UNIVERSITAT AUGSBURG

Personalized Nonlinear Ranking
Using Full-text Preferences

Achim Leubner, Werner Kiefling

Report 1999-05 September 1999

D=

|nst|tut ;
mformatlk

INSTITUT FUR INFORMATIK
D-86135 AUGSBURG

Copyright © Achim Leubner, Werner Kiefiling
Institut fiir Informatik
Universitiat Augsburg
D-86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Personalized Nonlinear Ranking
Using Full-text Preferences

Achim Leubner, Werner Kieflling

Institut fir Informatik
Universitat Augsburg

{leubner, kiessling}@informatik.uni-augsburg.de

Abstract

Today Internet information systems commonly use a total ranking to present
search results. These rankings are typically cut off at arbitrary points which
are hard to understand. In this paper we present a new approach for rankings
based on partial orders, which model personal preferences. It naturally groups
large result sets according to the quality of results and presents only the top
ones. It is possible for the user to expand these result sets selectively along
chains of the partial order. We expect a considerable gain in comprehensi-
bility, clarity and user friendliness. A pilot application is being implemented
and first encouraging evaluation results are reported.

Keywords: Personalized Information Systems, Full-text Preferences, Nonlinear Rank-
ing, Partial Orders, Preference SQL.

1 Introduction

Today the Internet provides various personalized information services adopted to a sin-
gle user’s needs. Sources like [myCNN], [InfoBeat] or [My-Newspaper]| deliver personal
newspapers, i.e. you can choose between several rubrics and services offered by them.
With 'meta newspapers’ like the German [Paperball] you can even compose your per-
sonal newspaper by choosing specific sections of different online newspapers. They also
offer personal rubrics by searching for user-given keywords in user-selected repositories.
These and other personalized information services provide the opportunity to save con-
siderable amounts of time otherwise necessary for browsing through piles of irrelevant

information. Therefore, they undoubtedly provide advantages compared to conventional
non-personalized information sources. But even Paperball’s personal rubrics are only
very basic tools. Although there are technologies to extract keywords from sample
documents and to adjust them using relevance feedback, people still have to choose key-
words and are responsible for adapting them to their changing interests on their own.
Moreover, query results are always presented as linear ranked lists.

In this paper we propose a new approach based on system-derived user preferences, which
are modeled as partial orders of keywords. We limit the initially presented information
to the top-scored documents. The user may then decide if she wants to see more and
thus expand the presentation selectively according to her information need. In the
next section we will concentrate on the relation between our approach and conventional
information retrieval /filtering. In section 3 we model preferences more theoretically
defining base preferences and multiset preferences. We also introduce how to combine
preferences into complex ones. Section 4 focuses on our approach of a personalized
information service with nonlinear ranking and presents a prototype implementation.
We conclude the paper with our preliminary results and a short outlook.

2 Relation to Information Retrieval and Filtering

All WWW information systems we are aware of, while using different retrieval tech-
niques, present their results as linear ranked lists. The ranks typically are based on the
correspondence between a set of keywords and the searched documents, and are adjusted
according to term frequency, etc. These techniques often assign non-zero scores even to
irrelevant documents. To relieve the user from browsing through all (including irrele-
vant) documents, a cutoff point has to be chosen. This means limiting the result set by
either presenting the N top results or using a threshold. It’s a general and important
problem how to choose an optimal N or a suitable threshold, as a small N worsens recall
and a too large one precision. It is known that 'top N’ approaches often don’t deliver
optimal precision/recall ([FoDu92]).

In our opinion the user can decide better about an optimal cutoff point. To aid the
user in doing so, the system has to aggregate the information content in an intelligible
way. Therefore, we don’t rely on total orders but use partial orders on keywords. In
this way the user gets the best-matching documents first. These matches imply a high
precision (but possibly a bad recall). The matches are grouped with respect to the
keywords contained. It is also possible for the user to enlarge the result explicitly, thus
tendentiously improving recall at the expense of precision. In contrast to total ranking
solutions this can be done selectively along chains of the partial order.

Of course, there are other approaches to improve the clearness of the presentation, for
example clustered representations as used in [ZaEt99]. The basic difference between
these approaches and our approach is the use of a total ordering. Whereas clustered
representations typically display the clusters as ranked lists, our approach would lead

to a presentation of partial order of clusters delivered by the retrieval component below
our system.

3 A Model for Full-Text Preferences

In this section we briefly describe the concept of preferences and the theoretical founda-
tions of our solution. Importantly, as shown in [KoKi95], computational models using
partial orders are compatible with relational database technology. We first focus on base
preferences and then introduce multiset preferences.

3.1 Base Preferences

Definition 1
A base preference is a partial order (V, >) a set V of values of a particular data type.

Let’s assume we want to buy an iMac computer. As everybody knows, the most impor-
tant decision in this case is which color to choose. Today the iMac is offered in the colors
blueberry, strawberry, tangerine, grape and lime, ([iMac]). Since it’s such an important
decision we are a little bit hesitant, but we develop some clear preferences as shown in
figure 1.

blueberry tangerine

strawberry lime

grape

Figure 1: The iMac example

If we enter this preference into an ordering system at our local vendor, it should offer us
the best available iMac’s according to our preference. I.e. it would offer us a blueberry
and/or tangerine version as best selections. Otherwise if neither blueberry nor tangerine
versions are on stock, it should offer us a strawberry and/or a lime version. And only if
none of these can be delivered it should offer a grape version.

3.2 Multiset Preferences

Consider a more complicated example: Let’s say we are interested in jazz and want to
known what’s going on. We pose our query on a database containing all recent articles
of an international music magazine. So our preference on a set of keywords V' may be
the one shown in figure 2.

Trumpet Contemporary Music Classic Germany
Europe

Figure 2: A query against an international music magazine

This time we cannot simply apply this preference to the column containing the articles,
since in each article various keywords may occur simultaneously. Consider documents
containing 'Classic’ and 'Piano’ respectively "Jazz’ and "Trumpet’. Since 'Piano’ is better
than "Trumpet’ according to the given preference, the first document should be preferred.
But this would be inconsistent with the preference of ’Jazz’ over 'Classic’.

To solve this problem we represent each article by the multiset of matching keywords
from V. These multisets are elements of the set of finite multisets M (V') over V. We
derive our order on M (V') by constructing a multiset order.

Definition 2
For the given partially ordered set (V,>), the multiset preference (M(V'),>>) is defined
for A,B € M(V) as follows:

A>B+=3J0#XCAYeMV):(AX)UYDBAVyeY JrzeX:az>y

1 11

We omit the proof that (M (V'), >) is a partial order since it’s only a simple variation
of the multiset order known from term rewriting (see [DeMa79]). Obviously, we get our
base order (V', >) if all compared sets contain only one element.

Informally, to show that A is better than B, we have to choose a non-empty submultiset
X of A. We then replace this multiset by new elements in Y. For each new element
there has to be a better element in the replaced multiset (condition II). If it is possible

to worsen A this way such that B or a supermultiset of it is created (condition I), then
A is better than B.

For example, to show that {USA, Piano, Classic} is better than {USA, Trumpet}, we
may choose to replace {Piano} with {Trumpet}. Since "Trumpet’ is worse than "Piano’
according to the base preference, the substitution is permitted. This way we get a

superset of {USA, Trumpet}, so {USA, Piano, Classic} is better than {USA, Trumpet}.

Now we continue our example: For articles represented by the sets {USA, Trumpet,
Jazz}, {Europe, Piano, Jazz}, { Germany, Trumpet, Jazz}, {Europe, Classic} and {Europe}
we get the partial order > in figure 3.

{USA, Trumpet, Jazz} {Europe, Piano,Jazz}
{Germany, Trumpet, Jazz} {Europe, Classic}
{Europe}

Figure 3: The result of above query against an international music magazine

An arrow from A to B means that A is preferred over B. E.g. {Europe, Piano, Jazz} is
more interesting than {Europe, Classic} according to the given preference.
3.3 Combinations of Preferences

Both types of preferences, base preferences and multiset preferences can be combined
by either prioritization or cumulation to form a more complex preference:

e Priorization prefers a preference over another.

e Cumulation treats preferences as equally important.

Combined preferences can be nested the same way.

3.3.1 Perioritized Preferences

Reconsidering the result of the multiset example (see figure 3), we observe that the
documents containing only the keyword ’Europe’ are probably not relevant for us, since
we are specifically interested in music here. A solution is splitting the preference from

figure 2 on page 4 into two multiset preferences combined by prioritization. This way
the first preference is stressed: An object is better, if it’s better according to the first
base preference. If it’s not better and not worse according to the first base preference,
the second preference decides.

Definition 3
Formally, for the preferences (X1, >) and (Xs, >), the prioritized preference (X; - Xy,
>) is defined by:

\ (al,az), (bl,bQ) e Xy x Xy: (al,ag) > (bl,bg) < a; > b1V(a1 } bl/\al jé bl/\ag > bg)

We omit the proof that (X; - X5, >) is a partial order since it’s only a slight variation
of the lexicographic order on the cartesian product as described in [DaPr90].

Piano /Jazz\
Trumpet Contemporary Music Classic

Figure 4: The first part of the split music preference

USA

|

Germany

Europe

Figure 5: The second part of the split music preference

In our example, we split the preference from figure 2 on page 4 into the preferences in
figure 4 and 5. The preference in figure 4 is our first preference to consult and the one
in figure 5 the second.

{Europe, Piano, Jazz}

|
{USA, Trumpet, Jazz} = {Germany, Trumpet, Jazz}

|
{Europe, Classic}

Figure 6: The preliminary result
{Europe, Piano, Jazz}

{USA, Trumpet, Jazz}

|

{Germany, Trumpet, Jazz}

{Europe, Classic}

Figure 7: The final result

Now let’s consider the result for the document set of the multiset example on page 5.
The simple base preference from figure 4 on the page before applied to the document set
leads to the order in figure 6. The sets {USA, Trumpet, Jazz} and {Germany, Trumpet,
Jazz} are equivalent at this stage, since the first preference ignores the terms USA and
Germany.

At the next stage all keyword sets that are equivalent or incomparable according to the
first preference are compared with respect to the second preference. This leads to the
order in figure 7.

3.3.2 Cumulated Preferences

Reconsidering the iMac example on page 3, we recognize that we additionally prefer
an offer with 64 MB RAM over the standard offer with 32 MB. We may combine both
preferences using a cumulated preference.

Definition 4
Formally, the cumulated preference (X1 + Xy, >) for the preferences (X1, >) and (X,
>) is defined by:

v (al,ag), (bl,bz) € X1 X X2 : (al,ag) > (bl,bg) < (a1 > bl/\ag > bg)\/(az > bg/\al > bl)

This means a document is better if it’s really better with respect to one of the base
preferences and at least as good with respect to all other base preferences. It also
implies that both documents have to be comparable with respect to all base preferences.
For the example it means we prefer an iMac over another, if it has a better color or
more RAM and is at least equally good with respect to the other criterion. Cumulation
is a version of the coordinatewise partial order on the cartesian product as described in
[DaPr90).

4 Prototype Implementation

In this section we will present our vision of a personalized information service based on
preferences. We also describe which parts of preference technology already have been
implemented.

4.1 A Personalized Information Service with Full-text Preferences

A personalized information service for our approach would require the user to select
predesigned facets of preferences based on natural-language descriptions associated with
the facets. The system would combine them into a set of preferences. We do not
expect user’s to design preferences on their own. Each time the user queries the system
the top documents that have not already been delivered are presented with a short
summary, description or a snippet and grouped according to the partial order. We
believe partial orders are a natural way to express personal preferences. In contrast to
numerical calculation or boolean logic, most people are familiar with preferences from
early youth on. Therefore we expect this presentation to improve the comprehensibility
of the results. The user can then select relevant articles or extend the result set. Since
preferences generated from predesigned facets are only rough approximations of the
user’s interests and since the user’s interests continually change, the system has to use
the implicit relevance feedback given by the user (e.g. which articles the user really
selected) to adapt the preferences continuously. Figure 8 on the next page shows the
gross architecture of such a personalized information service.

Presentation/GUI

Relevance Feedback Query and Results
Preference Creation
Analysis of Preference Preference
Feedback Adaption of Repository Engine
Preferences
‘Retrieval

Text Repository (e.g. SQL Database with fulltext extender)

Periodical Update

Information Source

Figure 8: Gross architecture of a personalized information service

The underlying conventional information retrieval or filtering system gets its information
from an arbitrary information source. The preference engine then retrieves information
from the text repository according to the preferences stored in the preference repository.
The results are presented by a GUI that returns the user’s feedback to an analysis
component. This component adjusts the preferences, if necessary.

4.2 What’s already Implemented

So far there is one commercial implementation of base preferences including combined
preferences together with commercially important basic preference types and features
not mentioned here ([PrefSQL]). Preference SQL is basically an additional layer be-
tween any SQL-compliant database and an arbitrary application. This layer translates
the Preference SQL extensions to standard SQL. The application can interact with Pref-
erence SQL using JDBC or ODBC.

In Preference SQL extended by multiset preferences, the previous example for prioriti-
zation in figure 5 on page 6 can be formulated as:

CREATE PREFERENCE DOMAIN jazzDomain AS CHAR (*)
(CHECK VALUE IN (’Piano’, ’Trumpet’, ’Jazz’,
’Contemporary Music’, ’Classic’,
"USA’, ’Germany’, ’Europe’));

CREATE PREFERENCE jazzPrefl (
MULTISET PREFERENCE IN (VALUES
(’Piano’, ’Trumpet’),
(’Jazz’, ’Contemporary Music’),
(’Jazz’, ’Classic’)),
PREFERENCE DOMAIN jazzDomain);

CREATE PREFERENCE jazzPref2 (
MULTISET PREFERENCE IN (VALUES
(’USA’, ’Germany’),
(’Germany’, ’Europe’)),
PREFERENCE DOMAIN jazzDomain);

SELECT Title, Date, Description
FROM Article
WHERE Date > DATETIME(1999-06-01)
PREFERRING jazzPref1(Text) PRIOR TO jazzPref2(Text);

For multiset preferences there is a first research prototype implemented at the University
of Augsburg in Java with JDBC on top of the relational database system DB2 5.2.
This prototype is currently restricted to sets instead of multisets. The text repository
currently contains about 59000 articles (more than 800 MB) from the online version of
the German newspaper 'Die Welt’ ([Welt]). Every night the new online edition is inserted
into the database. The prototype evaluates multiset preferences containing arbitrary full-
text expressions. It is possible to filter potential results for hard constraints by using a
normal SQL where-clause (as shown above).

Obviously, the worst-case complexity of algorithms evaluating multiset preferences is
very high. But our preliminary experiences show that for reasonable numbers of doc-
uments satisfying the hard selection condition (e.g. 900) and keywords (e.g. 20) even
our Java-based prototype calculates the complete partial order in about 11 seconds on
a Linux system with a 300 MHz Intel Pentium II CPU using the JDK with a JIT-
Compiler (tya). Therefore further optimizations along with a modification of the proto-
type algorithms to calculate preferences incrementally should lead to practicable average
performance even for large scale applications.

5 Summary and Outlook

In this paper we proposed a new approach to rankings based on partial orders. Compared
to total rankings, typically used for Internet information services, we expect our approach
to lead to a more comprehensible presentation of query results. Our technique empowers
the user to enlarge the presented result set selectively along chains of the partial order.

10

This is a fundamental advantage over conventional total rankings where as a matter of
principle also uninteresting chains are expanded by lowering the threshold or enlarging
the number of shown results. Further on, our approach only returns empty result sets
if no keyword matches at all. In all other cases only the top results are presented, even
if they don’t match perfectly. This often relieves users from refining their queries, when
the result set is too large or empty.

Our preliminary experiences with a first prototype have confirmed these expectations.
They also are encouraging with respect to the performance. Although the theoretical
worst-case complexities of our algorithms are very high, optimized algorithms are prac-
ticable for many real world applications. Along with implementing a more complete
prototype with respect to the evaluation of combined preferences, we plan to implement
implicit relevance feedback to adjust user preferences in the future. An online version
of the prototype is supposed to be available soon.

Acknowledgements

The authors thank Gerhard Kostler, Ebenezer Ntienjem and Tilo Balke for helpful dis-
cussions.

References

[DaPr90] B. A. Davey, H. A. Priestley.
Introduction to Lattices and Order.
Cambridge University Press, 1990, ISBN 0-521-36766-2.

[DeMa79] Nachum Dershowitz, Zohar Manna.
Proving Termination with Multiset Orderings.
Communication of the ACM, August 1979, Volume 22, Number 8.

[FoDu92] Peter W. Foltz, Susan T. Dumais.
Personalized Information Delivery: An Analysis of Information-Filtering
Methods.
Communications of th ACM, December 1992, Volume 35, Number 12.

[iMac] iMac Page
http://www.apple.com /imac/

[InfoBeat] InfoBeat
http://www.infobeat.com/

[KoKi95] Gerhard Kostler, Werner Kielling, Helmut Thone, Ulrich Giintzer.
Fixpoint Iteration with Subsumption in Deductive Databases

11

[myCNN]

Journal of Intelligent Information Systems:123-148, Volume 4, Kluwer
Academic Publishers, 1995.
(http://www.Informatik.Uni-Augsburg.DE/info2/literature /Papers/jiis95.html)

myCNN.com
http://customnews.cnn.com/

[My-Newspaper] My-Newspaper

http://www.my-newspaper.com/

[Paperball] Paperball

[PrefSQL]

[Welt]

[ZaEt99]

http://www.paperball.de/

Preference SQL 1.2 Reference Manual
Database Preference Software GmbH, Augsburg, May 1999.
(http://www.preference.de)

Die Welt online
http://www.welt.de/

Oren Zamir, Oren Etzioni.

Grouper: A Dynamic Clustering Interface to Web Search Results
World Wide Web Conference 99,
(http://www8.org/w8-papers/3a-search-query /dynamic/dynamic.html).

12

