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Abstract We propose combined and cooperating Knuth-Bendix com-
pletion procedures for equalities and inequalities. They serve as metapro-
cedures for developing rule-based declarative algorithms. Here, we present
algorithms for memoization, cycle detection and strongly connected com-
ponents. The specifications of algorithms are highly non-deterministic
and generic. Refinements via evaluation strategies yield efficient imple-
mentations. Data structures and implementation details are largely hid-
den in the metaprocedure. Our algorithms easily adapt to dynamically
changing environments. Main applications are constraint systems and
the constraint-based analysis and verification of programs and finite and
infinite state systems.

Keywords: term rewriting, Knuth-Bendix completion, graph algorithms,
declarative programming, constraint systems.

1 Introduction

Declarative programming often means just writing a mathematical specification,
since the specification is the program. Integrating efficiency, however, can be del-
icate, since control is not a main concern of mathematics. We propose Knuth-
Bendix completion as a metaprocedure from rewriting and universal algebra for
developing rule-based dynamic graph algorithms that are declarative and effi-
cient. Our rule systems are abstract, non-deterministic and generic. They specify
classes of algorithms rather than particular instances. Efficiency is provided by
the control and implementation details of the metaprocedure and integrated by
refinement via execution strategies. Algorithmic properties can be derived in a
natural, precise and modular way from those of the metaprocedure.

We specify and prove soundness and correctness of a combined Knuth-Bendix
completion procedure for (ground) inequalities and equalities. Knuth-Bendix
procedures for inequalities (non-symmetric transitive relations and quasiorder-
ings), even modulo associativity and commutativity and normalizing with re-
spect to further axioms, have been proposed already in [2TU23]. The combined
procedure has been informally discussed and used in [23]. Intuitively, it con-
structs an equational and an inequational rewrite system in parallel, computing
also critical pairs between equalities and inequalities and simplifying inequali-
ties by equational rewrite rules. The resulting rewrite systems yield monotonic



rewrite proofs for inequalities on (canonical representants of) equivalence classes
of the canonical equational rewrite system.

The combined Knuth-Bendix procedure extends the scope of term rewriting
in declarative programming and constraint systems. It provides a novel approach
to developing efficient procedures and algorithms for graphs and state transition
systems with an associated notion of equivalence on edges, vertices or states. We
support this claim by two examples. We develop first a memoization algorithm
and second algorithms for cycle detection and strongly connected components
for (constraint) graphs. Algorithms for detecting (homeomorphic) embeddings
in ground rewrite sequences are developed in [24]. In each case, simple, robust,
non-deterministic and purely declarative specifications of algorithms arise im-
mediately from mathematical definitions. Due to non-determinism, the algo-
rithms support dynamic and on-line environments and are easy to parallelize.
Modifications, heuristics and efficiency are obtained by refining via execution
strategies (depth-first search for strongly connected components). Except math-
ematical concepts like tuples, sets, orderings and rewrite or inference rules, no
data structures appear in programs. Just the opposite: our approach easily in-
tegrates simple and purely declarative specifications of the union by rank and
path-compression heuristics of the union-find data structure to efficiently handle
the equivalence classes of component graphs.

Our methods and algorithms are not only appropriate for rewrite-based pro-
gramming environments like ELAN [I] or MAUDE [2]. There are further in-
teresting applications. First, in the control of centralized reactive systems, for
instance operation or data base systems. There, dynamic cycle detection helps
avoiding deadlocks [I9]. Second, in the constraint-based analysis and verifica-
tion of programs and finite or infinite state systems. Rewriting techniques are at
the core, for instance, of various successful approaches to cryptographic proto-
col analysis [RIT4ITZ]. Collapsing cycles and strongly connected components may
yield considerably smaller constraint stores and state spaces. Detecting such
structures is also important for the acceptance analysis of Biichi automata.

The remainder of this text is organized as follows. Section B recalls some
properties of terms, orderings, rewrite relations and graphs. Section Bl sketches
the basics of non-symmetric rewriting. The combined completion procedure for
inequalities and equalities is specified and proven sound and correct in section Hl
It is further discussed in section Bl Section [l gives the first application of the
combined procedure: declarative dynamic memoization for constraint graphs.
Section [ gives the second application: simple and robust declarative dynamic
algorithms for cycle detection and strongly connected components. These algo-
rithms are further refined to efficient variants in section B Section @ shows the
strongly connected component algorithm at work. Section [[{] contains a conclu-
sion.



2 Preliminaries

Let T (V) be a set of terms with signature X and variables in V. We write T,
if V =0, that is for ground terms. We identify terms with X U V-labeled trees
with nodes or positions in the monoid N*. € denotes the root and ni the i-th
child of node n. A variable is linear (non-linear) in a term, if it labels exactly
one leaf (at least two leaves). Substitutions, that is mappings o : V — T'x(V),
are identified with their homomorphic extensions to T'x (V). We write s[t], if ¢ is
the subterm of s at position p and r[s/t]p, if the subterm s = r|, of r at position
p is replaced by t. We lift the bracket notation to other expressions. Apart from
the leaves, substitutions preserve positions and labels of a tree. For a term ¢ and
a substitution o, a node p of to is a skeleton position, if it is an internal node of
t. It is a variable instance position of to, if it is either a leaf or not a node of .

Let — be a binary relation on a set A. We write < or —° for its converse, <>
for its symmetric closure, —* for its transitive closure and —* for its reflexive
transitive closure. Juxtaposition of relations denotes relational product. — is
a quasiordering, if it is reflexive and transitive, a partial ordering, if it is also
antisymmetric and an equivalence, if it is reflexive, transitive and symmetric.
For every quasiordering <, the relation ~ = <N > is an equivalence and the
relation < on A/ ~ defined by [z]. < [y]~ iff ' < gy’ for some 2’ € [z]. and
y" € [y]~ is a partial ordering. When < is only transitive, ~ and therefore <
need not be reflexive. — is noetherian, if all <-sequences are finite.

Let — be a binary relation on a term algebra A with associated set of terms
Tx (V). The operation f# denoted by the n-ary operation symbol f is mono-
tone (in each argument), if it satisfies the formula s; — t1,...,8, — t, =
f(s1,.-.,80) = f(t1,-..,tn), for all s1,... 8n,t1,...,tn € Tx(V). — is com-
patible, if every operation is monotone. For a quasiordering, this is the case iff
s = t => r[s], — r[t], holds for all r,s,t € Tx(V) and positions p. — is stable,
if s >t = so — to holds for all s,t € T's(V) and endomorphisms o of A. —
is fully invariant or a rewrite relation, if it is compatible and stable. A rewrite
relation is usually induced by a set of rewrite rules. A term s rewrites to a term
t in one step at position p, if there is a rewrite rule I — r such that s|, = lo
for some position p and substitution ¢ and ¢ = s[ro],. This presumes that all
predecessor nodes of p are labeled by names of monotonic functions. We also
consider syntactic orderings on (ground) terms. A reduction ordering is a well-
founded fully invariant quasiordering. For our purposes, in particular, we may
assume that this reduction ordering contains the proper subterm relation.

Every finite binary relation — can be represented as a directed graph (di-
graph) G = (V,—) with set of vertices V' and set of edges —. A k-path from
vertex u to vertex v in G is a sequence vy, ..., v of vertices such that vy = u,
vy = v and v;—; — v; for all 1 < ¢ < k. k is called the length of the path. v
is reachable from wu, if u =71 v, that is, if for some k there is a k-path from
uw to v. A path is simple, if all its vertices are distinct. A k-cycle in G is a k-
path with vy = vi. A cycle is simple, if vq,...,v; are distinct. G is acyclic, if
it contains no cycle. The strongly connected components (SCCs) of G are the
equivalence classes of the relation ~ = «* N —*, which expresses mutual reach-



ability. This definition includes that every vertex is reachable from itself. The
component graph (SCC-graph) Gscc = G/ = of G is defined on ~-equivalence
classes analogously to the definition of < on <. [v]x =& [W]a, iff v/ — w' for
some v' € [v]y and W' € [w]x.

3 Non-Symmetric Rewriting

We presuppose the basic concepts and notation of equational rewriting (c.f. [I3]).
Introductions to non-symmetric rewriting can be found in [I720]. Non-symmetric
rewriting addresses reachability of binary relations. Let — be a binary relation
and < some noetherian syntactic ordering on a set A. Let — be partitioned
into three sets - g = -5 N>, >g = =5 N < and — A (non-orientable). R- and
S-steps in paths can be separated, if the following local criteria are satisfied.

Lemma 1. Let — g and —g be binary relations on some set A. Let — g U g
be noetherian.

(i) 2s—=r C—ojp2sU—E = (srU-s)T CofoLu—t,
(ii)) »s—r C 1= = (2rU—g)* C 3%,

Lemmal[ll (i) is adequate for transitive relations, lemmal[ll (ii) for quasiorderings.
We call paths in =5 —% U —& or =5—% rewrite paths or valleys. Paths in
—s— g are called peaks. We say that —r semicommutes over —g, when every
peak can be replaced by a valley. Lemma [ (ii) generalizes Newman’s lemma.
Setting —-r = —7 = g, the left-hand side expresses local confluence of —
and the right-hand side the Church-Rosser property. If —7 is a rewrite relation
that is noetherian and has the Church-Rosser property, then every term has
a unique normal form representing its <+7-equivalence class. In non-symmetric
rewriting, term normal forms do not exist.

Let now < be a reduction ordering on T's(X). Let I be a set of term in-
equalities. Let R and S be sets of term rewrite rules decreasing from left to right
and from right to left respectively with respect to <. Let -7, - and —g be
the associated rewrite relations. Then, semicommutation depends of the relative
positions in a term where consecutive rewrite rules apply. This is analyzed in
critical pair lemmata [20]. Intuitively, a critical pair is an element of —»s—p
that prevents semicommutation. As in equational rewriting, critical pairs arise
when one rewrite step takes place at a prefix position of the other and the lower
one at a skeleton position. Applicability of the second step then depends on
the result of the first step, the order of application may not be convertible and
therefore there may be no semicommutation. In analogy to equational rewrit-
ing, we define a skeleton critical pair of rewrite rules Iy =g r1 and lo —g 72
as either (l10[la0]p,r10) for a most general unifier o of 7, and I1|, and a skele-
ton position p of I; or as (Izo,r20[r10],) for a most general unifier o of 7|,
and [; and a skeleton position p of ry. But unlike equational rewriting, there
are also variable critical pairs involving variable instance positions of non-linear
variables. Variable critical pairs seem to involve context variables, higher-order



unification [I77] and higher-order reduction orderings. Here, we consider only the
ground case, but also the linear-variable case, including non-symmetric rewrit-
ing and completion modulo associativity and commutativity [20/2TI23] are still
first-order.

We consider combined Knuth-Bendix completion procedures where an equa-
tional rewrite relation —7 occurs in addition to the non-symmetric rewrite re-
lations —+g and —g. This yields peaks and (skeleton) critical pairs between
—r1—gr, 25— and <7—7. We consider rewrite paths of the form —)?—)}‘Q—Vg(—}
U = h—=5¢% U =5k U« for a transitive relation and —%—%—%«% for
a quasiordering. For confluent and terminating —7, that is, when —p com-
putes unique normal forms for equivalent terms, rewrite paths operate solely on
T-normal forms.

In absence of critical pairs and when — g, g and —7 are noetherian, we ob-
tain a search procedure for reachability along rewrite paths. For a non-symmetric
transitive relation, s —)}r t holds, if either the T-normal form of s and the T'-
normal form of ¢ are in the reflexive part of —7 or if some — g path from the
T-normal form of s and some < g-path from the T-normal form of ¢ have a com-
mon vertex. This is a decision procedure, if = and g are finitely branching.
For a quasiordering, the reflexive part of —; need not be considered. When A
is just a set of points, the decision procedure takes time linear in the size of
AU =g U —g, for instance by depth-first search. When A carries a ground term
structure, memoization yields polynomial time complexity [I6J7]. In section [
we model memoization declaratively as an extension of the congruence closure
approach in [I5J6]. The argument easily generalizes to combined systems.

We call a pair (R, S) of sets of rewrite rules enforcing the decision procedure
for reachability of non-symmetric rewriting a normal system. By definition, all
critical peaks can be joined by a rewrite proof, = and <g are noetherian and
no rule from — g or —g can be deleted. A set T of equational rewrite rules is
canonical, if the induced term rewrite system is confluent and noetherian.

4 Ground Completion for Equalities and Inequalities

Equational Knuth-Bendix completion procedures (KB-procedures) belong to the
basics of universal algebra, computer algebra and computational logic. They
are presented in most introductions to term rewriting. KB-procedures for non-
symmetric transitive relations and quasi-orderings have been proposed and dis-
cussed in [20/23] and extended to completion modulo associativity and commuta-
tivity (including normalization with respect to idempotence) in [20J2T]. The com-
bination of KB-procedures for inequalities and equalities allows an interleaved
construction of a canonical term rewrite system for equalities and a normal sys-
tem for inequalities. In opposition to normalized completion [IR], the equational
rewrite system is not statically prescribed. The combination is straightforward
and intuitive and has already been informally introduced in [23]. Here, our ap-
plications to declarative algorithms require a more formal presentation.



A KB-procedure implements a state transition system together with a syn-
tactic reduction ordering < on terms, (oriented) equalities and inequalities and
paths. States are tuples of sets of equalities, inequalities and rewrite rules. The
transition relation is specified by transition rules of two kinds. First, deduc-
tive inference rules for adding certain consequences to a state, corresponding to
critical pair computations. Second, simplification steps that combine deduction
steps with deletions implementing an (approximative) notion of redundancy: An
(oriented) inequality is redundant, if it can be replaced by a smaller path.

We denote the combined KB-procedure for a non-symmetric transitive rela-
tion by C; and that for a quasiordering by C,.

For C;, states are of the form (S, A, P). Thereby, S = TUE, where I is a set
of inequalities, E is a set of equalities on T'x;, A C {(¢,t) : t € T, }, P = RUSUT,
where R, S and T are sets of rewrite rules for inequalities and equalities on T’y .

The intended meaning of S is specification, that of P is program. In the initial
state or initial specification, P is empty. For, C,, states are pairs (S, P), that is,
A can be disregarded, since the reflexive part of the relation need not be stored.

A run of C; or C; is a (finite or infinite) sequence ¢, 1, ¢, - .. of states such
that g is an initial state and consecutive states are related by transitions.

We also define limit states (Seo, AcoPoo) and (Seo, Pso) of C; and C,, where

Sw=UN5),  Ae=U4a  Po=UJ(R)

=0 j=1i =0 j=1i

We say that a run fails, if Soo # 0. It succeeds, if it does not fail, if T, yields
a canonical system for F and the equational part of I and if R, and S, yield
a normal system on E-equivalence classes. A run is fair, if every enabled tran-
sition is eventually executed. Then every relevant critical pair will eventually
be computed. A completion procedure is correct, if every run that does not fail
succeeds and the limit rewrite system is equivalent to the initial specification.

To obtain a more compact notation, we henceforth write s —; t, s > g t and
s =4 t also for rewrite rules. We also write —gyg instead of g U —g, —Ro
instead of <—p and likewise. Finally, we use a function ¢ that maps R to I, S°
to I° and T to E. ¢ thus forgets the orientation.

We now define the deduction and simplification rules of C; and C,. This can
be done in parallel, because the rules are very similar.

(S,4,P)
SU{s—st}, A P)’

(DEDUCE)

if (s,t) is a critical pair involving one of R or S. It is well-known from equa-
tional completion that critical pairs from 7" are subsumed by simplification rules.
DEDUCE can be written as a pair of inference rules on equalities and inequalities.

11[7’2] —RUT T1 Iy 251 l1[12] —s-1uT T1 Iy 2R 7o
lifra/ls] =111 ’ r1 =1 l[la /7]




Thereby rewriting into 7T-rules occurs at strict subterms.

(S @] {S _>¢(X) t},A,P)

ORIENT
(S, A, PU{s—xt) ’ ( )
where s > t. In C;, we store the reflexive part of =7 5 in A.
A, P
(SUls 2rup s} 4, F) (DIAGONAL)

(S, AU{s—as},P)’

DIAGONAL can be restricted to un-oriented expressions, when it is eagerly ap-
plied. DIAGONAL is of course not used in C,. In case of a quasiordering or of
equalities, we delete reflexive parts instead.

(SU {S —IUE S},P)
(S,P) '

(DELETE)

The inequational simplification rules are based on search for smaller proofs.

(S, A,PU {S —TURUS t})
(S,4,P) ’

(ISIMPLIFY)

if s —»;t, s ortors—gtcan be replaced by a smaller proof (also using E
and T'). ISIMPLIFTY should only be used if none of the following rule applies.

The equational simplification rules use equational rewrite rules to simplify
oriented and un-oriented equalities and inequalities.

(S, A, PU{l =7 1})
(S[/r, A,PU{l>rr})

(SIMPLIFY)

(S, AU{s[l] =a s[l]},PU{l =7 1})
(S, AU{s[l/r] =a s[l/r]},PU{l =7 1})
DSiMPLIFY could be restricted to one side. The result of simplification should

then be stored in I and be shifted back into A after applying StMPLIFY. The
rule need not be considered in case of a quasiordering.

(DSIMPLIFY)

(5,4, PU{s[l] =x t,l =7 1})
(SU{s[l/r] 2px) th A, PU{l =7 1))

(COLLAPSE)

For X =T, either rewriting occurs at a strict subterm, or else s =1 and ¢ > r.

(S, PU{s =x t[l],l =57 1})
(S, PU{s =gx) tll/r],l =1 r})’

(COMPOSE)

C; and C, specialize to an equational KB-procedure [I3] by forgetting all
rules involving I, R and S. C; specializes to a KB-procedure for non-symmetric
transitive relations [20J23], forgetting all rules involving E and T'. C, specializes
to a procedure for quasiorderings [20J23], forgetting all rules involving E and T



and discarding A. Conversely, as an extension of these procedures, the combined
procedures add just a few more simple cases to well-known rules.

The same holds for the proofs of soundness and correctness of C; and C, with
respect to those of equational and non-symmetric KB-completion. We define
S1=U,;>, Si and P t=J;>, Pi. A proof of an identity s =g t or an inequality
s —7 tin S 1 UP 1 is a finite sequence (s, - .., s,) of length greater than one
such that s = sg, t = s,, and for all 1 < i <mn,

1. si—1 = EtUIt Sis
2. 8i—1 D RIUSTUTIU(TT) Si-

Pairs (s;—1,s;) are called proof steps. Two proofs are called equivalent, if they
prove the same pair (identity or inequality). A proof (sg,...,8,) in S T UP 1 is
a rewrite proof in P, iff there exists some 0 < ky < ky < k3 < n, such that
si_1 =7 s;foralll <i <k and s; >R Sit1 for all k1 <@ < ko, 5; =5 Sit1 for
all ky <i < ks and s; <7 5441 for all ks <i < mn,

Let M be the set of finite multisets of terms from T's;. Let < be some reduction
ordering on T and < the (strict) subterm ordering. We compare tuples in
M x Tx; x T's; by a proof ordering <’ which is the lexicographic combination of
the multiset extension of < (also denoted by <) for the first component, < for
the second component and < for the third component. A proof step measure is
a mapping u: T X T's; — A defined for a proof step w = (s;—1,s;) by

({si-1,8i},--), if si_1 = Erurt i, (- denotes an arbitrary term),
e (w) = ({si-1}:1,4), ?f Si—1 —R{uT? Si; by rule I = r,

({si},~-)s if s;1 —A 84,

({si}.1, si-1), if si—1 = spu(rt)e si, by rule l — r,

This is the definition for C;. For C,, A disappears. Proofs are measured as
multisets of proof steps. <’ is extended to a proof ordering <" by multiset
extension. Since we consider only (bounded) lexicographic combinations and
multiset extensions of well-founded orderings, both <’ and <" are well-founded.
We will denote them by < if no confusion may arise.

Lemma 2. Every run of C; and C; has the following invariants.

(i) R, S° and T are contained in >.
(i5) The (in)equational theory of Sy is preserved (completion soundness).

Proof. (ad i) Trivial inspection of the inference rules.

(ad ii) By inspection of the inference rules. ORIENT, DIAGONAL and DELETE
are trivial cases. DEDUCE rules are restricted applications of transitivity and
monotonicity. This is sound. ISIMPLIFY rules are sound by definition. When an
inequality s — t (or a respective rewrite rule) can be replaced by some smaller
proof, then s — t is redundant; removing it does not alter the theory.

In case of the SIMPLIFY rules, we consider the case

(SU{s[l] =rt},PU{l »7r})
(SuU{s[r] =;t},PU{l =7 r})

10



First, we can use transitivity to derive

(SU{s[l] »rt},PU{l > r})
(SU{s[l] =1t s[r] =1t} , PU{l =7 1r})

from the premise without altering the theory. But now s[l] —; is entailed by the
smaller expressions s[r] — ¢t and I —7 r. It is therefore redundant and can be
deleted without changing the theory.

The remaining rules are handled in a similar way. a

Lemma 3. Assume that C; and Cy is fair and does not fail. There is a smaller
equivalent proof for every proof in S T UP 1 that is not a rewrite proof in Pu.

Proof. There are three reasons for not being a rewrite proof.

1. The proof contains a step in S 1.
2. It contains a step in P T —Py,.
3. It contains a peak in P,.

We show that each of these cases can be transformed away.

(ad 1) Since the procedure does not fail, Soc = (. Thus the step in S 1
has been deleted at some stage of the run. This can happen either by applying
DIAGONAL (in case of C;), DELETE (in case of C,;), ORIENT or by simplifying it.
The first and second case obviously yield a smaller proof. In the second case this
is also the case, because the first component of p decreases. In the third case,
for ISIMPLIFY, the decreases by definition. Otherwise, with the SIMPLIFY, the
initial proof steps can be replaced by two new ones, which are both smaller by
the first component of the measure.

(ad 2) Assume without loss of generality that there is a proof step s;—1 — g s;
with a rule ! =g r such that [ = s;_1]p. For the cases of S, T' or T° the situation
is similar, by definition of u. Then the rule is eventually discarded at the run,
either by ISIMPLIFY, by COLLAPSE or by COMPOSE.

In case of ISIMPLIFY we argue like in (1).

In case of COLLAPSE, assume that [ — g r has been replaced by the inequality
I =1 7, using the rule s =7 ¢. Hence l|; = s and I’ = [[t]; and ¢ is not the
root position. Then the initial proof step can be replaced by two new ones.
The measure of the new inequality is smaller by the fist component (because a
subterm is replaced by a smaller one) of the measure and the new rule is smaller
by the subterm ordering.

In case of COMPOSE, assume that | — g  has been replaced by [ — g ' using
the rule s —7 t, such that r|, = s and r' = r[t],. Then the initial proof step
can be replaced by two new ones. The new R-step is smaller than the initial
one by the third component of the measure, the S-step is smaller by the first
component (and replacement of subterms).

(ad 3) We apply the critical pair lemma. For disjoint positions we can com-
mute the rewrite steps to turn the peak into a valley. This yields of course a
smaller proof. Or else we apply DEDUCE and again obtain a smaller proof. O

11



Lemma 4. Consider an unfailing fair run of C; or C,.

(i) Every proof in S 1 UP 1 is equivalent to a rewrite proof in Py .
(i1) Too is convergent. (R, Seo) s a normal system on E-equivalence classes.

Proof. (ad i) By well-founded induction on the size of proofs, using the proof
ordering and lemma
(ad ii) A special case of (i). O

The statements of lemma Bl can also be expressed as follows.

Theorem 1. Ewvery fair implementation of C; and C, s correct.

5 Extensions and Limitations

There are three main differences between non-symmetric and equational KB-
procedures. First, even in the ground case, DEDUCE is not subsumed by ISiM-
PLIFY. Second, ISIMPLIFY is based on search and cannot, as in the equational
case, be refined by one-step rules. The third difference is even more interesting.

Lemma 5.

(i) Straightforward implementations of C; and C, admit infinite runs.
(i1) All runs of C; and C; terminate, if X is a (finite) set of constants.
(i5i) There is a transformation on the initial expressions that forces termination
of C; and C,.

Proof. (ad i) See [23] for an example.

(adii) Let X be a finite set of constants. Then the C;- and C,-rules correspond
to addition, relabeling and deletion of edges in a graph. Since no edge that has
been deleted must ever be added again (because it is redundant) and every edge
is relabeled at most once, the procedure terminates after at most 3| X|> steps.

(ad iii) See [24] for a definition of the transformation (essentially currying
and flattening of terms) and a proof of termination in polynomial running time
with respect to the size of the initial expressions. In particular, flattening of
inequalities can be achieved as a preprocessing, using the memoization procedure
CM from section B i

All these phenomena (except termination) are further discussed in [23]. Due to
variable critical pairs, KB-procedures for the non-linear non-ground case require
context variables. The associated context unification problem [9] is still open
(unifiers could however be computed in practical cases by higher-order unifica-
tion). Defining appropriate reduction orderings seems difficult.

There are three interesting cases that can still easily be handled. First the
non-compatible case (no function is monotonic), second the linear case and third
the ground case modulo associativity and commutativity.

The non-compatible case is interesting as the basis for ordered chaining cal-
culi for transitive relations and quasiorderings [A22).

12



The KB-procedure of the linear case is obvious. Linearity is an invariant of
the process. The transition rules combine the equational non-ground with the
non-symmetric ground case. One of the DEDUCE rules, for instance, has the form

Li[re] = RuT ™1 lo =5 1h
llo'[lz(f] — 110 '

Thereby o is a most general unifier of ro and r}. Now all possible combinations
between rules in R, S and T must be considered.

A particularly interesting instance is a ground non-symmetric KB-procedure
modulo associativity and commutativity (AC), since the associativity law and
the commutativity law, which are the only non-ground rules, are linear. Here one
uses an AC-compatible reduction ordering [BUIT], AC-unification and extended
rules. A Knuth-Bendix procedure for ground quasiorderings modulo AC has
already been specified in [2T]. The extension to the combined case is obvious. For
an AC-operation symbol f, a rule f(r,s) »rur t or 7 —g f(t,s) is extended to
f(f(r,s),x) = gur f(t,z)or f(r,z) —s f(f(t,s),z), where z is a fresh extension
variable. Hence also extensions preserve linearity. Now, extension rules are added
to the completion procedure. The rules

(I,R,S) (I,R,S)
(I,RU {s = rur t},5)’ (I,R,SU{s »5t})’

(EXTEND)

if s 2pur t (s =5 t) extends a non-extended rule in R or T (in S), are the
extension rules for a ground KB-procedure for a quasiordering.

Variable critical pairs also occur for the interaction of inequational and equa-
tional rewrite rules. It immediately follows from the critical pair lemma of non-
symmetric rewriting that there are also variable critical pairs of R or S with
T, when T is non-linear and the R- or S-rule is applied at a variable-instance
position. Conversely, when R or S is non-linear and 7T is applied at a variable-
instance position, there is semicommutation and therefore no variable critical
pair.

6 Memoization in Constraint Graphs

We now present a first application of C;. A declarative memoization procedure
for digraphs, where vertices are labeled by terms. This simple adaption of the
declarative congruence closure algorithms in [TAlfi] allows efficient representa-
tions of constraint graphs. The main idea is to use the equational rewrite system
— for renaming all subterms in the inequalities presented by I. Since C; and
C, are non-deterministic, memoization can be performed on the fly during the
completion process, although it is preferably done in a bottom-up way. Am-
biguous assignments of names can be resolved by the equational COMPOSE and
COLLAPSE rules. The memoization algorithms can therefore easily be adapted
to dynamically changing environments. Renaming techniques are also standard
for obtaining polynomial time decision procedures [T67].
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We now define the state transition system CM for memoization as an exten-
sion of C;. An adaption to a system Cé” is straightforward. Renaming introduces
new names. We therefore use a set C' of constants disjoint from Y and consider
(ground) terms over Tsuc = Tx(C). Following [I5] we call a rule of the form
fler,...,¢n) =1 co, where f € X, co,...,cp € C, a D-rule and rules of the form
co —x ¢1, where X isone of E, I, R, S, or T and cy,c; € C, C-rules. D-rules
represent the renaming definitions, hence equivalences and thereby the struc-
ture of terms. Equational C-rules represent equivalence or congruence classes.
Inequational C-rules represent the original digraph.

States of CM are now tuples (K, S, A, P), where in addition to the states of
Ct, K is a set of constants, which in the initial state is empty and E is a set of
C- and D-rules, which is also initially empty.

In presence of new names, the ordering < looses importance. It should only
be total on C' and all elements of C should be smaller than the elements of X.
It can be constructed on the fly during completion.

Most of the transition rules of CM are restrictions of those in C;. But we
must also add a rule that does the renaming with constants from C'.

(K,S[f(c1y.-.,en)], A, P)
(KU {CU}as[f(cla'"7cn)/00]7A7PU {f(clv"'acn) —T CO})

where ¢1,...,¢, € K, ¢ € C and ¢y ¢ X' U K. The rule entering T is a D-rule.
RENAME forces renaming in a bottom up way.

After renaming, we can restrict ORIENT to equalities and inequalities with
one side a constant. SIMPLIFY and DSIMPLIFY are restricted such that the T-
rules replace (sub-)terms by constants. In DEDUCE, COLLAPSE and COMPOSE,
both rules are restricted to have a constant at least at one side. In COMPOSE,
the T-rule consists solely of constants, when it is applied at a strict subterm. All
expressions introduced by these rules have again a constant at least at one side.

There is only one obvious difference to declarative equational congruence
closure. In CM| like in C; and C,, one cannot dispense with DEDUCE. Soundness
and correctness of CM are almost immediately inherited from C;.

(RENAME)

Theorem 2. CM is sound.

Proof. Soundness with respect to all inference rules of CM except RENAME fol-
lows immediately from soundness of C; in lemma [ (ii). Introducing a new name
¢o for a term f(ci,...,c,) in RENAME means a definitional extension of the
original theory. Obviously, every theorem of the original theory is a theorem of
the extension. Moreover, for every formula ¢ in the extended language there is
a formula 9 of the original language that is equivalent in the extended theory.
¥ can be obtained from ¢ by replacing every occurance of ¢y by f(cy,...,¢,). O

Theorem 3. Every fair implementation of CM is correct.

Proof. The proof is again by well-founded induction on the size of proofs. It goes
along the lines of lemma B and lemmaHl Again we must show that for every non-
rewrite proof in S T UP 1 there is a smaller proof in P,,. Most cases are covered
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by C;. In addition, it may happen that some step in S 1 must be renamed before
ORIENT is applicable. Obviously, RENAME yields a smaller equivalent proof.
Renaming, all rules can be eventually oriented and for all oriented rules, at least
one side is a constant from C'. Therefore, the restrictions of simplification and
DEDUCE rules of C; are satisfied a forteriori. In particular, by COMPOSE, T,
consists solely of D-rules. |

Like already for C; and C,, there is one crucial difference to the equational
congruence closure algorithms.

Theorem 4. Runs of CM need not terminate.

Proof. We adapt the counterexample from [Z3] that shows non-termination of
non-symmetric KB-procedures. Consider the rewrite rules f(b) —1 band f(a) =7
b and assume names cg,c1,--- € C such that ¢; > ¢; for all ¢ < j and ¢; < f for
all ¢; € C'and f € ¥. Then RENAME yields

a —T Co, b—T c, fla) =7 ca, F(b) =7 cs.
RENAME, ORIENT and COLLAPSE and COMPOSE, then yield for all 4 > 0
fle2i) =1 caiya, fle2it1) =7 caiys, C2i42 —S C2i, €2i+3 —S C2i+1
and in the next step by DEDUCE
f(c2iv2) =R C2i42, f(c2i43) =R C2i43.
This means non-termination. O

However, CM terminates in many cases.

Ezample 1. We show that the rules a —71 f(f(f(a))) and f(f(f(f(f(a))))) =ra
imply f(a) —r a. Renaming yields

a—=7co, fla) =7 e, f2(a) =1 ¢, f3(a) =7 cs3,
f*(a) =7 c4, fP(a) =7 cs.

We order the constants according to the size of their indices and obtain

Co =5 C3, €5 =R Co, f(co) =1 e, fle) =7 ca,

f(e2) = cs, fles) =1 e, f(ea) =7 cs.
In the next step we obtain
f(co) =R ca, €1 =g C4, fler) =g cs, co —s Cs, Co —R Co-
This corresponds to f2(a) < a. In the next step we obtain
c3 —s f(co), ¢3 =R C1, co — C1-

and therefore a —; f(a), as expected.

However, in accordance with lemma B, a variant of CM terminates, where RE-
NAME is used as a preprocessing and is not intertwined with DEDUCE-steps, as
in the previous example. This is the case, since without DEDUCE-steps, no new
terms, that would require new names, are introduced.
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7 Strongly Connected Components

The memoization example of section Bl shows the combination of the equational
and the inequational procedure. Here we address the far more interesting exam-
ple of cycle detection and strongly connected component algorithms that shows
the cooperation of the procedures.

Consider a digraph G = (V, —) together with a total well-founded ordering
< on V. Thus there is no term structure for vertices. Every equality and inequal-
ity can be oriented. A path is oriented, if it contains only edges labeled with R or
S. We have defined SCCs and the mutual reachability relation ~ =<7 U —7 in
section I We call an SCC trivial, if it contains one single vertex and non-trivial
else. We use — (or more precisely <+%) for representing . The definition of ~
is procedurally insufficient, since mutual reachability is a global property of — .
We therefore refine it and define the local variant =~; = < N —. Obviously,
~1 C ~. We model = by the rule

(S, A,PU{l g r,r—gl})
(S, Au{r sar},PU{l 57 71})

(SCC)

Adding the rule SCC to C; yields the state transition system Cgcc. In the initial
state, we assume that the input digraph is presented by inequalities in I. E, A
and P are assumed to be empty. We also assume that all ORIENT and DIAGONAL
steps are carried out implicitly together with the other rules.

We now show that adding just the single rule SCC to C; suffices for detecting
all SCCs and constructing the component graph Gscc of G.

Lemma 6. All runs of Csco terminate.

Proof. A simple adaption of the argument in the proof of lemma B (ii). |

For soundness and correctness we must include the rule SCC into the proof
measure pu. It is easy to modify p such that also the conclusion of SCC is smaller
than its premise. Just make inequalities bigger than equalities by adding their
terms twice to the multiset.

Lemma 7. Cgoc is sound.

Proof. Like for C; in lemma B we show that all runs of Cgoc preserve the
initial theory, that is reachability and mutual reachability defined by —>}" and
~. By lemma B, all runs of C; preserve reachability and therefore also mutual
reachability. It therefore remains to consider SCC.

SCC adds an equational rule ] —7 r in presence of ] - r and r — g [. Since
therefore (I,r) € =1 and (I,r) € &, adding the conclusion is sound. Since more-
over the inequalities in the premise are entailed by the smaller conclusion they
are redundant and can be deleted after adding the conclusion. Thus reachability
and mutual reachability are preserved in every run of Cscc. O
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We now address correctness of Cscc. Before presenting formal arguments, we try
to give the underlying intuition. Roughly, the non-symmetric rewrite system is
used to detect cyclic structures, the equational rewrite system to collapse cycles
and represent equivalence classes. The SCC rule couples the two KB-procedure,
hence establishes their cooperation.

Let us now take a closer look at the two main phases of the SCC algorithm.
They are also illustrated by the example in section Bl For the first phase, it is
important to observe that by definition of ~, a SCC can be understood as a
cluster of simple cycles (c.f. lemma B (i)). Moreover, every simple cycle must
contain at least one R- and one S-step (c.f. lemma B (i)). This holds, since
pictorially spoken, one can neither walk up forever or walk down forever on
an oriented cycle. So consider a simple oriented k-cycle. As a consequence of
lemma [ it must contain a critical pair —s— . Thus DEDUCE adds a new edge
to the cycle and thereby generates a k — 1-cycle (c.f. lemmaf (i)). Iterating this
argument, every fair run of Cgoc will eventually generate a 2-cycle, for which
SCC introduces a T-rule (c.f. proof of theorem H (i)). This alone suffices for
cycle detection.

We now turn to the second phase of the SCC algorithm. Once a T-rule! =7 r
has been introduced, SIMPLIFY and COLLAPSE allow replacing all occurances of
l'in an I- R- or S-edge by r (c.f. lemma [ (ii)). Thereby every i-cycle, 3 < i <
k, obtained from DEDUCE-steps on a k-cycle is collapsed to an ¢ — 1-cycle. In
particular, a new 2-cycle appears and consequently, a new T-rule is introduced
by SCC. Iterating this argument, the initial k-cycle is eventually collapsed into
a 2-cycle and then to a single vertex by SCC. All in- and outgoing I- R- and
S- edges of the initial k-cycle are now in- and outgoing edges to this surviving
vertex. The remaining vertices of the cycle do no longer contribute to I- R- and
S-rules. They are connected by T-rules to the surviving vertex instead (c.f. proof
of theorem[l (i)). Algebraically, Cscc collapses the cycle into an equivalence class
of the component graph, which is now represented by T-rules pointing from each
member of the class to its canonical representant. The I- R- and S-rules apply
solely at the canonical representant and thereby rewrite modulo the equivalence
class.

Since a SCC is a cluster of simple cycles, it is eventually entirely collapsed
to a canonical representant and represented by T'. The equational part of Cscc,
in particular COMPOSE, transforms T' eventually into a canonical term rewrite
system whose term normal forms are the canonical representants of the equiv-
alence classes. Remind that Cgcc does all these operations automatically, just
by adding the rule SCC to Cscc-

We now formally reconstruct these arguments.

Lemma 8. Let vy,v3 € V.

(1) vi = vy iff there is a cycle through vi and vs.
(i) Every oriented cycle through vi and ve contains both R— and S-edges.

Proof. (ad i) obvious.
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(ad ii) By induction on the length of the cycle. For a 2-cycle with nodes vg
and vy, we have that v9 —s v1 and v1 — R v, if vg < v1 and v9 — g v; and
v1 —s Vg, if v1 < vo. With an n-cycle, we associate an n — 1-cycle by arbitrarily
selecting three nodes v;, v;41 and v;4o such that v; = v;41 —1 viy2, adding an
edge e = v; =1 v;42. By the induction hypothesis, the n — 1-cycle contains at
least one R- and one S-edge. If the selected R and S-edge are not e, then these
edges are also in the n-cycle. Else assume that e is in S and there is another
R-edge in the n — 1-cycle and therefore also in the n-cycle. The case where e is
in R is dual. Now by the assumption, v; < v;;2. There are three cases for v;41.

= Vi1 < ;. Then v; —g Vit1 =78 Vit2-
— Vi < Viy1 < Vjg2. Then v; — ¢ Vi1 =S Vit2.
— Vi1 > UVig2- Then v; —g Vi1 —R Vit2-

So in any case there is one edge labeled with S. O
Lemma 9.

(i) For every oriented k-cycle, k > 1, DEDUCE constructs a k — 1-cycle.

(ii) Let v; and viy1 be adjacent vertices on an oriented k-cycle ¢, k > 1. Let
Vir1 =71 Vi, 1 < i < k—1. Then COMPOSE and COLLAPSE replace ¢ by a
k — 1-cycle, in which only v;y1 has been discarded and all in- and outgoing
edges of viy1 have been replaced by in- and outgoing edges of v;.

Proof. (ad i) Let ¢ be a k-cycle. By lemma (ii), ¢ contains at least one edge
labeled with R and one edge labeled with S and therefore a peak, v; ->g—g v9
say . DEDUCE then derives vy —1 vs.

(ad ii) This is straightforward. COLLAPSE reduces all bigger and COMPOSE
all smaller vertices in the respective edges. a

Theorem 5. Every fair implementation of Cscc is correct.

(i) Let v be the <-minimal element of [v]~. Then there exists a rule v —a_ v
and for all v' # v in [v]x there exzists a rewrite rule v' —7_ v. Thus =1,
computes canonical elements for and represents every non-trivial SCC of G.

(ii) <5 Vidy = .

(iii) For all v,v" € V', v' is reachable from v in the graph G' = (V,—gr_,—s..
,—1.) by a path in —)%io (—)Eoo =5 U —)3500) (—%:o, iff V] =L Vs in
G/ ~. Thereby —=! denotes that there is at most one such rewrite step.

Proof. (ad i) Let v &~ v'. Then v and v’ are on an oriented k-cycle ¢ for some
k > 2 by lemmal (i). By lemmal[ (ii), this cycle contains a peak and by lemma &
(i), DEDUCE constructs a k — 1 cycle ¢;—; which can again be oriented. Iteration
leads to a sequence ¢, cx—1, - - ., c2 of oriented i cycles. Every i-cycle is identical
to the 7 + 1-cycle, except that some path vy —s—gr Vg2 on the i + l-cycle
has been replaced by and edge vy — vi4o. This iteration finishes after at most
|V|? — | E| steps. Now consider the oriented 2-cycle c2. Assume it has the vertices
vo and vy with vg < v1. By construction, these two vertices are on all other cycles
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c1. We obtain the rewrite rules vg —g v1 and v;1 — g vg. Then SCC is applicable.
The two rules can be replaced by v1 —7 vg and vg — A vo. By lemmal (ii) we can
now use COLLAPSE and COMPOSE to simplify each oriented i-cycle, 3 <1 < k,
to an i — 1-cycle, which can again be oriented. This yields a new sequence of
oriented cycles ¢, _,,...ch, on which SCC and the simplification can be applied.
After k — 2 steps, the original sequence of cycles has been completely simplified.
There is exactly one rewrite rule v; =7 v; for every vertex v; of the original
cycle, except the minimal vertex. Using COLLAPSE, they can be transformed
into k — 1 T-rules pointing from each vertex (except the minimal one) to the
minimal one. This can be done in k—1 steps, starting from the minimal element.

(ad ii) By (i), —7., computes canonical representants for every non-trivial
equivalence class of . Thus <> connects exactly the elements in every non-
trivial SCC. <»1_ is contained in =~ and becomes identical to =, when self-edges
for all vertices in V' are added.

(ad iii) Let v' be reachable from v by a path in —)%éo (—)Jlgoo -5 U —>Jsroo
) (—%:o Then, by soundness of Csce (lemma [), v' is reachable from v in G.
Moreover, all vertices on the —>;m —%5. U —>f§m path are in T-normal form by
lemma 4. Thus for every pair v; and v; on this paths there are v} € [v;] and
v} € [v;] such that there is an edge v; —grus v;, setting v, = v; and v} = vj.
Hence [v;]~ —~ [vj]~ and therefore [v]n —7% [v]~ hold by definition of — 4.

Conversely, let [v]x —1% [v']~. Then there are elements in [v]x, [v']~ and
all intermediate equivalence classes that yield an equivalent proof vg —T wy.
By correctness of C; (theorem [), there is a rewrite proof from vo to vg. By
(i), canonical representants of [v]y and [v']s (which contain vy and vy) are T-
reachable in one step. |

The statement in theorem B (iii) is somewhat more complex than one might
expect. It does not say that G’ is the component graph of G, but that G’
behaves like Gscc with respect to reachability. The reason is that the DEDUCE
steps in Cgcc add new edges to the graph that may persist also in the final
state. Thus the edges of G' will be in general different from the edges of Gscc.
Therefore additional work is required to recover Gscc from G', but in many
applications, reachability equivalence suffices. We will discuss this issue below.
The proof of correctness of Cscc has the following implications.

Corollary 1. Graph G contains a cycle, iff Cscc generates a T -rule.
Corollary 2. Cgcc eliminates an isolated simple k-cycle in O(k) steps.
Proof. There are k — 2 applications of DEDUCE, k — 1 applications both of SCC
and COLLAPSE and 2k — 3 applications of ORIENT. So there are 5k — 7 steps in

the algorithm. a

The proof of lemma [ (ii) yields an upper bound for the running time of Cgscc.

Corollary 3. All runs of Cscco terminate after O(|V|?) steps.
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This bound is not optimal, since the standard SCC algorithms based on depth-
first search have O(|]V| + | — |) running time [BII0]. It is also very loose, since
the number of steps in Cscc depends strongly on the clustering of cycles in
SCCs. Cgee is a declarative, rule-based and non-deterministic state transition
system. It therefore specifies a class of SCC algorithms rather than a particular
instance. Efficient algorithms can be obtained from Cgcc by eliminating non-
determinism via execution strategies, as we will see below. For running time
analysis we assume—following arguments in [I5] for similar procedures—that
all implementations of rules in C; and Csco¢ can be executed in constant time.

The fact that Cscc is declarative, rule-based and non-deterministic, makes
the procedure also flexible enough to support various different applications, im-
plementations and modifications. An obvious application are constraint systems
in general and constraint-based analysis of program and finite and infinite state
systems in particular. There, the reduction to a component graph may yield a
more concise representation of the constraint system; the size of the constraint
store or the state space may be drastically deduced. The fact that G’ is not pre-
cisely G sc¢ is not important here, since constraint solving requires computation
of the transitive closure anyway. This can now be done using the search-based
decision procedure of non-symmetric rewriting. SCC-algorithms are also useful
for the acceptance analysis of Biichi automata, with interesting applications in
model checking. One could therefore take the extreme point of using Cgcoc for a
constraint-based approach to model checking. Since C; and C,; can be extended
to some non-ground cases, our approach should be applicable to the analysis of
infinite state systems.

8 Strategic Refinements of the Strongly Connected
Component Algorithm

We now show that refinements via specification of execution strategies allow
the rational reconstruction of efficient SCC algorithms. To this end, two further
questions must be answered. How to translate the output graph G' of Cgc ¢ into
the component, graph Gscc? How to improve the running time of Cgcoc?

A naive answer to the first question is as follows.

Lemma 10. The following procedure yields the component graph Gscc of a
graph G.

1. Run Cgcc on G, but store G separately.
2. Run SIMPLIFY of Cscc on G and Tw .

Proof. The procedure obviously reduces each vertex of G to its canonical repre-
sentant in Ggcoc and each edge of G to an edge of Gscc, that is an edge that
connects canonical representants. O

An answer to the second question requires suppressing DEDUCE steps that do not
contribute to cycle elimination. We now present a strategy that restricts DEDUCE
steps completely to cycles, thereby also answering the first question. Let C%
be the state transition system Cgcc together with the following strategy.
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— Orient inequalities using depth-first search on Iy,
— Construct < on vertices on-the-fly, using the discovery times of vertices.
— Give successor vertices a smaller weight with respect to < as long as possible.

This strategy orients inequalities into R-rules as long as possible. We call R¢-step
an R-step and Sy-step an S-step whose right-hand vertex is finished by depth-
first search. We call Ry-step an R-step and Sy-step an S-step whose right-hand
vertex is discovered but not finished by depth-first search.

Lemma 11. C%. has the following properties.

(i) Every S-step is either in Sy or Sq.
(iii) Every SCC contains a simple cycle with ezactly one Sy-step.

Proof. The proofs use simple properties of depth-first search.

(ad i) Obvious.

(ad ii) Assume that we depth-first search on a SCC. By lemma [ (i), the SCC
contains a cycle. By lemma B (ii), this cycle contains at least one S-step. We can
assume that the cycle is simple, since every cycle can be decomposed into simple
cycles. Now assume that we have so far not detected any cycle. Let the S-step
on the cycle be an Sy-step v —5, v'. Then v is discovered, but not finished and
v’ is finished. Since we assume that we are on a cycle, some predecessor u from
which v has been discovered must be reachable from v’. Since v’ is finished, u
must also be finished. But then v must also be finished, since it is reachable from
u, a contradiction. Thus the S-step must be an Sy-step. Moreover, this Sg-step
must be the step closing the cycle, since v’ must at least have been discovered.O

We can therefore refine the strategy in C&. further by restricting DEDUCE step
between an R-rule and an S-rule to Ry and Sg-steps. These DEDUCE steps must
be eagerly applied as soon as an Sg-step has been discovered. Also the succeeding
simplification steps must be eagerly applied. Vertices that have been discovered
or finished must keep their labels under the simplifications. This guarantees
that precisely those critical pairs are computed that collapse cycles. But all these
critical pairs finally disappear in the T-rules that characterize the SCCs. Outside
the SCCs, no new edge is added to the graph. Moreover the outside edges are
simplified by T-rules and finally become edges of the component graph. This
argument implies the following result.

Theorem 6. Every fair implementation of C&n ts correct. For every input
graph G, the algorithm gives out the component graph Gscc. The SCCs of G
are represented by Too. The edges of Gsco are represented by Ry and S -

Theorem [ has the following immediate consequence.

Corollary 4. Cycle detection with C%. means detection of Sq-steps. It is pos-
sible with ORIENT steps only, that is by pure depth-first search.

We have thus reconstructed the standard algorithm for cycle detection in di-
graphs, using solely a strategy that refines a purely non-deterministic declara-
tive specification. Thereby the main work in the algorithm is shifted from the
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KB-procedure almost entirely to the strategy. As a consequence, the running
time of cycle detection is determined by that of depth-first search.
Also C§ can be further refined.

Lemma 12. For C%. ., every T-tree for a simple k-cycle has k branches, that
is one T-rule per vertex to the minimal one (except from the latter itself).

By lemma [[] (iii), every simple cycle in a SCC contains exactly one S-step. The
particular T-rules are computed backwards from the smallest node to the entry
vertex of the SCC. One can therefore collect the vertices of the T-tree as follows:
Search backwards (using depth-first search) all those vertices that are discovered,
but not finished, starting with right-hand sides of S-rules and stopping at their
left-hand sides. This saves some intermediate DEDUCE steps and yields a variant
of the standard strongly connected component algorithm [BI{)]. Again, most of
the work has been shifted from the KB-procedure to the strategy. The running
time is then of course again determined by that of depth-first search.

In opposition to the standard algorithm, however, which performs two global
searches on the input-graph, C%. . eliminates cycles locally one by one. This
may be an advantage in practice. Moreover, the construction of the whole com-
ponent graph is included in C§,, whereas this is not the case for the standard
algorithm. As a further benefit from the locality and non-determinism of Cgoe
and C&, ., edges can easily be added to a graph at run time.

In the control of centralized reactive systems like operation or database sys-
tems, vertices of a graph represent tasks and edges the relation of waiting that
some resource is released. Cycles correspond to deadlocks [T9]. With C%., dy-
namic cycle detection is quite simple, since, by lemma [l (iii) and corollary El
it suffices to check for cycles, when the new edge is in S. We now determine,
whether an S-step is in Sq or Sy by recording the discovery and finishing times
of all vertices. If it is in Sy (that is, when the finishing time of its right-hand
vertex is greater than the discovery time of its left-hand vertex), it must be
closing a cycle. If it is in Sy (that is, when the finishing time of its right-hand
vertex is smaller than the discovery time of its left-hand vertex), it could also
be the case that two paths are joined that do not form a cycle. One can then
use the depth-first search to test for cyclicity along a rewrite path. Note that
we cannot use the search procedure of non-symmetric rewriting, since we did
not compute critical pairs involving S¢. This reconstructs the best known cycle
detection technique in [19]. With Cscc, the search procedure of non-symmetric
rewriting allows cycle detection. This may be preferable for constraint graphs.
Here, one can easily implement (incomplete) heuristics, for instance only search
for cycles up to some fixed size. Of course, besides dynamic cycle detection,
Cscc also allows the dynamic and on-line construction of component graphs.

We now discuss further variants of Cgco¢. First, the procedure supports ap-
proximations. 2-cycles, for instance, can be eliminated with Cscc, prohibiting
DEDUCE and using SCC solely. Also, successive applications of DEDUCE can be
triggered by strategies that detect all cycles up to a fixed size.

Second, the running time of Cgce can further be improved by disregarding
equational COLLAPSE steps. A representation of SCCs without COLLAPSE cor-
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responds to a disjoint-set forest in a union-find data structure [I0]. The effect of
COMPOSE is precisely path-compression. Modeling the other heuristics of union-
find, namely union by rank, is more involved. Choosing the representant of the
bigger partial equivalence class as a new representant when merging two partial
classes may violate the ordering constraints. The solution is to introduce a rank
function and assign a weight (r(c),0(c)) to each vertex ¢, where 7(c), 7 : C — N,
is the rank of ¢ and o(c) its weight according to the usual precedence. The com-
ponents of this weight function are compared lexicographically. (c¢) is initialized
with 0 and incremented, whenever it becomes the smaller vertex of a new T-rule.
We use the modified variant

(S,A,PU{l =g rr—sl}
(S, AU{r -ar},PU{l »gr})

and the following variant of ORIENT for E-rules

(SU{s =gt} A P)
(S,A,PU{s—rt)’

if (s) < r(t). Then r(t) is incremented by one. Otherwise, we use ¢t =7 s and
increment r(s) by one. If this modification is used together with eager application
of SIMPLIFY, then we can guarantee that only the canonical representants of
equivalence classes are compared. It is well-known that 7(s) approximates the
logarithm of size of the T-subtree rooted at s and is also an upper bound for
the height of each vertex in the T-tree. Therefore for every vertex there are only
logarithmically many smaller vertices [I0]. This fact has considerable impact on
the running time of Csc¢ and associated search procedures.

Third, Cscc and its variants can easily be adapted to quasiorderings. The
elimination of SCCs then means the construction of the associated partial or-
dering from a given quasiordering. Now, of course, the information stored in A
is redundant and SCC can be simplified to

(SU{l =g r,r—=s5l},P)
(SU{l »rr},P)

Fourth, Cscc and its variants can be extended to vertices with internal
structure including variables. Without monotonicity, unification has to be used,
maybe modulo some axioms, like associativity, monotonicity or idempotence.
This is in particular interesting for the analysis of state transition systems. With
monotonicity, one should in the ground case use the variant

(SU{s[l] =R s[r],r =s 1}, A,P)
(SU{s[l] =7 s[r],r =r 1}, AU{s[r] = a s[r]}, P)

of (SCC). By lemma [, these extensions might not terminate, unless additional
coding is used. In the non-ground case monotonic case, the aforementioned no-
torious difficulties with variable critical pairs arise.
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9 The Strongly Connected Component Algorithm at
Work

For further illustration of our previous arguments, we consider the following
example. We eliminate the simple isolated oriented 4-cycle in the first diagram
of figure [l We use the precedence defined by ¢; > ¢; iff i < j. Obviously, there

}VCINB }VCINB
Co C2 co S 762
5\63/R S 3‘/R

C1

V»C C1
c S| R C2 CO%T C2 c T ¢
R
‘& 3 S €3 C3
Figurel. Eliminating a simple cycle

is the critical pair ¢c3 - s—pg c1, for which DEDUCE and ORIENT compute the
new edge c3 —g c1. This yields the new 3-cycle ¢; - ¢co =g ¢c3 =5 ¢; and
the critical pair ¢3 —s— g ¢2. DEDUCE and ORIENT compute the new edge
c3 — s Co. This yields the new 2-cycle ¢ — g ¢3 —s co. This situation is shown
in the second diagram of figure [

Now SCC comes into play. It adds the edges co — g ¢3 (which is turned into
co =7 c3 by ORIENT) and ¢3 —a c¢3 and discards ¢a — g ¢z and c3 —g co.
COMPOSE then replaces ¢; —g ¢ by ¢; — g c3. All k-cycles are now collapsed
into k — 1-cycles. In particular, there is the new 2-cycle ¢; =g ¢3 =5 ¢1. This
situation is shown in the third diagram of figure[ll After a mere repetition of the
previous graph transformation leading to the fourth diagram of figure[l] there is
a final 2-cycle cg =g c3 —>5 ¢g. After its elimination by SCC, c3 is the canonical
representant of the cycle; the equivalence class is completely described by T'.

Let us add the edge ¢4 —s ¢1 to the cycle. This situation is shown in the
first diagram of figure 1 Then DEDUCE and ORIENT also add ¢4 —g ¢ and
¢4 —g c3 to the graph. This situation is shown in the second diagram of figure 2
This critical pair computation is unnecessary for cycle elimination. ¢4 —g ¢;
and ¢4 —g co2 are replaced by ¢4 —s c3—an edge on the equivalence class—in
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Cq

C1

Figure2. Performing Unnecessary DEDUCE-Steps

the final graph, using COLLAPSE. This situation is shown in the third diagram
of figure

Let us now add the edge ¢; — ¢5 to the graph. This situation is shown in
the first diagram of figure Bl Then DEDUCE and ORIENT also add ¢4 —g ¢5 to

C4 Cs«—C4

A N2

3

:U

"’/\“%

Figure3. A New Edge in the Component Graph

the graph. It does not belong to the component graph. This situation is shown
in the second diagram of figure Bl Note that it does not matter at which stage
of the process we a new edge to the graph.

Now assume that we orient the nodes of the graph on the fly with C%..
Assume that we start with ¢g and ¢;, but then continue with ¢5. Then, when
we continue with ¢, ¢5 is already finished, hence need not be considered by
DEDUCE. We thereby disregard all critical pairs that are unnecessary for cycle
elimination. All nodes on the cycle are discovered, but not finished and all rules
on the cycle are R;- and Sy-rules. We have detected the cycle (by mere depth-
first search) as soon as we have oriented ¢3 —; ¢; into Sy. For collecting all
nodes on the cycle into one equivalence class, it suffices to depth-first search
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backwards from ¢g all the discovered, but non-finished nodes, until we return to
c1, the right-hand side of the S-rule. This yields the component graph via the
traditional SCC algorithm by strategic refinement from Cgcoc.-

10 Conclusion

We have specified a combined Knuth-Bendix completion procedure for inequali-
ties and equalities. The completion constructs inequational rewrite paths modulo
the equivalence classes defined by the equations. Main applications are therefore
graph traversals modulo equivalence relations defined on vertices or edges. By
its non-deterministic and rule-based nature, Knuth-Bendix completion can be
used as a metaprocedure for the development of declarative procedures and al-
gorithms for graphs and constraint systems.

Here, we have presented two examples for such a development. The integra-
tion of memoization into constraint graphs and the construction of cycle detec-
tion and strongly connected component algorithms. Both procedures are declar-
ative and generic. Efficiency can be easily integrated by refining with strategies.
There is much space for approximations and other heuristics. In opposition to the
standard algorithms, our algorithms immediately apply to dynamically changing
environments. The approach should be flexible enough to cover other examples.

Knuth-Bendix completion not only supports mathematical program con-
struction from general principles of universal algebra. It also provides generic
data structures and implementation techniques that can be optimized once and
for all. At least for prototyping, they can be completely hidden to the pro-
grammer. A rewrite-based environment for rule or strategy specification, like
ELAN [1] or MAUDE [Z], should be used instead.

In the present text, we could only superficially treat complexity issues. For
Cscc, in particular, we gave only rough bounds. In practice, the complexity
strongly depends on the clustering of cyclic structures in a graph and thereby on
its sparsity. One can expect that in a sparse graph the number of simple cycles
as a function of the cycle size looks like a Gaussian curve with a maximum
for medium cycles. Moreover there are only few cycles that have more than a
few vertices in common. Therefore approximation heuristics that disregard very
big cycles should yield acceptable results in practice. The overall complexity of
cycle elimination with C§. .~ should roughly be the sum of the complexities of
simple cycles. For Cgc ¢ an important factor for the running time is the expected
number of DEDUCE steps. We leave a detailed probabilistic analysis with random
graphs to future work. In the end, practical experiments are the ultimate measure
for applicability of these procedures and algorithms.
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