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The current-voltage characteristics of ultrasmall Josephson junctions sensitively depend on the
electromagnetic environment of the junction. When the charging energy exceeds the Josephson
coupling energy, the usual supercurrent at zero voltage is completely suppressed. However, for typ-
ical environmental impedances, which are small compared to the resistance quantum, stochastic
Cooper-pair tunneling leads to a supercurrent peak at a small finite voltage which is proportional
to the temperature and the low-frequency resistance of the external circuit. An analytic expression
for the form of this universal peak, which is independent of the high-frequency behavior of the envi-

ronment, is given. With increasing Josephson coupling the peak merges into the usual supercurrent
of a Josephson junction. At larger voltages the Cooper-pair current depends on details of the en-

vironment. Current peaks are shown to result from resonances in the environmental impedance.
Specifically, the case of an LC transmission line of finite length is discussed.

I. INTRODUCTION

Single charge tunneling phenomena are macroscopic
manifestations of the microscopic charge quantization,
which have attracted a great deal of interest recently.
These phenomena arise at low temperatures in ultra-
small tunnel junction systems with capacitances be-
low 1 fF. It has been noted that for single junction
systems the electromagnetic environment of the junc-
tion crucially affects the charge tunneling rates lead-
ing to a washout of the Coulomb blockade efFects un-
der standard conditions. 2 4 Only in the extreme case
of high-resistance leads with impedances above 10 kO
may effects originally predicted for isolated junctionss s

become observable. Experiments on single junctions
in a high-impedance environment have been performed
both for the case of normal junctions '~ and Josephson
junctions with results that are in fair agreement with
theoretical predictions. 2

The need for a high-impedance environment is unfor-
tunately in confIict with the requirement of no heating
and no electron localization in the resistor. Hence, man-
ifestations of charge quantization in single tunnel junc-
tions shunted by standard low-impedance environments
with typical impedances of 100 0 are of particular inter-
est. For normal tunnel junctions such signatures of the
Coulomb blockade effect are a high voltage shift of the
current-voltage characteristic and a zero bias anomaly of
the conductance. 2 4 Both effects have been seen in recent
experiments although quantitative con6rmation of
the theoretical predictions is still lacking.

Much of the earlier theoretical investigations on small
capacitance Josephson junctions were based on the model
of a current biased junction. However, it has been
pointed out by Devoret et al. that for junction capaci-

tances in the fF range or below, the parasitic capacitances
of the external circuit always act as an efFective voltage
bias. Another important efFect of the electromagnetic en-

vironment is the exchange of energy between the tunnel-

ing particie and the electromagnetic modes of the circuit.
For normal tunnel junctions with a tunneling resistance
that exceeds the resistance quantum, the inSuence of the
electromagnetic environment on the tunneling rates can
be calculated by treating the tunneling Hamiltonian as a
perturbation. ' This approach can be extended~s ~ to
the case of a Josephson junction, provided the Joseph-
son coupling energy is small compared with the charging

energy.
In Sec. II we Grst introduce a Hamiltonian describ-

ing the influence of the electromagnetic environment on
ultrasmall Josephson junctions and review the deriva-
tion of Cooper-pair tunneling rates. We then study two
pronounced efFects occurring in the presence of a low-

impedance environment. In Sec. III we show that at low

temperatures a supercurrent peak appears in the current-
voltage characteristic near zero bias. The peak is found
to be independent of the detailed &equency dependence
of the environmental impedance. We give an extended
presentation of our earlier work on the supercurrent
peak. In Sec. IV we show that the peak is usually only
weakly affected by the large environmental impedance in
the kHz range observed in standard experimental setups.
The relation between the peak and the usual supercur-
rent is clari6ed in Sec. V, where the phase diffusion in
a voltage-biased Josephson junction is discussed. Addi-
tional peaks in the current-voltage characteristic near a
larger voltage Rue/2e are possible if the environmental
impedance Z(u) has a peak at the &equency ua. This
is due to the fact that the energy 2eV gained by a Cooper
pair transferred through a junction biased at voltage V
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has to be absorbed by the external circuit. In Sec. VI
we study the position and form of peaks in the current-
voltage characteristic for the speci6c model of a 6nite LC
transmission line.

II. INFLUENCE OF THE ENVIRONMENT

We start out &om the Hamiltonian

J(t) =2
+ du) ReZ, (~) e * ' —1

Rg 1 —e —t'" '

where Rq = h/4e is the resistance quantum. In terms
of the phase correlation function the tunneling rate (3)
may be written as I"(V) = (xE&/2h)P(2ev), where

Z

dt exp J(t) + Et— (6)
H = —EJ cos(t'p)

2C
q2 (5) 1 (p e+). " +

I

—
I

———« —t-)2C„(e) 21„2
which describes a Josephson junction coupled to envi-
ronmental modes. The junction is characterized by a
capacitance C, carrying the charge Q, and a coupling
term depending on the phase difkrence p across the junc-
tion. The Josephson coupling energy Ep is related to the
bare critical current I, by E~ = (h/2e)I, . In the limit
X ~ oo the capacitances |„and inductances L„provide
a Caldeira-Leggett model2 for an arbitrary environmen-
tal impedance

N - —1

Z(u)) = dt exp( —iu)t) ) cos((d„t)
L„0 A=1

(2)

E2 +
/ 2e

I'(V) = dtexp
~

i—Vt
~

(e'~~'le '~~ l).
4h,

The thermal average of the correlation function has to
be taken with respect to a canonical distribution at in-
verse temperature P = 1/k~T defined by the Hamilto-
nian (1) for V = 0 and Eg = 0. Since this Hamilto-
nian is harmonic, the correlation function in (3) may
be expressed as (e' ~')le '~lol) = exp[J(t)] with J(t) =
([(p(t) —(p(0))(p(0)). The phase correlation function J(t)
depends on the total impedance

1
Z2 (d

i(uC+ Z i((u)
(4)

where u„= (L„C„) it'2. The phases (p„are canonically
conjugate to the charges q„with the commutation rela-
tion [tp„, q„] = ie In contr. ast, [(p, Q] = 2ie to conform
with the usual definition of the phase difference across
the junction. Finally, V is the external voltage. The
Hamiltonian (1) neglects quasiparticle excitations, which
is adequate at temperatures well below the critical tem-
perature of the superconductor and voltages below the
gap voltage.

In view of exp(i(p)Q exp( —i(p) = Q —2e, the Joseph-
son coupling term Eg cos((p) = (E~/2) exp(i(p) +H.c. is a
Cooper-pair tunneling term changing the junction charge

Q by 2e. For Eg « E, = 2e2/C this term can be treated
perturbatively. After tracing out the environmental de-
grees of freedom one finds for the forward tunneling rate
to second order in the Josephson coupling energy

gives the probability that a tunneling Cooper pair emits
the energy E to the environment. Since Cooper pairs
have no kinetic energy, tunneling is only possible if the
energy 2eV provided by the voltage source is entirely
transferred to the environment.

Clearly, from the symmetry of the circuit the backward
tunneling rate is related to the forward tunneling rate by

r(V) = r(-V). H.n-, the ~o~al Coop..pai. .u-.nt ls

given by

I(V) = 2e I'(V) —I'(V)

meE2~ [P(2eV) —P(—2eV)] .

III. COOPER-PAIR CURRENT PEAK AT LOW
VOLTAGE

To determine the Cooper-pair current at low voltages
it is convenient to shift the integration contour in (6) by
—ihP/2 yielding

P(E) = exp(PE/2)
1

z
dt exp J(t —imp/2) + Et—

where

p = Z(0)/Rg (10)

and where we have omitted terms of order p/PE, as well
as terms decaying exponentially fast in time. All terms
in (9) except for the last one, depend only on the low-

frequency behavior of the impedance determined by the
parameter p. The details of the frequency dependence of
the total impedance enter through the constant

Since J(t —i'/2) is real and symmetric the detailed
balance relation P( E) = exp( —P—E)P(E) becomes ap-
parent. From (5) we find that for long times and at low

temperatures the phase correlation function may be writ-
ten as

2(t —trstt/2) = —2p()n cosh
~ ~

+ ln
~ s ~

+ (),(PE.i
& ~'p)

(9)

of the junction capacitor in parallel with the external
impedance according to

d(u ReZ, ((u)=p+
p 4) pRQ

(11)1+ (7rpfuu/E, )
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where p = 0.5772. . . is Euler's constant. The integral in

(ll) vanishes for the special case of an ohmic external
impedance Z(u)/Rq = p, i.e., ( h;, = p. On the other
hand. , for an enviroumental impedance Z(u) = i&uL + R
in series with the ultrasmall junction one has

&LCR = ~-»(e)
1 —2

artanh[(l —4Q ) '/'],4 2 i/2 (12)

where Q = (L/C) / /R is the quality factor of the LCR
circuit.

The exponentially decaying terms omitted in (9) do not
contribute to the low-energy behavior of P(E) and are
irrelevant for the current-voltage characteristics at low

voltages. Inserting the result (9) into (6) with the shifted
contour, one 6nds that the integral can be evaluated an-
alytically in terms of the gamma function. Combining
the result with (7), the current-voltage characteristic is
found to read2

1—2p

2 E.' (2-
x exp[—2(p] sinh(PeV). (13)r(2

We note that in view of a duality between incoher-
ent tunneling of charge and phase, 'i the supercur-
rent (13) through a voltage biased Josephson junction
is dual to the finite voltage across a weakly current bi-
ased Josephson junction caused by macroscopic quantum
tunneling.

Although the current-voltage characteristic (13) is
mainly determined by the low-&equency impedance Z(0)
it applies to arbitrary environmental impedances with a
finite zero-&equency limit in the sense discussed above.
The high-&equency behavior of the impedance enters
only through ( defined in (11). Due to this universal
nature of the supercurrent peak it should be observable
under feasible experimental conditions. Of course, the
range of validity of the current-voltage characteristic (13)
is limited by the approximations made. We have evalu-
ated the tunneling rate for small Eg and have used an
approximation of the phase correlation function valid for
long times and low temperatures. The low-temperature
approximation leads to the requirement PE, &) n'p. For
ultrasmall junctions and realistic values for p this con-
dition may in practice be less stringent than T && T,
where T is the critical temperature of the superconduc-
tor. The long-time approximation restricts the range of
validity of the current-voltage characteristic to small volt-
ages V « Ruz/e, where &uz is a characteristic frequency
above which Zq(u) deviates significantly &om Z(0). For
an ohmic impedance mz = I/RC. Typically, hcuz » E~,
and the range of voltages where (13) holds is large on the
voltage scale E,/e of interest. Finally, &om a study of
higher-order terms in EJ, one 6nds that the maximum
P of P(E) should satisfy the condition P „Eg « 1.
For small impedances p this gives the condition PEg « p,
which puts a lower bound on temperature. Together with
the first requirement given above, one finds that (13)

holds for a large range of temperatures if the condition
Eg « E is fulfilled.

We now take a closer look at the form of the current-
voltage characteristic (13). As we have mentioned above
it exhibits a peak at small voltages provided the zero
&equency impedance p is suf6ciently small. For p « 1
one 6nds that the current has a maximum at the voltage

V = —[1+4((3)p + . .], (14)

where ((3) = 1.202. . . is a Riemann number. Note that
V ~ is proportional to T. Inserting V = wp/eP into
(13) the maximum current is found to be i

dI
Rq

(Eg)t, I'(p)

g E, y I'(2p)

x exp[—2gp] (

(PE ) 2 2P

( 2z'2 )
which scales as T + P for small temperatures. In the
common case where p is much smaller than one, the zero
bias differential conductance diverges for decreasing tem-
perature. This is an indication of the zero bias anomaly
of the current-voltage characteristics found at zero tem-
perature where I ~ V p

The supercurrent peak at low voltages is shown in Fig.
1 for an environmental impedance Z(0) = 1000 and dif-
ferent temperatures. For p « 1 there is a distinct peak
at low temperatures, which becomes more pronounced as
the temperature is lowered. We remark that, while Fig.
1 shows the analytical result (13), the appearance of a

0.02 0.04

FIG. 1. Supercurreut-voltage characteristics, Eq. (13), for
an ultrasmall Josephson junction coupled to an environment
with a low-&equency resistance of 100 O. The temperature
kgyT/E = 0.05, 0.1,0.2 increases from the upper curve to the
lower curve. The voltage is given in units of E /2e, while the
current is given in units of I (Eg/E }exp[—2('p].

I =-I 'p" ~'~ '~
2 'E, (27r2y

I'pl —i
x exp[—2(p] sinh(n'p)

r(2p)

which is proportional to T + P. For p ~ 0 (15) reduces
to I = (eE&z/2h)P. The theory ceases to hold when
I ~ becomes comparable to pI, .

Another quantity of interest is the zero bias differential
conductance. From (13) one immediately gets



398 INGOLD, GRABERT, AND EBERHARDT 50

peak in the Cooper-pair current has been seen in earlier
theoretical work ' based on a numerical evaluation of
Eqs. (5)—(7).

Z(0) should then in fact be replaced by the environmen-
tal impedance above the cutoff frequency ~g, typically
the impedance in the upper MHz range.

IV. ROLE OF LOW-FREQUENCY IMPEDANCE

P(E) = f dE'P&(E —E')PQ(E ) (i7)

of the two probabilities Pq(E) and P2(E), which are de-
termined by the total impedances Z) (tu) and Z2(ur), re-
spectively, replacing Zz(u) in (5). Since Ro/Rq » 1, we
find"

Pz(E) = (4+Eok~T) ' 'exp (E —Eo)'
4Epk gT

The results in the preceding section show that the su-
percurrent peak depends on the parameter p = Z(0)/Rq.
The question now arises what has to be inserted for Z(0).
We first note that the relevant frequency scale is of the
order of E,/I), , which for ultrasmall Josephson junctions
with capacitances of 10 F yields 10 Hz. As men-
tioned before, it is very difBcult to place impedances,
which at these frequencies are of the order of the resis-
tance quantum, close to the junction. We therefore have
assumed that the external impedance in the relevant fre-

quency range is small compared to Rq. However, at very
low frequencies the environmental impedance can easily
be in the MO range. Yet, such a high impedance at very
low frequencies is not likely to acct the calculation given
in the preceding section. This can be shown by consider-
ing an external impedance Z(u) = R+ (iuCo + 1/Ro)
consisting of a small resistance R in series with an RC cir-
cuit of large resistance Rp and low cutoff frequency ~p ——

(RoCo) ~. We may express the total impedance approx-
imately as a sum of two terms, Zq(u) = Zq(ur) + Z2(w),
where Zq(u) = R/(iv)/~„+ 1) with u„= (RC) ~ con-
tains the junction capacitance and the relevant high-
frequency resistance, while Zz(~) = Ro/(itd/~I + 1) is
the high-impedance contribution at very low frequencies.
Now the probability (6) is given by the convolution

V. RELATION TO CLASSICAL PHASE
DIFFUSION

The results derived in Sec. III for a voltage biased ul-
trasmall Josephson junction in a low-impedance environ-
ment are related to the well-known phenomenon of phase
difFusion in an overdamped Josephson junction. ' For
small impedances Z(0) and large temperatures with
PeV (( 1, (13) reduces to

1 2 Z(0)V
2 ' V + [2eZ(0)k~T/5]

(19)

For the zero-bias differential resistance we obtain

kd" v=o) 5 E& )
(20)

I, ,„(E /k'T) &

), I;„(Eg/k~T) )
' (2i)

where v = eV/vrk~Tp. In the limit of small Josephson
coupling E~ (& k~T one recovers the results (19) and
(20). For arbitrary E~ one defines the zero bias differen-
tial resistance with respect to the voltage drop VJ across
the junction and obtains

These results may be related to the current-voltage
characteristic calculated from classical phase diffusion.
For a voltage biased junction and small environmen-
tal impedance it is appropriate to consider the so-called
Smoluchowski limit where the capacitance drops out and
charging efFects are no longer present. This is indeed the
case in (19) and (20). The current-voltage characteristic
in the phase diffusion regime may be expressed in terms
of modified Bessel functions of complex order. The re-
sult may be written in the compact form

which is a Gaussian centered at an energy Eo ——2e /Co =
E,(Ro/R)(sr~/&u„) Since err/u„ . is small, we have Eo (&

E, provided that Ro/R does not become too large. To
get an estimate on the influence of the low-frequency
impedance we insert (18) into (17) and replace Pq(E) by
a Gaussian with width cr@ centered at Eq. The changes
in position and width of Pq due to P2 are negligible if
Ep « Eq and Epk~T && 0&. For the supercurrent peak,
where both Eq and cr@ are of order m p/P, an analysis of
these conditions for the relevant range of temperatures
yields Rotug/Ru„« 4mp. This requires that the area
under the high impedance low-frequency part (oc Roug)
is small compared to the area under the high-frequency
total impedance Zq(o)). Provided this condition is ful-

6lled the form of the supercurrent peak is little affected
by the large low-frequency impedance. In the formulas
of the preceding section the zero-frequency impedance

I dV~ v, =o)

Z(0)
Io (Ey/kBT) —1

(22)

Ro ——2vr Z(0) exp( 2Eg/k~T), —
kgb T (23)

which is associated with thermally activated jumps of the
phase across the Josephson potential barrier. In view
of the relation to classical phase diffusion the peak (13)
in the Cooper-pair current-voltage characteristic may be
viewed as a remnant of the usual supercurrent for ultra-
small junctions.

For small Eg this leads again to (20), since in this limit
it is not necessary to distinguish between the external
voltage V and the voltage drop Vp across the junction.
On the other hand, for EJ )) k~T one finds



50 COOPER-PAIR CU MENT THROUGH ULTRASMALL JOSEPHSON. . . 399

VI. CURRENT PEAKS FROM
ENVIRONMENTAL RESONANCES

i fn(o l.1+ —tan
/

——
/Z((d) r ( 2 (dp j

Rg . f i(rd I1+ir tan
~

——
2 ~p)

(24)

Defining the ratio e = ~p/uR between the A/4 frequency
and the cutoff &equency urR = (R C) i due to the ca-
pacitance of the Josephson junction, we obtain for the
total impedance seen by the junction

Zi(v)
Bq

'F
1+ —tan —v

ir 2 )
7r

1 —tcvtan —v
~

+ir ev+ tan —v
2 2

(25)

Here, we have introduced the dimensionless frequency
v = u/urp. In the following we will mainly be interested
in the case of small load resistances, i.e., p « 1. We
further ass»me r « 1, which yields resonances with a

We now turn to the discussion of peaks in the current-
voltage characteristic, which have their origin in reso-
nances of the total impedance. To be de6nite, we con-
sider a finite LC transmission line terminated by an
ohmic load resistance RL, . Such an environment is of
experimental interest. The transmission line may be
approximated by an LC ladder with speci6c inductance
LQ and speci6c capacitance CQ as shown in Fig. 2. Here,
we neglect resistances in series with the inductances as
well as conductances in parallel with the capacitances.
This is a good approximation for low resistive transmis-
sion lines. The infinite LC transmission line is character-
ized by its resistance R = (Lp/Cp)i~2 and the velocity
u = (LpCp) i~~ for wave propagation on the line. The
load resistance terminating the finite transmission line is
described by the dimensionless parameter p = RL, /Rq,
which coincides with Z(0)/Rq introduced previously. In
addition, we introduce the ratio r = Ri, /R between
the load resistance and the resistance of the in6nite LC
transmission line. The length of the finite line can be
parametrized by the A/4 frequency urp —— (m/2)(u/E),
which is the frequency of a standing wave for which a
quarter of the wave length fits on the transmission line
of length E. The external impedance of the finite LC
transmission line is then given by

high quality-factor in the total impedance.
In view of these assumptions it is useful to discuss first

the case of a transmission line terminated by a short
(Ri, = 0). The enviro~ment then contains modes at
&equencies v„Q determined by the condition ev
cot(harv p/2). For r « 1, i.e., if the capacitive cutoff
at uR is much larger than the A/4 frequency urp, the &e-
quencies of the low-lying environmental modes are given
by

2
v, p = (2n+ 1)

~

1 ——~
~il' )

(26)

1+ (~v„,p)2

~+ (ir/2) [1+ (~v„,p)~]
(2g)

corresponding to a 6nite width of the resonance. Due
to causality the poles v„= v„p + irv„i and —v„'
—v„p + irv„, i of the total impedance lie in the upper
half of the complex plane.

Knowing the position of the poles in the complex plane
we may decompose the total impedance in terms of these
poles according to

for n = 0, 1, . . . . In this case the excitation of an odd
number of quanta of a low-frequency mode costs about
the same energy as the excitation of a single quant of a
higher-frequency mode. Therefore, it may be very diffi-
cult to distinguish experimentally between these two pro-
cesses. The situation is quite diferent if u~ && uQ. Then
the low-lying environmental modes have the frequencies

1
v~o = 2n+

men

for n = 1, 2, . . ., which are again approximately multiples
of each other. However, the lowest resonance now lies at
vp p = (2/ire) i~2 and is therefore well separated from the
other modes. Thus it becomes possible to study the influ-
ence of a single mode on the supercurrent. It is knownsz

that at zero temperature the probability to excite several
quanta of a single mode is given by a Poisson distribu-
tion in which the ratio between charging energy and mode
energy appears as parameter. As a consequence, the ex-
citation of two or more quanta will only be observable if
m p/~rv„, p is sufficiently large.

We now turn to the case of a finite but small load
resistance RL, . Up to first order in r the real part v„p
of the resonance frequencies is unchanged, while there
appears a small imaginary part

LpdX

'00M'

: CpCiX Rz,

Z, (v) = )
n=O

The coeKcients z are given by

zn

v+ v* (29)

x=o xW

FIG. 2. Model circuit for a finite transmission line of length
Z terminated by a load resistance RL, . The specific inductance
and capacitance are I0 and Co, respectively.

RL,

r ~+ (n./2)(1+ K v )

We note that for r « 1 the real part of z is smaller than
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the imaginary part by a factor of 1/r.
As a Grst step in calculating the Cooper-pair current

we have to determine the phase correlation function J(t).
For simplicity, we restrict ourselves to the case of zero
temperature, where (5) becomes

der ReZt, (u))

0 (d Rg
(31)

Introducing g(z) = [e"Eq(iz) + e "Ez(—iz)]/2, where
E~(z) is an exponential integral, we find

1 z„ z*
J(t) = ). 2 —"[g(v-~pt) +»(v-~pltl) + ~]+ 2—", [g(v.*~pt) +»(v;~pltl) + ~]

Rq Pn ~n

~ n —iv ~t .Zn
2vri "—(e '"—"—1)0(t) + 2vri —"(e ' " ' —1)e(—t)

~n &n
(32)

Here, e(t) is the unit step function. Due to the g function the result (32) does not allow for an analytic calculation
of the Cooper-pair current. However, since g(z) decays like 1/z for large arguments, it does not affect the long-time
behavior of the phase correlation function. Since we are interested in small load resistances leading to rather sharp
peaks in the Cooper-pair current, we may neglect the terms containing the g function. We emphasize that thereby
we still retain the physically important terms. The oscillating exponential functions describe resonances due to the
excitation of modes in the transmission line, while the logarithmically diverging terms lead to the broadening of the
resonances.

The approximate phase correlation function, which we distinguish kom the exact expression by a tilde, may be
written in the form

((opt) . m. 1 . ( . z„'
J(t) = —2p( —2p ln

~
~+i +)—

~

—27ri —"e '"- "0(t)+27ri "e '"" "—0( t) ~. —
(rr ) 2 Rq ( v' (33)

Here, we have made use of

OO

( = p + ln(r K) — ) —"[ln( —v„) + ln(v„)] + —"[ln( —v„*) + ln(v„')]
2PRg Vn ~n

(34)

which follows from (11), (29), and (30) and contains information about the total impedance at all frequencies.
Within our approximation the Cooper-pair current at zero temperature is proportional to

OO

P(E) = — dt exp J(t) + Et-
ch 0

(35)

This expression may be evaluated analytically by expanding exp[J(t)]. The resulting sum over products of exponential
functions corresponds to all different possibilities to excite modes of the transmission line. From (33) and (35) we

then obtain

P(E) = —(7rp)'~ 'I'(1 —2p)e 2~~

OO i OO

xRe( ie " ') —, )
Ic=0 n1, ...)n f,

, ". ( 2; „*,)
Rq v„'. )

/E —n, g,". , v„* ) '

2p —1

E, ~
r(2&) & E. ) (37)

The first sum in this result runs over the total number
k of mode excitations due to the tunneling Cooper pair.
The k indices n~ in the second sum denote which of the
in6nitely many modes are excited. Of course, there is a
possibility that a certain mode is excited more than once,
so that some of the indices n~ may coincide.

If the voltage applied to the ultrasmall Josephson junc-
tion is smaller than fuupvp p/2e where vp p is the smallest
dimensionless mode frequency, (7) and (M) give for the
Cooper-pair current at zero temperature

for positive voltages. This result displays the zero bias
anomaly mentioned in Sec. III.

For suKciently large voltages, modes in the transmis-
sion line may be excited and the corresponding peaks in
P(E) and the current-voltage characteristic are given by
(36). For small p we may simplify (36) and write P(E) as
a sum over Lorentzians. The peaks are centered at E =
fuup P ~ v~, p and have a width of 2rhcup g. z v~, z.

It: k

According to (28) the imaginary part of v increases with
n. Hence, the sharpest resonance will correspond to a
single excitation of the lowest frequency mode. Depend-
ing on the value of K double excitation of the lowest-
&equency mode may lead to a peak that is considerably
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broader than the peak corresponding to a single excita-
tion of the next mode. By dividing peak position and
width by 2e we immediately get the corresponding quan-
tities for peaks in the current-voltage characteristics. The
prefactor of a peak in (36) contains a factor (p/rm)" //c!,
which has the consequence that multiexcitations are only
observable if p/re is sufhciently large. This is in agree-
ment with our previous considerations.

In the current-voltage characteristic shown in Fig. 3
peaks associated with multiexcitations are clearly visi-
ble. This is a consequence of the transmission line pa-
rameters p = 0.01, r = 0.1, and ~ = 1, which also lead
to rather sharp peaks. The parameter tc is large enough
for multiexcitations of the lowest-frequency mode to be
well separated from single excitations of higher-frequency
modes. Figure 3(a) presents the approximate current-
voltage characteristic based on (36). For comparison,
Fig. 3(b) shows the corresponding result obtained from
the numerical solution of an exact integral equation for
P(E) at zero temperature, which was derived in Ref. 4.
The peaks of the current-voltage characteristic may be
labeled by the number Ns of quanta of the kth mode
excited by the tunneling Cooper pair. The identification
of the peaks is given in the figure caption, e.g. , peak e
corresponds to the excitation of two quanta of the lowest
mode and one quant of the second mode.

Comparing Figs. 3(a) and 3(b) we find qualitative
agreement. The approximate result (36) gives a good
estimate for peak positions and heights. However, it g.n-
erally gives a Cooper-pair current which is somewhat too
large. This is related to the neglect of the g function
in (32), which leads to a violation of the sum rules for
P(E).is For a quantitative comparison with experimen-
tal results finite-temperature efFects have to be taken into
account too. Then one may either employ the integral
equation developed in Ref. 34 or evaluate P(E) &om (6)
by means of Fourier transform techniques.

On the other hand, if the circuit parameters are such
that only single excitations are important, one may ex-
pand the exponent in (6) to first order in J(t). This
yields for the current-voltage characteristic

0. -I

(a)

0.05-

0.0

(b)

0.1.
t

0.05-

b
p p A

0 1 2 3 4 5 6 7

FIG. 3. Cooper-pair current-voltage characteristic for an
ultrasmall tunnel junction coupled to a finite transmission line
with p = 0.01, r = 0.1, and s, = 1. (a) shows the approximate
result based on (36), while (b) was calculated from an exact
integral equation. The voltage is given in units of JLro/2e
and the current is given in units of (+ED/2Jhro)I, . The peaks
correspond to excitations denoted by (N&N2N&N4), where NI,
is the number of quanta of the kth mode excited. a: (1000),
b: (2000), c: (3000), d: (0100), e: (1100),f: (2100), g: (0010),
h: (1010), i: (0001), and j: (1001).

son junctions with Eg &( E, embedded in a stan-
dard low-impedance environment. The first structure,
a peak at low voltages has recently been seen in ex-
periments on lithographically fabricated junctionssi as
well as break junctions. The second structure, peaks
in the current-voltage characteristics due to resonances
in the environmental impedance have also been seen in
experiments. s7'si Recently a well-defined environment
consisting of two transmission line segments has been
employedsi to allow for a quantitative test of the the-
oretical predictions and good agreement was found.

z E&2 1 ReZ&(2eV/5)
V Rq

(38)
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