systems

As already observed by Pratt [20], the definition of DA resembles that of
a module in algebra, up to implicitness of the algebra of actions, in which the
scalar products defines the modalities. When DA was presented, this was rea-
sonable, since there was no satisfactory axiomatization of Kleene algebra. So
Pratt could only conjecture that a KM with a Kleene algebra as scalar sort and
a Boolean algebra as the other one would yield a more natural and convenient
axiomatization of DA. Depending on more recent developments in Kleene alge-
bra, our axiomatization of KM verifies Pratt’s conjecture and shows that the
implicitness of Kleene algebra in DA is in fact unnecessary. KM is also used as a
key for answering the first question and establishing KAD as a natural extension
of previous approaches.

Our contributions. First, we axiomatize and motivate the class KM as a
straightforward adaptation of the usual modules from algebra [I3]. We show that
the scalar products abstractly characterize relational image and preimage oper-
ations. We outline a calculus for KM, including a duality between left and right
scalar products in terms of a converse operation and a discussion of separability,
that is, when actions are completely determined by their effects on states. We
provide several examples of KMs. We also relate our approach to a previous one
based on a second-order axiomatization of the star [14].

Second, we relate KM and DA. We show that KM subsumes DA and, using a
result of [20], that the equational classes of separable KM and separable DA coin-
cide. This answers Pratt’s conjecture. Consequently, the axioms of separable KM
are complete with respect to the equational theory of finite Kripke structures.



Third, we relate KAD to KM and TA. We identify KAD with a subclass of
TA, but obtain a considerably more economic axiomatization of that class. We
show that the equational classes of separable KADs and separable TAs coincide,
improving on a previous related result [I2]. Consequently, the axioms of separable
KAD are complete for the equational theory of finite Kripke (test) structures;
the equational theory of separable KAD is EXPTIME-complete.

Fourth, we present extensions of KM that subsume TA, its above-mentioned
subclass and KAD. This clarifies some points in a related axiomatization [12].

Fifth, we demonstrate the expressibility gap between KM and KAD by defin-
ing a basic tool-kit for dynamic reachability analysis in directed graphs with
interesting applications in the development and analysis of (graph and pointer)
algorithms.

More generally, our technical comparison establishes KAD as a versatile al-
ternative to PDL. Its uniform treatment of modal, scalar product and domain
operators supports the inter-operability of different traditional approaches to
program analysis and development, an integration of action- and proposition-
based views and a unification of techniques and results from these approaches.

Related Work. We can only briefly mention some closely related work. Our
semiring-based variants of Kleene algebra and KAT are due to Kozen [T5JT6]. DA
has been proposed by Pratt [20] and Kozen [I4] and further investigated, for
instance, in [IRITY]. TA has been proposed by Pratt [20] and further investigated
in [I8124]. With the exception of [I4], these approaches implicitly axiomatize
the algebra of actions; the explicit Kleene algebra axioms for DA in [I4] contain
a second-order axiom for the star. More recently, Hollenberg [12] has proposed
TA with explicit Kleene algebra axioms. This approach is similar to, but less
economic than ours. The related class of Kleenean semimodules has recently
been introduced by Leifl [I7] in applications to formal language theory, with
our Boolean algebra weakened to a semilattice. Earlier on, Brink [3] has pre-
sented Boolean modules, using a relation algebra instead of a Kleene algebra.
A particular matrix-model of KM has been implicitly used by Clenaghan [6]
for calculating path algorithms. In the context of reachability analysis, concrete
models of Kleene algebras or relational approaches have also be used, for in-
stance, by Backhouse, van den Eijnde and van Gasteren [2], by Brunn, Méller
and Russling [E], by Ravelo [22] and by Berghammer, von Karger and Wolf [21].
Ehm [I0)] uses an extension of KM for analyzing pointer structures.

Survey. The remainder of this paper is organized as follows. Section B col-
lects some basic properties of KA and KAT. Section Bl introduces KM, Section H
discusses the two most important example structures, Section B presents the ba-
sic properties of the class. Section [l compare KM with some related structures,
among them Boolean algebras with operators. Section [ introduces the concept
of extensionality or separability. Section [ to Section [l relate KM to KAD, DA
and TA. Section discusses the previous results. Section presents a main
application of KM and KAD, namely reachability analysis in graphs and state
transition systems. Section [[d contains a conclusion.



2 Kleene Algebra

In this section, we provide some preliminary definitions related to Kleene algebra,
Boolean algebra and Kleene algebra with tests. We use a semiring-based variant
of Kleene algebra as opposed to lattice-based ones. We also use a finitary first-
order axiomatization in opposition to infinitary or second-order ones.

A Kleene algebra [15] is a structure (K, +,-,*,0,1) such that (K, +,-,0,1) is
an (additively) idempotent semiring and *, the star, is a unary operation defined
by the identities

1+aa” <a, (1)
l+a*a<a", (+-2)
and the quasi-identities
b+ac<c=a"b<ec, (%-3)
b+ca<c=ba* <c, (%-4)

for all a, b, c € K (the operation - is omitted here and in the sequel). The relation
< is the natural ordering on K defined by a < biff a + b = b. We call &) and
E=2) the star unfold laws and E=3) and E=) the star induction laws. KA denotes
the class of Kleene algebras.

In calculations, we often appeal to the principle of indirect inequality from
order theory. Instead of a < b we show ¢ < a = c<borb<c= a<cfor some
fixed arbitrary c.

Models of Kleene algebra are for instance the set-theoretic relations under
set union, relational composition and reflexive transitive closure (the relational
Kleene algebra), and the set of regular languages (regular events) over some finite
alphabet (the language Kleene algebra).

The structure (K, <) is an upper semilattice. Moreover, the operations of
addition, multiplication and star are monotonic with respect to <. The algebra
of regular languages over an alphabet A is the free Kleene algebra generated by
A [13]; its equational theory coincides with the free equational theory of KA.
Besides the semiring laws, we can therefore freely use the well-known regular
identities in KA. The following lemma collects some of these together with some
quasi-identities.

Lemma 1. Let K € KA. For all a,b,c,p € K,

(i) p<1=p =1,
(ii) 1< a*,
(i) a*a* = a*,
(iv) a < a*,
(,U) a** — a*’
(vi) (ab)*a = a(ba)*,
(vii) (a + b)* = a*(ba*)*,
(viii) 1+ aa* = a*,



(iz) 1+ a*a = a*,
(z) ac < ¢b = a*c < cb*,
(zi) ca < bec = ca* < b*c.

A Kleene algebra is *-continous, if

ab*c = sup({ab™c|n € N}) (1)
holds for all a,b,c € K; the powers of a are defined as a® = 1 and a™*! = aa”
for all a € K and n € N. Continuity is a second-order (or at least an infinitary
first-order) property. In presence of (), the axioms (E=1l) to E=2l) are redundant.
KA™* denotes the class of *-continuous KA. It is a strict subclass of KA.

Kleene algebra provides an algebra of actions with operations of non-determi-
nistic choice, sequential composition and iteration. It can be enriched by a Boole-
an algebra to a two-sorted structure that incorporates both actions and propo-
sition.

A Boolean algebra is a complemented distributive lattice. By overloading, we
usually write + and - also for the Boolean join and meet operation and use 0
and 1 for the least and greatest elements of the lattice. ’ denotes the operation
of complementation, — denotes the operation of sectional complementation. It
can either be defined by p — ¢ = pqg’ or by the Galois connection

p—q<rep<qg+r. (2)

BA denotes the class of Boolean algebras. We will consistently use the letters
a,b,c... for Kleenean elements and p,q,r,... for Boolean elements. We will
freely use the standard laws of Boolean algebra in calculations.

A first integration of actions and propositions is given by a Kleene algebra
with tests [16], which is a two-sorted structure (K, B), where K € KA and
B € BA satisfies B C K and has least element 0 and greatest element 1. In
general, B is only a subalgebra of the subalgebra of all elements below 1 in K,
since elements of the latter need not be multiplicatively idempotent. We call
elements of B tests and write test(K) instead of B. KAT denotes the class of
Kleene algebras with tests.

3 Definition of Kleene Modules

In this section we define the class of Kleene modules. These arise as natural
variants of the usual modules in algebra [I3]. Modules are two-sorted structures
consisting of a ring and an Abelian group that interact via a scalar product;
a mapping from the ring and the Abelian group into the Abelian group. To
distinguish them from Kleene modules, we call them standard modules. We
replace the ring by a Kleene algebra and the Abelian group by a Boolean algebra.



Definition 1. A Kleene left-module is a two-sorted algebra (K, B, :), where K €
KA and B € BA and where the left scalar product : is a mapping K x B — B
such that for all a,b € K and p,q € B,

W
2

a:(ptqg)=a:p+ta:g,
(a+b):p=a:p+b:p,
(ab) :p=a: (b:p),
L:p=p,
0:p=0,
pta:q<g=>a :p<q.
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We do not distinguish notationally between the zeros and ones of the Kleene
algebra and the Boolean algebra. In accordance with the relation-algebraic tra-
dition, we call the scalar product of a Kleene left-module also a Peirce product.
We assign the following priorities. Complements bind stronger than products
and Peirce products, which again bind stronger than addition and sectional
complement. We denote the class of Kleene left-modules by KM;.

Let us first discuss these axioms. Axioms of the form (kmIl), (km2) and (km3)
are well-known from the definitions of standard left-modules. An axiom of the
form (kmd) defines the class of unitary standard left-modules. This presupposes
that the underlying ring has a unit. For standard modules, an axiom of the form
(km3) is redundant. For semi-rings, that is in absence of ring-inverses, this is not
the case. Axiom (kmfl) is of course beyond ring theory. It is the star induction
rule {=3) with the semiring product replaced by the Peirce product and the
sorts of elements adjusted, that is b and ¢ replaced by Boolean elements. We call
such a transformation of a KA-expression to a KM-expression a peircing.

As usual in algebra, we define Kleene right-modules as Kleene left-modules
over the opposite semiring. Here, the opposite of a semiring (A, +,-,0,1) is the
structure A°? = (A,+,%,0,1), where a*b = b-a. We write p : a for right
scalar products. The class of Kleene right-modules is denoted by KM,.. A Kleene
bimodule is a Kleene left-module that is also a Kleene right-module. The class
of Kleene bimodules is denoted by KM;. Note that left and right scalar products
can always be uniquely determined by bracketing. While standard bimodules
have the additional axiom (a : p) : b = a : (p : b) we do not require this for
Kleene bimodules, for reasons discussed below.

Opposing induces a duality between left- and right-modules. We can therefore
restrict our attention entirely to left-modules. The same duality can also be de-
scribed in terms of a converse operation, as we will see Section Bl This yields an-
other automatic translation between theorems in both structures. Kleene right-
modules have interesting applications in reachability analysis for directed graphs,
as we will see in Section



4 Example Structures

We now discuss the two models of Kleene modules that are most important for
our purposes, namely relational Kleene modules and Kripke structures.

Ezample 1. (Relational Kleene modules) Consider the relational Kleene al-
gebra REL(A) = (24%4,U, 0,0, A, *), where A is a set, 24*4 denotes the set of bi-
nary relations over A, U denotes set union, o denotes relational product, # denotes
the empty relation, A denotes the identity relation and for all R € REL(A) the
expression R* denotes the reflexive transitive closure of R, that is, R* = {J,~, R,
where R = A and Rt = Ro R. -

Of course, REL(A) is even in KAT* with test(REL(A)) consisting of the set of
all subrelations of A. This is so, since test(REL(A)) is a field of sets, whence a
Boolean algebra, with PNQ = Po@ and P' = A— P, the minus now denoting set
difference. Moreover, test(REL(A)) is isomorphic with the field of sets 24 under
the homomorphic extension of the mapping that sends B to {(b,b)|b € B} for
all B C A.

The preimage and image of a set B C A under a relation R C A x A are
defined as

R:B={z€ A|3Jy € B.(z,y) € R}, (3)
B:R={ye€ A|3z € B.(z,y) € R.}. (4)

It is easy to verify that (REL(A),24),:) with : given by @), is in KM;. Therefore
the KM; axioms abstractly model binary relations with a preimage operation.
Dually, (REL(A),24,:) with : given by (@), is in KM, and the structure equipped
with both scalar products is in KMj. O

Therefore, Kleene modules are algebraic abstractions of set-theoretic and rela-
tional structures. They provide a particularly interesting class of Kleene modules
in which the Boolean algebra is embedded into the Kleene algebra. We will return
to this class in Section [}

Figure2. Counterexample to bimodule equation

We will now show that, in opposition to standard bimodules, the identity
(a:p):b=a:(p:b) does not hold in the relational Kleene bimodule. Consider
the set {p,q} and let R = {(p,p)} and S = {(p,p), (p,q)}. This is shown in
Figure I Obviously, (R : {p}) : S = {p,q} and R : ({p} : S) = {p}. We did not



use this identity in the definition of a Kleene bimodule, since we do not want to
lose the relational Kleene bimodule.

Ezample 2. (Kripke Structure) As already mentioned in Example [l there is
an isomorphism between the subsets of a set A and the set of subrelations of the
identity relation A C Ax A. A Kripke structure on aset A is a pair (B, K), where
B is a field of sets over A (whence a Boolean algebra) and K is an algebra of
binary relations on A under the operations of union, relational composition and
reflexive transitive closure. Finally, a preimage operation on (B, K) is defined
by @).

Every Kripke structure contains the identity relation, since it is presumed in
the definition of the reflexive transitive closure operation. However, it need not
contain the empty relation. Therefore, not every Kripke structure is a Kleene
left-module, but every Kripke structure with the empty relation is. We will return
to this fact in Section B

A Kripke test structure on A is a Kripke structure endowed with the addi-
tional operation

p={(z,2) |z € p}

for all p € B. We will return to these structures in Section [ We denote the
class of Kripke structures by Kri and the class of Kripke test structures by KriT.

The Kripke structure (24,24%4) is called the full Kripke structure on A.
Thus every Kripke structure on A is a subalgebra of the full Kripke structure on
A. The full Kripke structure on A is isomorphic to REL(A). a

More example structures can be found in [9]. Those examples are based on
Kleene algebra with domain. But by the correspondence shown in Section [
they can easily be transferred to Kleene modules.

5 Calculus of Kleene Modules

In this section, we prove some properties of Kleene modules that are helpful
in an elementary calculus. These properties are also needed in the syntactic
comparison and subsumption analysis of Kleene modules and related structures
later in this paper.

We consider only left-modules. Analogous properties of right-modules hold
automatically via opposing. We also show an alternative automatic translation
between left- and right-modules that holds in presence of an operation of con-
verse.

For the sake of elegance, we often use p — ¢ instead of pq’, in particular using
the associated Galois that gives us theorems for free (cf. [II).

The first lemma provide some properties that do not mention the star.

Lemma 2. Let (K, B,:) € KM,. The scalar product has the following properties.

(i) It is right-strict, that is a : 0 =0 for all a € K.



(ii) It is left- and right- monotonic, that is for all a,b € K and p,q € B,
a<bAp<g=>a:p<b:q.

(iii) It is sub-multiplicative, that is a : (pq) < (a : p)(a : q) for all a € K and
p:q€B.
(w) a:p—a:q<a:(p—q) foralla € K and p,q € B.

Proof. (i) We calculate
a:0=a:(0:p)=(a0):p=0:p=0.

The first step uses (kmil), replacing equals by equals. The second step uses
(Em3). The third step uses Kleene algebra (0 is a right-annihilator). The fourth
step uses (kmil).

(ii) It is well-known that every function that distributes over suprema is
monotonic.

(iii) It is well-known that every monotonic function is sub-distributive over
infima.

(iv) The Galois connection () implies the cancellation law p < g + (p — q).
Using this together with right-monotonicity and (kmTl), we calculate

a:p<La:(p-q9+q =a:(p—q) +a:q
whencea:p—a:qg<a:(p—q) by @. O

The next lemma provides some properties in an extension of Kleene algebra
with converse. In the relational semiring it is evident that the preimage of a
relation under a set is the image of the converse relation under this set. We now
investigate an abstract notion of converse that induces a further duality between
left- and right-modules.

A Kleene algebra with (weak) converse is a structure (K,°) such that K is
a Kleene algebra and ° a unary operation that satisfies the following equations.
For all a,b,p e K, p <1,

a’® = a,

(c1)

(a+b)° =a® +0°, (c2)
(ab)° =b°a®, (c3)
a*° = a*, (c4)

p° <p. (¢5)

A Kleene algebra with converse is then a Kleene algebra with weak converse that
satisfies also a < aa®a [§].

It is easy to show that 1° =1,0° =0, p° =pand a < b & a®° < b° hold
in KA with weak converse. Kleene modules with converse are interesting in the
context, of dynamic logic for which variants with program conversion exist. This
allows one, for instance, to model backtracking.



Proposition 1. Let (K, B,:) € KM,. Then for all a € K and p € B, then the
operation : of type B x A — B defined by the equation

pra=a°:p, (5)
is a right-scalar product that turns (K, B,:) into a Kleene right-module.

Proof. First we note that (cdl) and (I)) imply p° = p for p < 1.
(Dual of (kmdl) Using @) and (kmdl), we calculate

(p+q):a=a’:(p+qg)=a’:p+a®:qg=p:a+q:a.
(Dual of (km2)) Using ), () and (km2), we calculate

p:(a+b)=(a+b)°:p=a®:p+b°:p=p:a+p:b
(Dual of (km3)) Using ), €3 and (km3), we calculate

p:(ab)=(ab)®:p=0°:(a®:p)=(a®:p):b=(p:a):b.

(Dual of (Emdl)) Using (@) and (kmd), we calculate p: 1 =1°:p=1:p=p.
(Dual of (km3))) Using (@) and (km3), we calculate p: 0=0°:p=0:p =0.
(Dual of (kmfl)) Let p+¢q : a < g, whence p+a° : ¢ < g. Then a°* : p < q by
(Emfl), which is equivalent to p : a* < ¢ by (&) and B). 0

Proposition [ gives us an algorithm for automatically translating statements
about KM; into those about KM, and vice versa.

The following statements deal with peirced variants of the well-known star
rules in Kleene algebra. The first proposition explains why there is no peirced
variant of (=) in the axioms for Kleene modules.

Proposition 2. Let (K,B,:) € KM;. Let a € K and p € B.

(i) p+a:(a*:p) =a*:p,

(ii) p+a*:(a:p)=a*:p.

Proof. (i) We calculate, using (km3l), (km4), (km2) and Kleene algebra,

*

pta:(@:p)=1:p+(aa*):p=14+aa*):p=a":p.

The proof of (ii) is similar. O
Corollary 1. Let (K,B,:) € KM,. Let a € K and p € B.
(i) p<a:p.
(ii) a: (a*:p) <a*:p.
(iii) a* : (a:p) <a*:p.
(iv) a* : 1=1.
(v) a<l=a*:p=np.
(vi) a:p<a*:p.

10



(vii) a* :p=
(viii) a* :p=

Proof. (i)—(iii) are immediate from Proposition
(iv) By (i), 1 < a*: 1. But 1 is the greatest element of B.
(v)—(viii) follow immediately from Kleene algebra. O

The following statement shows that the defining quasi-identity (kmfl), although
quite natural as a peirced version of the Kleene algebra axiom E=3) is overly
complex and can be replaced by an identity.

Proposition 3. Let (K,B,:) € KM, Then the quasi-identity (Emd) and the
following identity are equivalent.

a:p<pta’:(a:p—p). (6)
Proof. The Galois connection () implies
pP<qgeEp—qs0

and the cancellation law
p<qg+(p—q) .

(kmf) implies (). By (kmf) it suffices to show that
pta:(p+a’:(a:p—p)<p+a*:(a:p—p).
We calculate
pt+a:(p+a:(a:p—p)=p+a:p+a:(a*:(a:p—p))
<p+((a:p)—p) +a:(a*:(a:p—p))
=p+a“:(a:p-p),

using the above cancellation law in the second step and Proposition ] in the
third step.

@) implies (kmfl). Let a : ¢+p < q, whence a : ¢ < g and p < g and therefore
a:q—q<0.We calculate, using right monotonicity and (km3),

a*:p<a*:q<qg+a:(a:q—q)=q+a" :0=gq.
O

Lemma 3. Let (K, B,:) € KM;. Then ([Emf) (and [@)) and the following quasi-
identity are equivalent.
a:p<p=a":p<p. (7)

Proof. ([kmf) implies [@). Set p = ¢ in (kmf).
@ implies (kmfl). Let a : ¢ + p < ¢. This is the case iff a: ¢ < g and p < q.
Then a* : ¢ < ¢ follows from (). Hence also a* : p < ¢ by right-monotonicity. O

11



([@ is a peirced variant of the quasi-identity
ac<c=>a'c<c

that is equivalent to (=) in KA. Note that there is no identity corresponding
to (@) in KA, which is not a finitely based variety.
Finally, we show that (@) can be strengthened to an equality.

Lemma 4. Let (K, B,:) € KM;. Then for all a € K and p € B,
a*:p=p+a*:(a:p—p).

Proof. By Proposition B it suffices to show that p+a*: (a:p—p) < a* : p. We
calculate

pta*:(a:p—p)<p+a*:(a:p)=a*:p.
The first step uses Boolean algebra and right-monotonicity. The second step uses
Proposition A(ii). a

As we will see, most of the statements of this section can easily be translated
into theorems or derived inference rules of propositional dynamic logic.

6 Related Structures

We now discuss some related structures. However, the most important relatives,
namely dynamic algebras, test algebras and Kleene algebras with domain are
discussed in separate sections.

We obtain the class KS; of Kleenean left-semimodules [I7] from Definition [
by requiring a semilattice B instead of a Boolean algebra. This reduction is
possible, since the Kleene module axioms mention neither the Boolean meet nor
the Boolean complement.

Lemma 5. KM; C KS;.

We obtain the class KM; of *-continuous Kleene left-modules from Defini-
tion [ by requiring K € KA™ instead of KA and replacing (kmfl) by the peirced
variant

a*:p=sup({a” :p|n € N}), (8)
for all @ € K and p € B, of [[). KM; has first been studied in [T4] under the
name dynamic algebra as an algebraic analog to propositional dynamic logics.

Lemma 6. KM; C KM;.

Proof. We must show that (8) implies (kmfl). We verify [@) instead, which is
equivalent to (kmfl) by LemmaBl Let a : p < p. Then o™ : p < p for all n € N by
a simple induction and therefore a* : p = sup({a™ : p|n € N}) < p by definition
of the supremum. O

12



We obtain the class BM; of Boolean (left-)modules [3] from Definition [l by
requiring a relation algebra [23] K instead of a Kleene algebra and adding the
axiom

@ (a:p) <7, (9)
for alla € K and p € B.

Lemma 7. BM; C KM;.

Proof. Define the star in relation algebra as a reflexive transitive closure opera-
tion. O

Comparing KM; with these structures, we see the following benefits. On the one
hand, KS is too poor for our intended application, that is for modeling an algebra
of propositions. Statements like Proposition Bl cannot even be expressed. KM*
and BM, on the other hand, are generalized by KM. In particular, the full relation
algebra in BM makes this structure overly rich for programming applications.
For instance, complements of programs can be modeled, although this may be
irrelevant in practice.

The following examples establish the connection between Kleene modules,
modal algebras and predicated transformer algebras.

A Boolean algebra with operators is a structure (B,{f; : i € I}), where
B is a Boolean algebra endowed with a family {f; : ¢ € I} of strict additive
endofunctions (also called hemimorphisms), that is f(0) = 0 and f(p + q) =
f(p) + f(q)- These structures are a starting point for the investigation of modal
logics and algebras (cf. [A]). We denote the class by BAO.

Lemma 8. KM; C BAO.

Proof. For every (B,K,:) € KM;, the mappings f, = Az.a : z, with indices
a € K are hemimorphisms on B. They are additive by axiom (kmll) and strict
by Lemma B (i). O

An expression a : p can therefore be written as a (multi)modal diamond operator
(a)p; the dual box operators [a]p are given by (a : p')’. KM, therefore is a class
of modal algebras. By this translation, all statements from Section B correspond
to valid expressions in propositional dynamic logic (cf. [IT]).

In the context of BAO, the axioms (km2) and (km3l) express compositionality
of hemimorphisms with respect to the index algebra: fo1p = fo + fo and fap =
fafb-

An algebra of monotonic predicate transformers is a structure (B, {f; : i €
I}), where B is a Boolean algebra endowed with a family {f; : ¢ € I} of end-
ofunctions that satisfy p < ¢ = fi(p) < fi(q). We denote the class by MPT.

Lemma 9. BAO C MPT.
Proof. By the proof of Lemma [ (ii), additivity implies right-monotonicity. O

The results of this section are summed up in Figure Bl
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Figure3. From predicate transformer algebras to bimodules

7 Extensionality

In Kleene modules, the algebra of actions and that of propositions are only
weakly coupled. The finer the algebra of propositions, the more precisely can we
observe properties of actions. In general, actions are intensional, that is, their
behavior is not completely determined by observations on states. Set-theoretic
relations, however, are extensional, simply because they are sets and sets are
completely determined by their members: Let A and B be sets. Then A = B if
a € A< a € B holds for all a.

This extensionality property can be lifted to Kleene modules. In analogy to
dynamic algebra [20[14], we call (K, B, :) € KM (left)-separable, if for all a,b € K

VpeB.(a:p<b:p)=>a<b (10)

For every algebraic class V with appropriate signature, we denote the separable
subclass by SV.

Lemma 10. Let (K,B,:) € KM,. Then () and the following quasi-identity
are equivalent.
VpeB.(a:p=b:p)=>a=b. (11)

Proof. () implies (IT)). Let a: p=>b:pforall pe B, thusalsoa:p < b:p for
allbe Band b:p <a:pforall b€ B. Consequently, a <b and b < a, whence

a =b by ([).
(@) implies [[@). Using (km2), we calculate

Vp.(a:p<b:p)eVp.(a:p+b:p=0b:p)
SVp.((a+b):p=0b:p)
=a+b="b
& a<b.
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The following corollary is immediate from left-monotonicity.
Corollary 2. Let (K, B,:) € SKM;. Let a,b € K.

(i) VpeB.(a:p<b:p)sa<h.
(it) Vpe B.(a:p=b:p) S a=hb.

The term separability may perhaps better be motivated by the following property
that is equivalent to ([[Il): Let a # b, a,b € K. Thena: p# b : p for some p € B.
Thus this witness p allows us to separate action a from action b.

Lemma 11. Separability is independent in KM;.

Proof. Consider the structure (K, B,:) = ({a,0,1},{0,1} :) with addition, mul-
tiplication and scalar multiplication tables

+0al -0al ;01
0(0al 0000 000
alaaa al0aa al01
1|1la1l 10al 101

It has been shown in [{] that K is an idempotent semiring with natural ordering
defined by 0 < 1 < a, which can be uniquely extended to a Kleene algebra
by setting 0* = 1* = 1 and a* = a. Moreover, B = test(K). By the scalar
multiplication, x : p is mapped to 0 if one of z and p is 0 and to 1 else. It is then
easily verified that (K, B,:) € KM;.
However, 1 : p=a : p holds for p = 0,1, but 1 < a. Thus separability fails.
O

Besides this relational motivation, separability can also be introduced alge-
braically via a (pre)congruence. This is interesting by itself, since it introduces
a notion of observational equivalence.

Consider the relation < on (K, A,:) € KM; defined by

a<bsVpeBa:p<b:p, (12)

for all a,b € K.

Lemma 12. The relation < is a precongruence on KM;.
Proof. First, we show that a < b implies a + ¢ < b+ ¢. Using (km2) we calculate
(a+c):p=a:ptc:p<b:p+c:p=(b+c):p.

Second, we show that a < b implies ca < ¢b. Using (km3)) and right-monotonicity
we calculate

(ca):p=c:(a:p)<c:(b:p)=(cb):p
Third, we show that a < b implies ac < be. Using (km3) we calculate

(ac) :p=a:(c:p) <b:(c:p)=(be):p.
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Fourth, we show that a < b implies a* < b*. Let a : p < b : p. Using Lemma
(i) we calculate
b :ip=p+b: (0" :p)>p+a: (b :p).

Thus a* : p < b* : p by (kmf). 0

Corollary 3. The relation ~ on (K, B,:) € BM, defined by
a~b&sVpeBa:p=b:p (13)

for all a,b € K is a congruence on KM;.

Corollary 4. A Kleene module is separable iff ~ is the identity relation.

For a set A, the preimage R : {p} of a relation R C A x A under a singleton
set {p} € A is the set of all ¢ € A with (¢,p) € R. Intuitively, R : {p} scans R
point-wise for its input-output behavior. Since relations are extensional, they are
completely determined by this scanning. In intensional models, one can distin-
guish between observable and hidden intrinsic behavior. The congruence ~ then
identifies two actions up to intrinsic behavior and therefore via observational
equivalence. The freedom of choosing the algebra of propositions in KM with
arbitrary coarseness fits very well with this idea of measuring and identifying
actions in a more or less precise way.

A deeper investigation of these concepts is beyond the scope of this paper.

8 Kleene Modules and Dynamic Algebra

In the remaining sections of this text, we position the class KM; within the
context, of Kleene algebra with domain and algebraic variants of propositional
dynamic logic. Most of the results are subsumption results. Most of our argu-
ments are purely syntactic. We show that the axioms of the subsumed class are
theorems of the subsuming class. Some of our statements go beyond a purely
syntactic analysis. But these rely on previous semantic work of others.

In this section, we compare KM; with dynamic algebra [20JIR24].

We obtain the class DA of dynamic algebras from Definition [l by requiring an
absolutely free algebra of Kleene algebra signature K (without 0 and 1) instead
of a Kleene algebra, such that, for all a,b € K and p,q € B,

a:(p+q)=a:p+a:q, ()
(a+b):p=a:p+b:p, ()
(ab):p=a: (b:p), (fm3)

a:0=0, (14)
pt+a:(a®:p) <a”:p, (15)
“ip<p+a’:(a:p-p). @)
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Proposition 4. KM; C DA.

Proof. We have to show that the axioms (), (T34 and (@) of DA are theorems of
KM;. (@) has been shown in Lemma[ (i). ([[3) has been shown in Proposition &
(i). @) has been shown in Proposition O

As usual, we now write HSP (V) for the equational class or variety generated by
a class V of algebras. This is the class of homomorphic images of subalgebras of
products of algebras in V, according to Birkhoff’s theorem.

The following result is due to Pratt (Theorem 6.4. of [20]).

Theorem 1 ([20]). HSP(SDA) = HSP(Kri).

Based on this result, Pratt conjectures that HSP(SDA) may be defined aziomat-
ically by the dynamic algebra azioms |[...] together with an appropriate set of
azxioms for binary relations. In the late 1970ies, when Pratt wrote the first ver-
sion of his paper, the axomatization of KA presented in Section B did not yet
exist. The following corollaries of Theorem [ and Proposition Bl verify Pratt’s
conjecture.

Note, however, that in SDA, the existence of a Kleenean zero or a one is not
assumed; in Kri, there need not be a zero relation (c.f Section H). Let now SDAg;
be the class of separable dynamic algebras with additional Kleenean constants
0 and 1 satisfying the axioms (km)) and (km3). Let Kriyp be the class of Kripke
structures that contain the empty relation and the identity relation. Inspection
of the proof of Theorem 6.4. in [20] shows that Theorem [ can be adapted as
follows.

Corollary 5. HSP(SDAy1) = HSP(Kriy).

As a consequence, we obtain the following relation between the equational the-
ories of separable Kleene modules and separable dynamic algebras with one and
zZero.

Corollary 6. HSP(SDAy) = HSP(SKM;).

Proof. By Corollary B HSP(SDAy1) = HSP(Krip). By Proposition ll KM; C
DAy; and therefore SKM; C SDAg;. This result specializes to identities and
consequently HSP(SKM;) C HSP(SDAy:). Since Kripke structures with zero and
one are models of SKM;, we also have HSP(Krip) = HSP(SKM;) and therefore
HSP(SDAg1) = HSP(KMp). a

LemmaMand CorollaryBlshow that Kleene modules provide a natural alternative
to dynamic algebra.

9 Kleene Algebras with Domain Subsume Kleene
Modules

In this section we show that Kleene algebra with domain is a more flexible tool
than Kleene modules. A simple example is that pa where p is a proposition and
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a is an action is well-formed in Kleene algebra with domain, whereas it is not
in KM;. Consequently, program constructs like conditional or while-loops are
beyond the expressibility of KM;.

A Kleene algebra with domain [9] is a structure (K, ), where K € KAT and

the domain operation 6 : K — test(K) satisfies for all a,b € K and p € test(K)
a < d(a)a, (d1)

6(pa) < p, (d2)

d(ad(b)) < §(ab). (d3)

The class of Kleene algebras with domain is denoted by KAD. The impact of (dIJ),
@2) and (@3) can be motivated as follows. (1)) is equivalent to one implication
in each of the statements

d(a) < p & a < pa, (1lp)
d(a) <pepa<, (gla)

which constitute elimination laws for §. (d2)) is equivalent to the other implica-
tions, respectively. ([Ip) says that d(a) is the least left preserver of a. (gla]) says
that §(a)’ is the greatest left annihilator of a. Both properties obviously charac-
terize domain in set-theoretic relations. (d3]) states that the domain of ab is not
determined by the inner structure of b or its codomain; information about §(b)
in interaction with a suffices. All three axioms hold in relational Kleene algebra.
Note that in opposition to KM, there is no particular axiom for the star. As
Lemma [[3 (vii) below shows, a variant of the star induction law is a theorem of
KAD. () and (d2) suffice for many applications, but here, (3)) is essential.

Like for Kleene modules, a codomain operation can be defined in the opposite
Kleene algebra. Moreover, the following properties of domain follow from the
domain axioms.

Lemma 13 ([9]). Let K € KAD. For all a € K and p € test(A), the domain
operation satisfies the following laws.
(i) Strictness, 6(a) =0 < a=0.
(ii) Additivity, 6(a + b) = 6(a) + 6(b).
(i1i) Monotonicity, a < b= d(a) < §(b).
() Locality, §(ab) = d(ad(b)).
(v) Import/Export, 6(pa) = pd(a).
(vi) Stability, §(p) = p.
(vii) Induction, 6(ap) < p = d(a*p) < p.
Proof. Because of their particular interest, we give proofs of (ii) and (vii).
(ii) Using (gla), we calculate

da+b)<p&pla+b)<0
Spa<0ApPb<O
& 0(a) <pAIb) <p
& 0(a) +0(b) < p.
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Then §(a + b) = d(a) + §(b) by the principle of indirect inequality.
(vii) Using (Ip) and Kleene algebra, we calculate

d(ap) < p < ap < pap = ap < pa = a*p < pa* & §(a*p) < p.
0

Of course, the relational preimage can also be defined using domain. §(RP)
yields the preimage of relation R under the set P. The image is defined similarly
using codomain. Abstractly, we define

a:p=dap) (16)
in KAD. Of course, domain reasoning can also be performed in KM; via
d(a)=a:1. (17)

These two translation laws are the key to further subsumption analysis.

Proposition 5. KAD C KM;.
Proof. We show that the KM; axioms are theorems in KAD, using () and the
results of Lemma
(kmT) Using additivity of domain (Lemma [ (ii)), we calculate
a:(p+q) =0d(alp+q) =d(ap+aq) =6(ap) + (aqg) =a:p+a:q.
(km2) Using again additivity of domain, we calculate
(a+b):p=0d((a+0b)p) =d(ap+bp) =d(ap) + d(bp) =a:p+b:p.
(km3) Using locality of domain (Lemma [I3 (iv)), we calculate
(ab) : p = 6(abp) = 6(ad(bp)) = a: (b: p).

(km4) Using Kleene algebra and stability of domain (Lemma 3 (vi)), we
calculate
L:p=4(1p) = d(p) = p.
(km3) Using Kleene algebra and strictness of domain (Lemma I3 (i)), we

calculate
0:p=46(0p) =6(0)=0.

([mf). We show ([@) instead, which is equivalent to (Emfl) by Lemma Bl Let
a:p < p, thus d(ap) < p. Then §(a*p) < p and therefore a* : p < p follows from
domain induction (Lemma [[3 (vii)). Thus (@) holds. O

By Proposition @] and Proposition B, we obtain the following corollary.
Corollary 7. KAD C DA.

We have thus shown that Kleene algebra provides a much more compact way
for representing Kleene modules and dynamic algebra. It is also more expressive,
since programming constructs using expressions like pa cannot be written in KM,
or DA.
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10 Kleene Algebra with Domain and Test Algebra

We now compare Kleene algebra with domain and test algebras. We distinguish
two axiomatizations. First, Pratt [20] extends the signature of dynamic algebra
with a test operator 7 of type B — K and he adds the axiom

p?iq=pq (18)
to the axioms of dynamic algebra. We denote the class of test algebras a la Pratt
by TAp.

Proposition 6. KAD C TAp.

Proof. According to Corollary [, KAD C DA. It therefore suffices to show that
the axiom (&) of TAp is a theorem of KAD. Note that the test operator van-
ishes in KAD, since the Boolean algebra is implicitly embedded into the Kleene

algebra. By (@) we must show that d(pg) = pq holds in KAD. This is immediate
from stability of domain (Lemma [[3 (vi)). O

The second axiomatization has been given by Hollenberg [12]. He uses a two-
sorted structure (K, B,:) with K € KA, B € BA and the axioms

(a+b):p=a:p+b:p, (km2)
(ab):p=a: (b:p), ()
a*:p<p+a”:(a:p-p), @)
p?:q=pq, (IR)

0?7 =0, (19)
(p+q)? =p?+q?, (20)
(rg)? = (p?)(q?), (21)
(a:1)?a = a. (22)

We denote the class of test algebras & la Hollenberg by TAg. We first discuss his
axioms.

Lemma 14. Let (K,B,:,?) € TAg. Then 7 is an embedding.

Proof. ([IR)—(T) establish that ? is a homomorphism from the distributive sub-
lattice with zero of B into a distributive sublattice with zero of K. In [IZ] it has
been shown that ? preserves 1. It is also easy to show that (p')? = (p?)’. Thus ?
is a homomorphism from B into a Boolean subalgebra of K that identifies ones
and zeros.

It remains to show that ? is injective. Let p? = ¢?7. Then p? : 1 = ¢7 : 1 and
therefore pl = ¢1, whence p = ¢ by [&). O

According to Lemma [[4] we can again make ? implicit and restrict our attention
to the structure (K,test(K),:), discard the axioms ([¥)—(I) and the ? symbol

in the axioms ([I8) and (2.
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Proposition 7.

(i) TAg C KM,.
(ii) TAx C DA.
(iii) TAx C TAp.

Proof. (i) In [1Z], it has been shown that the axioms (kmll), (km4) and (km6) of
KM; are theorems of TAy. The axioms (km2) and (km3) of KM, are also axioms

of TAg. (@) is equivalent to (kmfl) by Proposition

(ii) By Proposition Bl KM, C DA. Now use (i).

(iii) By (ii), TAg C DA. TAp is DA plus the axiom (I¥), which is also an
axiom of TAg. O

Proposition 8. KAD = TAy.

Proof. We first show that KAD C TAg. By Proposition Bl and Proposition @ all
axioms of TAy but ([Z2) are theorems of KAD. According to Lemma [ ([Z2) can
be written in the form (a : 1)a = a, whence as §(a)a = a by [[H). a < d(a)a is
axiom () of KAD. The converse direction holds, since d(a) < 1. a

We now show that TAy C KAD. By the previous part of the proof it remains
to show that axioms (d2) and (d3l) are theorems of TAg.

For (d2), we must show that (pa) : 1 < p by [[@). Using (km3)) and [IX),
which are axioms of TAg, and Boolean algebra, we calculate

(pa):1=p:(a:1)=pla:1) <p.
For (d3), we must show that (a(b: 1)) : 1 = (ab) : 1. We calculate
(ab:1):1=a:((b:1):1)=a:((b:1)1)=a:(b:1)=(adb): 1.

The first step uses (km3). The second step uses ([[J), the third step uses Boolean
algebra, the fourth step uses again (Km3)). i

This result shows that from an axiomatic point of view, KAD is a considerable
improvement over TAg.

Corollary 8. The azioms (Em2) and (Emd) are redundant in TAg. The azioms
(L) —(Z1) can be made implicit, using KAT for aziomatizing TAg.

The following theorem is a straightforward adaptation of a semantic statement
(Corollary 1) from [24]

Theorem 2 ([12]). HSP(STAg) = HSP(KriT).
This and Proposition B immediately yield the following corollary.

Corollary 9. HSP(SKAD) = HSP(KriT).
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11 Extending Kleene Modules to Kleene Algebra with
Domain

In this section, we consider extensions of KM; that subsume KAD and TAp. In
particular, these extensions clarify the appearance of some axioms in TAg.

Proposition 9.

(i) KM, C TAp.
(ii) SKM, C STAp.
(iii) SKM, C SKAD.

Proof. (i) KM; C DA by Proposition Bl Since Kleene bimodules are expansions
of Kleene left-modules, and TAp is DA with the additional axiom ([IJ), it suffices
to show that (&) is a theorem of KM,. We calculate

pg=1:(pg) =(1:p):q=p:q.

The first step uses (kmd)). The second step uses the dual of (km3l). The third
step uses again (kmd).

(ii) Because of the redundancies in TAg, it suffices to show that ([Z2) is a
theorem of SKM,. We calculate

a:p=(a:p)a:p)<(a:1)(a:p)=(a:1):(a:p)=((a:1)a):p.

The second step uses right-montonicity. The third step uses ([[¥), which is a

theorem of KM,. The fourth step uses (kmd). Separability now implies that

a < (a : 1)a. The converse inequality follows by monotonicity and a : 1 < 1.
(iii) By Proposition Bl and (ii). a

12 Discussion

The subsumption results of the previous sections have already been summed up
in Figure [l that we repeat here for convenience.

B KA

At the bottom of the picture we find BA and KA, which are pure algebras
of propositions or actions. KAT provides tests, but no modalities, KM; provides
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modalities, but no tests. KAT supports reasoning at the side of actions, whereas
KM; provides reasoning at the side of propositions. It is evident, however, by ([Ip)
and (gla)), that some modal expressions can be translated to KAT expressions and
vice versa. Therefore KAT supports indirect and restricted modal reasoning. Also,
in presence of separability, reasoning with actions can be simulated by reasoning
with propositions in KM;. In this sense, the two classes are complementary. DA
is a companion to KM; in which the Kleene algebra is implicitly axiomatized,
whereas it is explicit in KM;. KM; and KAT are combined into KAD. This class
provides both tests and modalities and supports action- and proposition-based
reasoning. KAD is the same class as TAg, but apart from the Kleenean and
the Boolean axioms, it has only three axioms instead of eight. The use of KAT
instead of an explicit embedding of Boolean elements into Kleenenan elements
leads to additional economy of expression. Moreover, the axioms of KAD have a
natural motivation as abstractions of set-theoretic domain operations, whereas
the axiom (ZZ) is not motivated in [IZ]. Again, TAp can be seen as a companion
to TAg and KAD with implicitly axiomatized Kleene algebra.

The results of this paper, in particular Corollary Bl Proposition B and Corol-
lary @ allow us to carry over previous results about TA to KAD.

We obtain, for instance, completeness results for KAD from completeness
results for TAg (Theorem 3.2 and Theorem 3.14 in [T2]).

Proposition 10. The azioms of SKAD are complete with respect to the valid
equations in KriT, both of Boolean and of Kleenean sort.

We also obtain complexity results.

Corollary 10. HSP(SKAD) is EXPTIME-complete.

Proof. Immediate from the linear translation of KAD identities to equivalences
in propositional dynamic logic, whose validity is EXPTIME-complete [I1]. O

A transfer of similar results between DA and KM; is also possible.

Proposition 11. The azioms of SKAD are complete with respect to the valid
equations in Kri.

Such completeness result are the basis of the representation theory for KM; and
KAD. A deeper investigation of these semantic issues is, however, out of the
scope of the syntactic analysis of this paper.

13 Reachability Analysis in Directed Graphs

We now define some basic operations and predicates on KM and KAD that are
appropriate for the abstract analysis of directed graphs, interpreted as finite
relations. That is, we motivate our considerations through the relational model.
Our tool-kit has many interesting applications in the development and analysis
of programs and state transition systems, in the analysis of pointer and object
structures and in garbage collection algorithms. The main idea is to work in
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abstract Kleene algebra as long as possible and to descend to the particular
structures, for instance matrices, only when needed. Properties in the particular
models can then be formulated as bridge lemmas and used as hypotheses in
Kleene algebra.

Here, we do not consider the classical modal properties that are expressible in
KM and KAD due to the BAO-connection. We restrict our attention to operations
and properties related to reachability. Also an analysis of concrete algorithms,
like for instance, cycle detection, (topological) sorting or shortest path algorithms
are beyond the scope of this paper.

In KM, we represent edge sets of a graph by Kleenean elements and sets of
nodes by Boolean elements. The following operation collects the set of nodes
that are reachable from a set p via a.

reach(p,a) =p:a”. (23)
Similarly, we can collect the set of nodes that are non-reachable from p via a.
nreach(p, a) = reach(p,a)’. (24)

We now define two predicates that express the property that some set g is reach-
able and non-reachable from a set p via a. Intuitively,

reach-p(p, a, q) < ¢ < reach(p, a), (25)
nreach-p(p, a,q) < ¢ < nreach(p, a). (26)

Interestingly, nreach-p can be expressed already in KAT.

Lemma 15. Let K € KAD. Then for all a € K and p,q € test(K),
nreach-p(p,a,q) < pa*q < 0.
Proof. We calculate

nreach-p(p, a,q) < ¢ < nreach(p, a)
& q < reach(p,a)’
& reach(p,a) < ¢
& 8(pa*) <
< pa*q < 0.

The last step uses (gla)). O

Note that there is no similar fact for reach-p, nor does Lemma hold in
KM. Moroever nreach-p(p, a,q) and —reach(p,a,q) are not logically equivalent.
—reach(p, a, q) holds if ¢ contains some element that is not reachable from p via
a, whereas nreach(p, a, q) holds if all elements of ¢ are not reachable from p via
a.
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Another interesting set are the nodes of a that are not reachable via a from
p. The set can be defined in KM as follows.

snreach(p, a) = d(a)nreach(p, a). (27)

Using reach, we can also characterize the final nodes with respect to reachability
from p.
final(p, a) = reach(p,a)d(a)’. (28)

When reach describes the run of the main loop of some program a from some set
of initial states, final represents the set of final or terminal states of a. Similarly,

nfinal(p, a) = reach(p, a)d(a) (29)

characterizes the set of unfinished computations of some program. The expres-
sion nreach(p,a)d(a)’ is of no particular interest to us. It characterizes the un-
reachable states in a state-space which do not belong to a. Obviously,

reach(p, a) = final(p, a) + nfinal(p, a),
0 = final(p, a)nfinal(p, a),
0 = snreach(p, a)nfinal(p, a).

For many applications, for instance the analysis of dynamic graph algorithms,
updates, that is insertion and deletion of edges in a graph is important. These
properties must be modeled in KAD instead of KM.

del(a, b) = 6(a)', (30)
ins(a,b) = a + del(a, b). (31)

Note that del behaves as suggested by its name only when a represents a single
edge. Then it deletes a from the set of edges b. In general, it deletes all edges of b
whose starting point lies in §(a). ins behaves as expected also when a represents
a set of edges. If 6(a)d(b) = 0, ins(a,b) simply inserts new elements into b.
Otherwise, the old elements of b are overwritten by a.

We now present another graph property that cannot be characterized in KM.
We say that graph b is the span of graph a with respect to the set of nodes p, if
b is the subgraph of a whose nodes are reachable from p. This can be defined in
KAD as

span(p, a) = reach(p,a)a. (32)

We now collect some basic properties of these operations. The first set of
properties deals with unfolding reach.

Lemma 16. Let (K,B,:) € KM. Let a € K and p,q € B.

(i) reach(p,a) = p +reach((p : a) — p, a).

) (
(#1) reach(p,a) = p + reach(p, a) a.
(i#) reach(p,a) = p+ reach(p: a,a).
(iv) reach(p,a) = p+ reach(p: a, p'a) for (K, B,:) € KAD.
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Proof. (i) Dualize the identity shown in Lemma [l
(ii) Dualize the peirced star unfold rule from Lemma B (i).
(iii) Dualize the peirced star unfold rule from Lemma B (ii).
(iv) Dualize an identity shown in [9]. O

We now present elimination rules for reach.

Lemma 17. Let (K,B,:) € KM. Let a € K and p,q € B.

)
(i) p:a < p = reach(p,a) < p.
(i) q:a+p < q= reach(p,a) <q.

Proof. Dualize [@) and (kmf). O

The above lemmas immediately imply similar properties for nreach, snreach,
final, nfinal and span. We now show further properties of reach that immediately
transfer to the other operations.

Lemma 18. Let (K,B,:) € KM. Let a,b € K and p,q € B.

(1) reach(p + ¢,a) = reach(p, a) + reach(q, a).
(i) p < qgAa <b= reach(p,a) < reach(g,b).
(#i) reach(p,a) < reach(p,a + b).
(iv) reach(reach(p,a),a) = reach(p, a).

Proof. (i) Immediate from (kmTJ).

(ii) Immediate from left and right monotonicity of the scalar product and
from and monotonicity of the star.

(iii) Immediate from (ii).

(iv) We calculate

reach(reach(p,a),a) = (p:a*) :a* =p: (a*a*) = p:a* = reach(p, a).
Lemma 19. Let K € KAD. For every a,b € K and p € test(K),
nreach-p(p, a, (b)) = reach(p,a + b) < reach(p, a).
Proof. First observe that by Lemma [[A nreach-p(p, ad(b)) is equivalent to
reach(p, a)d(b) < 0.
By Lemma [[7 (i), the dual of (km2) and Lemma[H) (ii), it suffices to show that

reach(p,a) > p + reach(p, a) : (a + b)
= p+ reach(p,a) : a + reach(p,a) : b
= reach(p, a) + reach(p, a) : b.
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But reach(p,a) : b vanishes by assumption, (dIJ), (km3) and (), since
reach(p,a) : b = reach(p,a) : (§(b)b)

(reach(p:a):6(b)) : b

= (reach(p: a)d(b)) : b

0.

The next lemma relates reach and span.
Lemma 20. Let K € KAD. For all a € K and p € test(K),

reach(p,a) = p+ 1 : span(p, a).
Proof. Using Lemma [Tl (ii) and (), we calculate
p+1:span(p,a) =p+1: (reach(p,a)a)
=p+ (1: (reach(p,a)) : a

= p+ (1(reach(p,a)) : a
= reach(p, a).

Lemma 21. Let K € KAD. Let a,b € K and p, q € test(K).

(1) span(p,a) = span(p,b) = reach(p, a) = reach(p, b).
(i) span(p,span(p,a)) = span(p, a).

Proof. (i) Immediate from Lemma 20
(i) Let b = span(p,a) = reach(p, a)a. If we can show that

reach(p,a) = reach(p, b), (33)
we are done, since using ([B3)) we can calculate
span(p,b) = reach(p, b)b = reach(p, b)reach(p, a)a = reach(p, a)a = span(p, a).

For claim (B3)), first note that reach(p,b) < reach(p,a), since b < a and by
monotonicity of reach. For the converse direction, it suffices by Lemma [ (ii) to
show that p + reach(p,b) : a < reach(p,b). We calculate

p+ reach(p,b) : a
= p + (reach(p, b)(reach(p, a) + reach(p,a)’)) : a
= p + (reach(p, b)reach(p, a)) : a + (reach(p, b)reach(p,a)’) : a
< p + (reach(p, b)reach(p,a)) : a + (reach(p, a)reach(p,a)’) : a
= p+ (reach(p,b) : reach(p,a)) :a+0:a
= p + reach(p,b) : (reach(p, a)a)
= p+ reach(p,b) : b
b).

= reach(p,
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The first step uses the definition of complement. The second step uses (kml).
The third step uses reach(p,b) < reach(p,a) and monotonicity. The fourth step
uses again the definition of complement and (&), which is a theorem of KM.
The fifth step uses strictness of scalar products and (km3). The sixth step uses
the definition of b. The seventh step uses Lemma [0 (ii). a

The following lemma is analogous to Lemma [[9
Lemma 22. Let K € KAD. For every a,b € K and p € test(K),
nreach-p(p,a, §(b)) = span(p,a + b) < span(p,a).

Proof. Using Lemma, [[@ and in particular the initial observation in its proof,
we calculate

span(p,a + b) = reach(p,a + b)(a + b)
< reach(p, a)a + reach(p,a)b
= span(p, a) + reach(p, a)d(b)b

= span(p, ).
a
The next lemma collects some properties of ins.
Lemma 23. Let K € KAD. Let a,b,c € K.
(i) a <ins(a,b).
(i) a = §(a)ins(a,b).
(iii) a = ins(a,a).
(iv) ins(a,b + c) = ins(a,b) + ins(a, c).
(v) 6(ins(a,b)) = d(a) + 6(b).
The next lemma relates snreach to span.
Lemma 24. Let K € KAD. For every a € K and p € test(K)
snreach(p,a) = 6(a)d(span(p,a))’.
Proof.
5(a)d(span(p, a))’ = d(a)d(reach(p, a)a)
= §(a)(reach(p,a)d(a))’
= §(a)reach(p,a)’ + 6(a)é(a)’
= §(a)reach(p, a)’
= §(a)nreach(p, a)
= snreach(p, a)
O
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The next lemma relates reach, span and ins.

Lemma 25. Let K € KAD. For every a,b € K and p € test(K),

(i) nreach-p(p,a, (b)) = reach(p,ins(b,a)) = reach(p,a).
(i) nreach-p(p,a,§(b)) = span(p,ins(b,a)) = span(p, a).

Proof. (i) reach(p,ins(b,a)) > reach(p, a) holds by Lemma [[§ (iii). For the con-
verse direction, we calculate, using Lemma [[U and the assumption

reach(p, ins(b,a)) = reach(p,a + d(a)'b) < reach(p,a + b) < reach(p, a).

(ii) Similar to (i), using Lemma O

14 Conclusion

We have presented an axiomatization of Kleene modules as a complementation
to Kleene algebra with domain. This allows a fine-grained comparison with al-
gebras related to propositional dynamic logic. Our results support a transfer
between concepts and techniques from set- and relation-based program develop-
ment methods and those based on modal logics. It encompasses the state-based
and event-based view. Although the striking correspondence between scalar
products, relational preimage operations and modal operators is not entirely
new, we find it still surprising. On the theoretical side, our results are only first
steps of the representation theory for KM; and KAD. A deeper investigation of
these semantic issues is beyond the syntactic analysis of this paper. On the prac-
tical side, we have already started considering applications in the development
of graph, pointer and greedy algorithms.
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national Workshop on Applications of Kleene Algebra and the 7! International
Seminar on Relational Methods in Computer Science for stimulating discussions.
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