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Abstract We derive tableau calculi as solutions to the word problem
for the free semilattice, the free distributive lattice and the free boolean
lattice with a new method introduced in [I3]. The method uses ordered
resolution as a logical framework. The theory-specific and procedural in-
formation about the goal, the subformula property, is encoded via the
ordering. Completeness of the calculi follows from correctness of their
construction. Besides demonstrating the power of the derivation method,
our formal reconstruction of tableaux also concerns the algebraic founda-
tions of tableau and sequent calculi, in particular the connection of dis-
tributivity with the data-structure of sequents and with cut-elimination.
Keywords: automated deduction, lattice theory, ordered resolution, the-
ory resolution, tableaux, sequent calculus.

1 Introduction

Applicability of logic in computer science often crucially depends on the integra-
tion of domain-specific knowledge into focused calculi. In [I3], a new two-step
method for deriving theory-specific inference rules for ordered resolution has
been proposed. First, a theory specification is closed under the ordered resolu-
tion calculus, eliminating redundant expressions on the fly. This resolution basis
satisfies an independence property: Inferences among its members are super-
fluous in all refutations. Thus part of the search complexity has been shifted
from run time to compile time. Second, the patterns arising in refutations from
inferences between non-theory clauses and members of the resolution basis are
turned into derived inference rules. The calculi constructed this way are com-
plete, if their construction is correct. This method is in contrast with previous
approaches [T], where inference rules had to be guessed and justified a posteriori
in model-theoretic completeness proofs. In [I3], the method has been exempli-
fied by an ordered chaining calculus for transitive relations. In [T4], chaining
calculi for various lattices have been developed, in particular, an ordered resolu-
tion calculus at the lattice level as a solution to the uniform word problem for
distributive lattices, thus further formalizing a result from [T2].

* This research was sponsored by DFG Project InopSys — Interoperability of Calculi
for System Modelling



Here, we use this method for developing tableau-like calculi as solutions to
the word problems for free semilattices, distributive lattices and boolean lattices.
This is the problem to decide whether an equality s & t between (semi)lattice
terms holds for every member of the respective algebraic class, or in our context,
whether the empty clause is derivable from the clause (s £ t) V (t £ s) and the
respective theory axioms. Our emphasis is however not mainly on the tableau
calculi, but on the method behind them and the proof-theoretic insights of their
formal reconstruction. Theory-specific information enters the development of the
calculi mainly by refining the syntactic ordering of ordered resolution. In [I3], to
derive resolution-like rules, we built the ordering around multisets as the natural
data-structures for clauses. Here, in order to derive tableau-like rules, we encode
the subformula property.

Besides demonstrating the naturalness and power of the development method,
several other features are also interesting. First, the correspondence between
lattice-theoretic problems and logical calculi, such as sequent calculi and tableaux,
are developed in a formal way, in particular that between specifications of least
upper and greatest lower bounds and disjunction and conjunction rules of the
sequent calculudy. Second, our algebraic treatment of distributivity explains the
role of the data-structure of sequents and the cut rule in the sequent calculus.
Third, our construction yields an algebraic completeness proof of propositional
tableaux and shows that it is a decision procedure. Fourth we formally demon-
strate that the rules of the sequent calculus are in fact independent.

In the present text, we can only sketch some proofs. A full formal treatment
can be found in [IT]. We also presuppose knowledge on tableau and sequent
calculi (for our purposes, we identify tableaux with cut-free sequent calculi).
See [A5] for introductions.

The remaining text is organized as follows. Section B and section Bl intro-
duce some basic facts about ordered resolution and lattices. Section Hl defines
the syntactic orderings for our tableau calculi, section Bl the calculi themselves.
Section [ contains the first step of th derivation of tableau rules: the computa-
tion of the resolution basis. Section [ contains the second step: the derivation
of the inference rules. Section [ discusses the proof-theoretic implications of our
results; section [ contains a conclusion.

2 Ordered Resolution

Let Tx(X) be a set of terms with signature X and variables in X. Let P be
a set of predicates. The set A of atoms consists of all expressions p(ty,...,t,),
where p is an n-ary predicate and ti,...,t, are terms. A clause is an expres-
sion {¢1,...,0m}} — {t1,...,¥n]}. Its antecedent {¢1,...,dn]} and succedent
{1, ..., ¥, are finite multisets of atoms. Antecedents are schematically de-
noted by I', succedents by A. Brackets will usually be omitted. A Horn clause
contains at most one atom in its succedent.

! This correspondence already appears in Whitman’s solution to the word problem for
the free lattice [I5].



Definition 1 (Ordered Resolution Calculus). Let < be a well-founded or-
dering on atoms that is total on ground terms. The ordered resolution calculus
OR consists of the deduction inference rules

I ! F—)A,¢,’(/)
I — A: ¢ r 71/} — A (Res) —A . (Fact)
I'o,I"'oc — Ao, A'c I'o — Ao, do

Thereby o is a most general unifier of ¢ and 1. In the ordered resolution rule
(Eed), o is strictly maximal according to < in the o-instance of the first and
mazimal in that of the second premise. In the ordered factoring rule (Facdl), ¢o
is mazximal in the o-instance of the premise.

In all inference rules, side formulas are the parts of clauses denoted by capi-
tal Greek letters. Atoms occurring explicitly in the premises are called minor
formulas, those in the conclusion principal formulas.

Let S be a clause set. Let cl—(S) and clor(S) denote the set of (semantic
clausal) consequences of S and the set of clauses derivable in OR from S. A
clause C' is <-redundant or simply redundant in S, if C' € cl-(C1,...,Cy) for
some S 5 C4,...,C; < C. Elimination of redundant clauses from S during
the iterative application of OR-rules changes clor(S), but preserves semantic
consequences. We denote this operation of OR-closure modulo <-redundancy

elimination by clge®. Tt induces a basis transformation from S to a resolution

basis S' = clBe?(S). This transformation need not terminate, but all fair OR-
strategies derive the empty clause within finitely many steps from an inconsistent
S. The basis S’ is special. By definition it satisfies the independence property
that all conclusions of primary S'-inferences, that is OR-inferences with both

premises from S’, are redundant.

Proposition 1. (i) If S is inconsistent, then S’ contains the empty clause.
(ii) Let S" be consistent and T a clause set such that S'UT is inconsistent. There
is a OR-refutation without primary S’'-inferences.

By proposition[Il(ii), resolution bases allow set-of-support-like ordered resolution
strategieﬂ. The computation of a resolution basis will constitute the first step
of our derivation of tableaux. For more information consider [TTIT3].

3 Lattices

Since we are investigating word problems for free lattices, we can restrict our
signatures and predicates. ¥ = {V,A} and P = {<}. V and A are varyadic op-
eration symbols for the lattice join and meet operations; < is a binary predicate
symbol denoting a quasiordering—a reflexive transitive relation. A join semilat-
tice (meet semilattice) is a quasi-ordered set closed under least upper bounds or
joins (greatest lower bounds or meets) for all pairs of elements. Join and meet

2 According to the set of support strategy for unordered resolution, inferences among
a consistent part of a clause set are superfluous in refutations [16].



semilattices are duals. Lattice duality means exchange of joins and meets and
inversion of the ordering. A lattice is both a join and a meet semilattice. It is
distributive, if (Ei) holds (see below)fl. A quasiordering is axiomatized by the
set @ = {(kel), ((xand) }, the join and meet semilattice by J = Q U {([ub), L)}
and M = Q U {(lD), [0}, a lattice by L = J U M, a distributive lattice by
D = LU {(ad)}. Thereby

—z<z (ref r<yy<z—z<z (trans)

)
—zAy<z —zAy<y (b)) z<yz<z—z<yAz (glb)
b)

—z<zVy —y<zVy (u z<z,y<z—zVy<z (lub)

o1 <y1Vz,maoANz2<ys — 11 Axs <y1 Vo (cut)

For a quasiordering, joins and meets are unique up to the congruence ~ =
(€N >). Semantically, </~ is a partial ordering, hence an antisymmetric qua-
siordering (z < y,y < x — x = y). Operationally, the only role of antisymme-
try is splitting equalities into inequalities. We can therefore disregard it. Joins
and meets are associative, commutative, idempotent (zx Az = z = z V z) and
monotonic in the associated partial ordering. We will henceforth consider all
inequalities modulo associativity and commutativity. See [3] for further infor-
mation on lattices. The similarities between the rules in J, M, D and those of
the sequent or tableau calculus are already quite apparent. (b)) and ([ubl) are
similar to the right conjunction and left disjunction rule, (€m) is evident.

Let K be some variety of lattices. The word problem for K is the following:
Determine, if some identity or query s & t over some set of constants (or gener-
ators) in the language for K holds for every member of K. In particular, since
K contains a free algebra A, it suffices to show s = t in A, because if it holds
there, it holds for every member in K automatically. Cum grano salis we use
the notion word problem also for inequalites: in lattice theory, every inequality
can be written as an equality: s < tiff sVt =t iff s At = s. Here, we want
to use ordered resolution for solving lattice theoretic word problems. Then, the
query @ is a ground clause s &t — or s < t,t < s — with empty succedent.
But so far, proposition [[l only guarantees a semi-decision procedure: Whenever
@ does not hold in the respective free algebra, there is a OR-refutation from @
and the respective theory axioms. But if ¢) holds, then the OR-closure can still
be infinite.

Lemma 1. All OR-proofs from queries Q = I' — and D have the following
properties.

(i) The OR-rule (Eacl) is never applicable.
(i1) All conclusions except of primary theory inferences are of the form I'' —
(with T possibly empty).

3 A non-standard axiomatization similar to this one has been used already in [§].
See [I1]] for a proof of equivalence with the standard one. See [12] for a discussion
on its relevance to lattice-word problems and resolution.



(iii) The final resolution step in a refutation uses always (rej).

This is obvious from the structure of the query and the clauses in D. To obtain
a decision procedure, is suffices that @ is maximal in cI39?({Q} U T), where T
is one of J, M or D and the number of ground clauses smaller than @ is finite.
Let G be a finite set of generators. The free semilattice, distributive lattice and
boolean lattice generated by G are finite (c.f [3]). Thus for every term over
G the number of smaller terms generated by G is finite. Therefore we obtain
decidability, if we can specialize the ordered resolution inferences such that all
conclusions are smaller than the maximal premises (which in our situation is
always @)). As a consequence, no rule may introduce a fresh variable. These
properties must be enforced by an appropriate syntactic ordering. This is the
purpose of the following section.

4 Syntactic Orderings for Semilattices and Distributive
Lattices

There is a natural syntactic ordering for the sequent calculus: any ordering en-
forcing the subformula property. In our lattice theoretic context this is any
AC-compatible simplification orderingﬂ. One can for instance choose an AC-
compatible ordering with a precedence in which the join and meet operation are
maximal and identical. Let < be such an ordering. Let B be the two-element
boolean algebra with ordering <p. Let M = G x B x B x G, where G de-
notes a multiset of generators. Let A be a set of atoms occurring in some
clause C' = I' — A. The ordering <1 C M x M is the lexicographic combi-
nation of < for the first and last component of M and <p for the others. A
ground atom measure (for clause C) is the mapping uc : A — M defined by
pe ¢ = (t.(0), (@), s(¢),t.(¢)) for each (ground) atom ¢ € A occurring in C.
Hereby t,(¢) (t.(¢)) denotes the maximal (minimal) term with respect to < in
¢.p(¢) =1 (p(¢) =0),if g occurs in I" (in A). s(¢) =1 (s(¢p) =0),if p =s < ¢
and s > t (s < t). The (ground) atom ordering <2C A x A is defined by ¢ <2 ¢
iff uc(@) <1 pc(Y) for ¢, € A. Hence <5 is embedded in <; via the atom
measure. The ordering <; is total and well-founded by construction. Via the
embedding, <2 inherits these properties. See [I3] for a motivation of the compo-
nents arising in a similar ordering. Intuitively, the role of the syntactic ordering
is precisely to enforce that all non-theory clauses are split into clauses containing
only subterms by the clauses in D. This enforces the subformula property of the
sequent calculus.

As free variables are implicitly universally quantified, the orderings <, <1 and
<4 are lifted to the non-ground case, defining the ordering <'C T's(X) x T (X)
by s <’ t iff so < to for all ground substitutions o. Defining <} and <} is then

4 Roughly, an ordering is AC-compatible, if it respects AC-equivalence classes. Or-
derings that are appropriate for our purposes exist [2H4]. A simplification ordering
in particular contains the subterm ordering: Every term is greater than all of its
subterms.



obvious. These orderings are still well-founded, but need no longer be total. In
particular, s # t if to > so for some ground terms so and to. Atom measure and
ordering are extended to clauses, measuring clauses as multisets of their atoms
and using the multiset extension of the atom orderings. The clause ordering on
ground clauses inherits totality and well-foundedness from the atom ordering.
Again, the non-ground extension need not be total. In unambiguous situations
we will denote all orderings by <.

Note that the definition of < is still not sufficient to show that OR with D is
a decision procedure. The problem are the primary theory inferences. Hence we
still must transform D into a resolution basis. This is the subject of section
But first, we present our tableau calculi.

5 The Tableau Calculi

Definition 2 (Distributive Lattice Tableau). Let < be the atom and clause
ordering of section [§} The tableau calculus for (finite) distributive lattices DT
consists of the following inference rules.

e <z—
e (Ref)
Iz < r <
,:z:_y/\z—>’ (MR) ,:UVy_z—>’ (JL)
I',a:ﬁy,xﬁz—) F,Q?SZ,ySZ—)
Iz < — I <z—>
x<wV(yAz) . (EMR) WA (zVy) <z . (BJL)
INs<wvy,z<wVz— NwAhz<zwAy<z—
I <z— Iz < —
, LAYy <z ’ (ML) , e <yVz . (JR)

INer<z— INer<z—

In all rules, the minor formula is mazximal in the premise. All rules are meant
modulo associativity, commutativity and idempotence.

(Bef) stands for reflezivity, (MR]) for meet right, (EMRI) for extended meet right,
(MD) for meet left, M) for join left, ([EID) for extended join left, (IR)) for join
right. The respective join and meet rules are completely dual. There is no variant
of a cut rule (c.f. section [ for an explanation). Note also the correspondence
with tableau or sequent calculus rules. See finally section B for a discussion of

the role of (EILJ)) and (EMR]).

Definition 3 (Semilattice Tableaux). Under the conditions of definition [,
the deduction inference rules of the tableau calculi JT and MT for the join and
meet semilattice arise as restrictions of the DT-rules to join and meet semilattice
terms (c.f. [L1] for explicit rules).

Thus in particular, JT consists solely of variants of the rules ([IIJ) and (IR, MT
of variants of (ML) and (MRB]). JT and MT are dual and of course one can use
JT also for the meet semilattice, dualizing meet semilattice inequalities.



6 Construction of the Resolution Bases

We now perform the first step of the derivation of the tableau calculi. Our
theories are J, M and D. With the orderings of section B, we compute the
respective resolution bases; the OR-closures modulo redundancy elimination. Use
of duality prevents us from repetitions.

We first assign indices to clauses to determine their orientation with respect
to <: 4 (increasing), if the antecedent is smaller than the succedent, d (decreas-
ing), if the converse holds and ? if the clause can only be oriented instance wise.
Note that all clauses in J, M and D are indexed by ¢, except (trans) and (cut),
which are indexed by 7.

Consider now the Horn clauses

r<wVy,z<wVz—z<wV(yAz), (emr)
r<yAhz-—gx <y, (imr)
r<wV(yAz) —gz<wVy, (eimr)
r<z—;xANy<z (ml)

and their duals (ejl), (ijl), (eijl) and (jr). Let

J' = {(el), (b)), @), [b), @D}, M’ = {Eel), @), (ij0), (r), (@D},
D'=J' UM U{(emm), (Em), (e;1), (eijl), (@) }.

Thereby, restricted variants of (£md), for instance z; < z,29A2 < Yo — T1AZ2 <
y2 occur in M’ and J'. Moreover, (trans) is a restriction of these (cut) rules,
forgetting the lattice term structure. Now—up to the extended rules (ejl), (eijl),
(emr) and (eimr)—all rules are reminiscent to those in the sequent calculus. The
inverse rules (imr) and (ijl) also hold in the sequent calculus by the inversion
lemma (they are derivable with and admissible without the cut rule [9]). The
extended rules are combinations of the non-extended rules and monotonicity of
join and meet. They also encode the effect of distributivity. See section B for
further discussion.

Lemma 2. Let < be the atom ordering defined in section [

(i) M' is a resolution basis for the meet semilattice.
(i) J' is a resolution basis for the join semilattice.
(i5i) D' is a resolution basis for the distributive lattice.

We always implicitly normalize with respect to idempotence of join and meet and
consider terms modulo associativity and commutativity.

Proof. The proofs consist of three steps. First, we orient the rules in J, M and
D with respect to <. Second, we derive the rules in J', M’ and D’ in OR. Third,
we show that all conclusions of primary theory inferences in OR with respect to
J', M'" and D" are redundant. Here, we show only some inferences. The complete
case analysis is beyond the scope of this paper. It can be found in [IT].

(ad i). As an example we show the derivation of (ml) and (imr).



aANb<ap<c a<bAc,bANc<c

anNb<a trans bAc<c trans
= o

aNb<c a

IN

Cc

a<ec anb<c a<bAc
ml imr

e
IN
a

Having derived the clauses in M’, it remains to show that their resolvents are
redundant. An example, the inference between (ml) and (imr), is depicted in the
following diagram.

anb<cAd
aANb<cAd imr
ml -
a<cAd anb<c
a<cAd aANb<c
imr ml
a<c

The upper part of the diagram is the resolution step, the lower part shows
a smaller proof using (imr) and (ml) also yielding the resolvent. In a similar
way, most other resolvents can be shown to be redundant. There are however a
few irredundant resolvents between members in M’. Consider, for instance, the
inference

—iahc<aNc a<bcANb<cANb—gaNc<bAc
a<b—;aNc<b<c

between (irr) and (cut), that yields monotonicity of meet. But (ml) yields —
aANc<band » aAc<cfrom — a<band from — ¢ < ¢, that is (ref). Using
(glb), we obtain aAc < bAc from these rules. Thus we can prove the monotonicity
clause already using (ml), (glb) and (ref). All these rules are indexed also with
i. Therefore in every proof, an inference using the monotonicity rule can be
replaced by a a monotonic subproof with members of M’ and the monotonicity
can be discarded. For further details see [TT].

(ad ii) This follows from (i) by duality.

(ad iii) As in the example in (i), the rules of D’ are derived from the interac-
tion between the rules in M’, J" and (£m)). (eimr), for instance, is derived from
(ml) and (cut) as follows.

—iyNz<y z<wV(yAz),yANz<y—zx<wVy
z<wV(yAz) —z<wVy '

Having derived the clauses in D', it again remains to show that their resolvents
are redundant. The resolution step between (emr) and (eimr), for instance, is
shown in the diagram



z<wV(yAz)

z<wV(yAz) eimr
emr

s<wVyz<wVz z<wVy
r<wVyz<wVz z<wVy
The resolvent is a tautology. The remaining steps are similar. a

Proposition [ (ii) and lemma Bl immediately imply the following fact, which is
essential for the arguments in the following section.

Corollary 1. For every inconsistent clause set containing J', M' or D' there
ezists a refutation without primary theory inferences.

Continuing our discussion at the end of section Bl and section Bl we still have
no solution to the word problem for the free distributive lattice or join and
meet semilattice, since resolution inferences with (Emdl) introduce new variables
(remind that (o) is indexed with ?) and leads to non-monotonic proofs. This
is analogous to the sequent calculus, where propositional decidability depends
on cut elimination. We will show an algebraic variant in the following section.

7 Deriving the Tableau Rules

We now derive the inference rules of DC from OR-derivations with D’. Our main
assumptions are refutational completeness of OC (theorem [I) and the fact that
our ordering constraints rule out primary theory inferences (corollary [).

Theorem 1. The tableau calculus DT solves the word problem for the free dis-
tributive lattice: For every query s < t —, such that s < t holds in the free
distributive lattice, there exists a refutation in DT.

Proof. We consider a refutation of a query @ = s <t —, s and t lattice terms
in presence of the members of D’. By corollary [ there are no primary theory
inferences. Moreover, by lemma [ (ii), all non-theory clauses that may occur in
cl@e4(Q U D’) have empty succedent. We can therefore restrict our attention to
non-theory clauses of this form. Since @) and all clauses in D’ are Horn, it suffices
to consider ordered resolution inferences between members of D’ and non-theory
clauses. Ordered factoring steps can be disregarded.
(case i) Resolution of a clause I''a < a — and (ke is

—a<a INa<a—
I —

b

where, due to the constraints of ordered resolution, the inequality ¢ < a ma-
jorizes I'. Internalizing (kel) immediately yields the rule (Bef).
(case ii) Resolution of a clause I',a < b A ¢ —» and (glb) is

a<ba<c—a<bAc Ia<bAc—
INa<ba<c—

b



where a < b A ¢ is maximal in the right-hand premise. Internalizing (glb) imme-
diately yields (MEJ). The fact that in this rule the left-hand side of a sequent is
split shows the necessity to consider a non-empty I

(case iii) Resolution of a clause I;a < bV (¢ Ad) — and (emr) is

a<bVec,a<bVd—a<bV(cAd) INa<bV(cAnd) —
Ia<bVea<bvd— ’

where a < bV (¢ Ad) is maximal in the right-hand premise. This yields (EMRE].

(case iv) The antecedent of (imr) is greater than the succedent according to
< and never satisfies the ordering constraints of ordered resolution with a clause
with empty succedent. Therefore it does not contribute an inference rule.

(case v) For (eimr), the situation is analogous to (case iv).

(case vi) Resolution of a clause I';a A b < ¢ — and (ml) is

a<c—galAb<c anb<c—
INa<c—

)

where a A b < ¢ is maximal in the right-hand premise. This yields (MIJ).
(case vii) to (case xi), yielding the inference rules (L), (EJL) and {R]) from
the clauses (lub), (ejl), (ijl), (eijl) and (jr) are dual to (case ii) to (case vi).
(case xii) Resolution of a query I';a Ab < ¢V d — with (cut) is
a<cVe,bAhNe<d—aAb<cVd anb<evd—
Ia<cVebhe<d— ’

We show by induction on the distance from such an inference to the empty clause
and the cut rank of the lattice term, that is the size of the minor term which
is cut out, that this inference is not needed. In proof-theoretic terms we show a
version of cut elimination. Since the proof is standard we give only a sketch and
refer to [6l9)] for details. In particular, for simplicity, we assume that ¢ = 0.

(case a) Let e be a generator. Then a < e must be of the form a’ Ae < e and
in particular bAe < d must either be of the form ¥’ AdAe < d or d = e such that
bAd < din order to eliminate both these inequalities from the conclusion. So
also a Ab < d either is of the form a’ AbAd < d or of the form a Ab' Ad < d and
already the minor formula of the right-hand premise can be eliminated using
(M) and (Bef).

(case 8) Let € = e; Aea. Then we may assume that ((MR]) has been applied to
the inequality a < ej Aes, which transforms the conclusion of the above inference
into INa < e1,a < ez, bAe; Aex < ¢ —>. Using the induction hypothesis we
can then argue that this sequent has been obtained from the right-hand premise
of the above inference by two smaller cuts, respecting the ordering constraints.
Hence in any case the above inference is not needed.

Since we have considered all clauses from D’ and all these clauses produce
conclusions with empty succedent, we have computed a refutationally complete
set of inference rules for a negative query (). The inference rules yield a decision
procedure, since the calculus has the sub-formula (or lattice sub-term) property.
Only the constants in ) occur in the refutation. |

10



Corollary 2. The tableau calculi JT and MT solve the word problem for the free
join and meet semilattice.

The following corollary expresses a simple refinement of our tableau calculus.

Corollary 3. Under the assumptions of theorem [, the rule can be re-
stricted to generators.

This holds, since by structural induction, all inequalities s < s — can be
transformed to a clause z1 < z1,...,z, < x, — with z; € X by the rules of
theorem [l A restriction of (Bef]) to generator can then be used for the reduction
to the empty clause.

The extension of theorem [ from distributive to boolean lattices is also
straightforward.

Corollary 4. In a lattice with 0 and 1, let x' denote the complement of x, that
isx'Vax=1and ' Nz =0. The rules of DT together with the rules

eny <z— e<yvz—
Iz <yVvz—' INzhy<z—'

for eliminating complements solve the reachability problem and the word problem
for the free boolean lattice.

8 Discussion

Our solution to the word problem for the free distributive lattice used extended
rules that do not occur in the sequent calculus or tableaux. These rules deal
essentially with distributivity. The strategy of the sequent calculus, as opposed
to this, is to introduce a layer of sequents between the layer of lattice terms and
that of proofs. Consider, for instance, the following derivation in some variant of
the cut-free sequent calculus. < is now replaced by the sequent-arrow — (both
are quasi-orderings) and z, y and z are logical formulas.

T,Y — Y, 2 T, 2 —Y,Z
T, yVz—x,z2 r,yVz—9Y,2
r,yVz—>xTNy,z2
rA@YyVz)— (rAy)Vz

Shifting formulas to sequents, the distributivity law is implicitly applied to mul-
tiply out terms and make the invertible conjunctive rules applicable, whereas
the commata model the disjunctive ones. For a comparison, a proof in DT is

zAlyVz)<(zAy)Vz— (EXR
rA@yVvz)<zVz,zA(yVz)<yVvz—
zANy<zVz,zAhz<zVz,zANy<yVz,zAz<yVz— %m
T<T,r<T,Yy<Y,2<2—
([Bel)

—

11



Algebraically, the cut rule of the sequent calculus is strongly connected with
distributivity and transitivity, as we have seen. But in the sequent calculus, dis-
tributivity is already applied via the shift to the sequent level. In the free case,
when there are no further relations between generators, it seems unnecessary to
derive further consequences of relations (by analytic cut) or even invent com-
pletely fresh generators (by non-analytic cut). From the algebraic point of view,
therefore, admissibility of cut in the sequent calculus seems quite natural. Our re-
construction supports this intuition with a formal argument. On the other hand,
of course, in presence of relations between generators, further consequences of
these relations must be computed, possibly using cut: In case of finitely presented
distributive lattices, when further relations between generators exist, resolution
steps using (cut) cannot in general be circumvented. On the contrary, it can be
turned into the central ingredient of the calculus, as the chaining calculi for dis-
tributive lattices [T4] show. This has a correspondence in the sequent calculus,
where in presence of further axioms, cut is often unavoidable.

The tableau calculi given in this text are more focused than mere derivations
with the axioms in J, M or D. For instance, a resolution inference with two
instances of (trans) generates new variables, that might not be needed in a proof.
In unordered resolution, strategies to avoid such kind of reasoning have already
been given, for instance set of support or theory resolution [I{)]. But the transfer
of these strategies to ordered resolution is non-trivial, as we have seen. Here, JT,
MT or DT yields no advantage in efficiency over plain ordered resolution with
the resolution bases J', M' and D', but without (cut), when primary theory
inferences are forbidden by a priori (for instance by coloring clauses), instead
of testing for redundancy a posteriori. However, the focused calculi encode the
inferences in a more succinct way. In general, the specific inference rules can be
much more effective than plain resolution with resolution bases (c.f. [I3]).

9 Conclusion

We have used a new two-step method to synthesize propositional tableau calculi
as solutions to lattice-theoretic word problems. In the first step, a resolution
basis of the lattice axioms has been computed. The members of this basis are
independent in the sense that resolution inferences among them are not needed
in resolution proofs. In the second step, the interaction of the basis with queries
of the word problem lead to tableau-like derived inference rules. In contrast to
the standard tableau or sequent calculi, distributivity has not been included by
introducing an additional data-structure of sequents, but by allowing certain
splittings below contexts. We have seen that cut-rules naturally arise in lattice
theory in presence of distributivity and that they can be eliminated in the free
case, in absence of relations between generators to be propagated.

The synthesis of tableaux is only one of several applications of our method.
We have already mentioned chaining calculi for for transitive relations, quasi-
orderings, semilattices, distributive lattices and boolean lattices in [T3IT3]. A
consideration of equational theories might be very interesting in the future.
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